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Abstract

A significant challenge of structural healthmonitoring (SHM) is the lack of labeled data collected from damage states.

Consequently, the collected data can be incomplete, making it difficult to undertake machine learning tasks, to detect

or predict the full range of damage states a structure may experience. Transfer learning is a helpful solution, where

data from (source) structures containing damage labels can be used to transfer knowledge to (target) structures, for

which damage labels do not exist. Machine learning models are then developed that generalize to the target structure.

In practical applications, it is unlikely that the source and the target structures contain the same damage states or

experience the same environmental and operational conditions, which can significantly impact the collected data.

This is the first study to explore the possibility of transfer learning for damage localisation in SHMwhen the damage

states and the environmental variations in the source and target datasets are disparate. Specifically, using several

domain adaptation methods, this article localizes severe damage states at a target structure, using labeled information

from minor damage states at a source structure. By minimizing the distance between the marginal and conditional

distributions between the source and the target structures, this article successfully localizes damage states of disparate

severities, under varying environmental and operational conditions. The effect of partial and universal domain

adaptation—where the number of damage states in the source and target datasets differ—is also explored in order to

mimic realistic industrial applications of these methods.

Impact Statement

One of themain reasons that data-based structural healthmonitoring systems are not widespread in the industry is

because it is challenging to obtain information from damaged structures. One solution here is transfer learning

where damage information from related structures is transferred to structures without damage information.

However, in realistic industrial scenarios, it is unlikely that the damage states that are transferred from one

structure are the same as the damage that is present in another. The situation is further complicated as real

structures undergo varying environmental and operational conditions. This article tests the use of transfer

learning for damage localisation using disparate types of damage from other structures under different envir-

onmental conditions, to evaluate its use in realistic industrial applications.
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1. Introduction

In long-term, online, structural health monitoring (SHM) campaigns, the ability to automatically

locate damage within a structure is vital. This increase in information, which aids smarter mainten-

ance decisions, is why localisation is the second level of Rytter’s hierarchy of damage identification,

directly following damage detection (Rytter, 1993; Farrar andWorden, 2012). In offshore wind farms,

for example, significant savings on time and expenses can be made, if the most probable damage

location is available prior to physically investigating the site for repair and maintenance. Moreover,

knowledge of the location can help in the decision-making process regarding intervention, especially

if the damage has occurred in a safety-critical location. In practice, collecting damage labels that

describe locations of damage is expensive and often infeasible, making automatic damage localisation

using a data-based approach to SHM rather challenging. In SHM, most data-driven damage local-

isation methods typically require a network of well-placed sensors close to the damage location in the

structure of interest (Stubbs et al., 1995;Manson et al., 2003; Chesné andDeraemaeker, 2013;Wernitz

et al., 2022). This approach can be expensive and time-consuming to implement. This issue motivates

population-based SHM (PBSHM), a field of SHM that aims to increase the available labeled data by

leveraging information from a population of structures (Worden et al., 2020; Gardner et al., 2021b).

Traditional machine learning methods rely on the assumption that training and testing data are drawn

from the same underlying distribution (Murphy, 2012). However, differences between structures and their

environmental and operational variations (EOVs)will lead to discrepancies in data. Thus, when using data

from different structures, traditional machine-learning methods will likely have high generalization error.

This issue motivates the application of transfer learning (Pan et al., 2010), a field of machine learning that

aims to use data from related source domains (structures), with a larger amount of labeled data, to improve

performance in a target domain with sparse data. A method for reducing the impact of discrepancies

between domains is known as domain adaptation (Pan et al., 2010), which is a branch of transfer learning

that aims to map the source and target domains to a shared space. Thus, supervised machine learning

methods can be trained using source labels from the source structure and generalized to the target domain

in order to undertake diagnostics or prognostics.

In the context of PBSHM, this is the first article to investigate the possibility of damage localisation of

operational structures when the source and the target datasets contain different damage severities, and

EOVs, via the use of domain adaptation. Here, operational structures refer to real structures in operation

that are not under laboratory-controlled environments, and are exposed to the changing environment/

weather. Consequently, the procedure investigated in this article can have a number of novel benefits for

SHM. If applied across populations of structures, it can locate damage using disparate severities of

damage from different structures. For example, one test structure within a population can be used as the

source—where large damage states are introduced to explore their effect and collect damage labels—to

transfer information tomultiple operational target structures with different damage severities. If applied to

a single structure, thismethodology has the ability to identify and locate damages that have reoccurred in a

structure in the same position with a different severity post-repair, for example.

A technique that has been successfully applied in SHM to address domain shift is joint distribution

adaptation (JDA) (Long et al., 2013). JDA aims to minimize the distance between both marginal and

conditional distributions in the shared latent space. Traditionally, this method uses naïve pseudo-labels to

assess the conditional distributions in the unlabelled target domain. However, this process can produce

poor target label estimates if the conditional distributions are very different. Recently, metric-informed

joint distribution adaptation (M-JDA) was introduced in Gardner et al. (2021a), that uses theMahalanobis

squared distance between the classes in the source and target domains to find better guesses at the initial

pseudo-labels. This approach assumes that for each damage class, the source cluster will be closest to the

corresponding target cluster. In this article, the M-JDAmethod is applied to an operational mast structure

within a population-based SHM framework, in order to locate severe damage states using information

from minor damage states.
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This is the first article in the context of PBSHM that explores the effectiveness of the domain adaptation

methods for damage localisation under realistic conditions, in the presence of class imbalances—where

themarginal distributions differ significantly between source and target domains. The aim is to understand

and discuss solutions for class imbalances within domain adaptation, which are likely to occur in realistic

damage localisation applications when considering time-varying datasets, EOVs, and so forth. Two types

of class imbalances are investigated here. The first is concerned with partial domain adaptation where the

available target classes are a subset of available source classes. The second is universal domain adaptation

where the target structure contains more classes than the source structure. Class imbalances are a major

cause of negative transfer, where the performance in the target domain is negatively affected. Negative

transfer can occur if the data from the source and target structures are significantly dissimilar, and not

related. Avoiding negative transfer is crucial in realistic transfer learning applications in SHM.

1.1. Original contributions

This article aims to use domain adaptation techniques in transfer learning for continuous damage

localisation of operational structures, using a population-based SHM approach. This approach has the

potential to extend the application of supervised machine learning methods for SHM to scenarios where

labeled data are unavailable in the structure of interest. More specifically, the main contributions of the

article are:

• A population-based approach is adopted to localize severe damage states in an unlabelled target

structure/domain using knowledge of minor damage states from a labeled source structure/domain.

A metric-informed joint distribution adaptation method is applied here.

• The localisationmethod is applied to time-varying data collected from an operational structure under

natural excitation, and environmental and operational variations. The challenges of damage local-

isation when using a realistic dataset from an operational structure are discussed.

• The effect of, and methods to address class imbalance, in terms of partial and universal domain

adaptation are explored.

1.2. Related work

Standard SHM practices require a network of sensors placed in strategic positions in order to locate

damage on a structure (Stubbs et al., 1995; Manson et al., 2003; Chesné and Deraemaeker, 2013; Wernitz

et al., 2022). Consequently, large amounts of well-placed sensors and collected data are required for

damage location. Population-based SHM (Worden et al., 2020; Gardner et al., 2021b; Gosliga et al., 2021)

was proposed to address such issues of SHM by transferring information across structures. The idea is to

use labeled information from structures that have been studied in the past to make inferences about the

health of other structures for which detailed knowledge may not be available. One of the most successful

techniques used in PBSHM to aid this task is transfer learning.

Transfer learning (Pan et al., 2010) has been successful in transferring knowledge across different

domains (source and target) in a wide variety of applications such as bioinformatics, medicine, trans-

portation, and recommender-system applications (Zhuang et al., 2020). Typically, statistical properties of

the data in the source and target are compared (Pan et al., 2010), which can be extended to also comparing

the similarities in the geometric structure of the data (Long et al., 2013). For monitoring applications, the

majority of work on transfer learning has focused on fine-tuning of neural networks (Cao et al., 2018;

Dorafshan et al., 2018; Gao and Mosalam, 2018; Zhu et al., 2020) and domain adaptation (Michau and

Fink, 2019; Gardner et al., 2020; Bull et al., 2021; Xu and Noh, 2021; Gardner et al., 2022). Since this

article aims to leverage labeled source data where there are no labeled target data, domain adaptation is the

most appropriate technology to investigate.

Domain adaptation, which is a branch of techniques within transfer learning, has gained popularity as a

useful method to reduce the difference between a labeled source and an unlabelled target domain, in order
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to transfer information across. It is used abundantly in visual applications (Ganin et al., 2016; Long et al.,

2016; Csurka, 2017) and natural language processing (Ben-David et al., 2006; Blitzer et al., 2007), fault

detection/conditionmonitoring (Li et al., 2019; Jiao et al., 2020; Li et al., 2020;Wang and Liu, 2020; Ding

et al., 2021; Zhang and Li, 2022; Li et al., 2023) and PBSHM (Michau and Fink, 2019; Gardner et al.,

2020; Bull et al., 2021; Xu and Noh, 2021; Gardner et al., 2022). In PBSHM, domain adaptation—in the

form of transfer component analysis—was used to detect damage on a tailplane with incomplete data, by

leveraging information from a heterogeneous population of other tailplanes (Bull et al., 2021).

Domain adaptation was applied in PBSHM to localize damage across a heterogeneous population of

aircraft wings in Gardner et al. (2022). The authors employed graph matching methods alongside domain

adaptation techniques (specifically, balanced distribution adaptation; Wang et al., 2017) in order to

identify the most suitable location labels to transfer information across in an unsupervised manner, that is,

without using target damage labels. The results showed that the maximum common subgraph (Gosliga

et al., 2021) between the damage location of the two structures provided the best candidate features and

classification performances.

In Tsialiamanis et al. (2021), damage localisation was performed on the Gnat aircraft wing by fine-

tuning neural networks within a PBSHM approach. In Gardner et al. (2021a), the metric-informed JDA

method was introduced to address the problem of repair and damage localisation on the Gnat aircraft

wing using domain adaptation. The authors found that the domain shift between the healthy state and

the repair state was larger than between the healthy state and damage. As a result, the M-JDA method

was used to map damage states before and after repair in order to increase classification performance.

By doing so, it was possible to locate damage of the post-repair target structure to the pre-repair source

structure. This successful implementation of the M-JDA method used repeated measurements of the

damage scenarios under laboratory environments, where the effect of class imbalance was not

addressed. In the current article, the authors explore the suitability of theM-JDAmethod for continuous

damage localisation when the damage states differ in severity, from a structure under natural excitation,

and varying EOVs. This article also explores the effect of class imbalance when localizing damage via

transfer learning.

To demonstrate the use of domain adaptation for damage localisation in SHM with disparate damage

states, Section 2 presents the background of transfer learning, domain adaptation, joint distribution

adaptation, and metric-informed joint distribution adaptation. In Section 3, the experimental dataset used

in this work is introduced. Localizing severe damage states from minor damage states is explored in

Section 4. A discussion on the effect of class imbalance on the localisation method, and possible solutions

are then presented in Section 5. Finally, in Section 6, conclusions and future work are stated.

2. Transfer learning and domain adaptation

The aim of this article is to explore the use of transfer learning jointly with methods developed for

population-based SHM to localize damage on a structure. In particular, metric-informed joint

distribution adaptation (M-JDA) (Gardner et al., 2021a) is applied owing to its previous success in

SHM. In this section, transfer learning is discussed followed by joint-distribution adaptation and

M-JDA.

Transfer learning is a branch of machine learning that seeks to make inferences about data across

domains (Pan et al., 2010). In transfer, learning the aim is to improve the predictive function in a target

domain using knowledge from a source domain. Or to put simply, infer information about the target

by leveraging knowledge from the source domain. A domain is defined as D¼ X ,p Xð Þf g containing

X , a feature space and p Xð Þ, a marginal probability distribution. Here X¼ xif gNi¼1 ∈X . The task

within the domain is T ¼ Y, f �ð Þf g. In this case, Y is a label space and f �ð Þ is a predictive function or a

conditional distribution p yjXð Þ, learnt from a training set xi,yif gNi¼1, where y∈Y. The assumption

here is that the source and the target domains are not equal and/or that the source and target tasks are

not equal.
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In domain adaptation, the aim is to improve the target predictive function by learning a mapping that

reduces the discrepancies between the source and target distributions. As such, supervised machine

learningmethods can be learnt using source information, and generalized to the target domainwith limited

or, as in this article, no labeled target data. Typically, it is assumed that the source and the target feature

spaces and label spaces are equal, that is, Ds ¼Dt and Ys ¼Y t, but the marginal and conditional

distributions are not, that is, p Xsð Þ ≠ p Xtð Þ and p Y sjXsð Þ ≠ Y tjXtð Þ. In this article, homogeneous transfer

is considered, where a homogeneous label space is assumed, that is, the set of possible classes in each

domain is homogeneous.Within the homogeneous assumption, however, it is possible to have a subset of

shared classes from all available classes within a domain.

Next, a method that enables the mapping of the marginal and conditional distributions between

domains, named joint-distribution adaptation, is discussed (Long et al., 2013).

2.1. Joint distribution adaptation

First introduced in Long et al. (2013), joint distribution adaptation (JDA) is a method that learns a

mapping that projects the source and target data into a shared latent space, where a nonparametric

distribution distancemetric, themaximummean discrepancy (MMD) (Gretton et al., 2012), is minimized.

The MMD is widely used in domain adaptation (Pan et al., 2010; Wang et al., 2017); it is given by,

MMD p Xsð Þ,p Xtð Þð Þ¼
1

ns

X

ns

i¼1

ϕ xs,ið Þ�
1

nt

X

nt

i¼1

ϕ xt,ið Þ

�

�

�

�

�

�

�

�

�

�

2

, (1)

where ϕ �ð Þ is a kernel mapping. One limitation of typical DA algorithms is that, without knowledge of the

labels, minimizing the conditional distribution distance is challenging. JDA aims to alleviate this issue by

using pseudo-labels, such that the distance between class-conditional distributions p Xsjysð Þ and p Xtjŷtð Þ,
can be estimated. As such, the MMD between the marginal distributions (all data) and the class-

conditional distributions (the MMD between data corresponding to a particular class), is minimized as

a proxy for minimizing the joint distribution distance; this metric is called the joint-MMD (JMMD) and it

is given by,

JMMD p Xs,ysð Þ,p Xt,ytð Þð Þ¼
1

n
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where X cð Þ
s and X

cð Þ
t denote the samples from class c, with c∈ 1,…,C, for the source and target domain

respectively, n
cð Þ
s and n

cð Þ
t are the samples for class c in the source and target, and c¼ 0 represents the data

from all classes, giving the MMD between the marginal distributions. For a more in-depth discussion of

JDA, the interested reader is directed to Long et al. (2013).

2.2. Metric-informed joint distribution adaptation

The JDA method discussed in the previous section maps not only the marginal distributions, but also the

class conditional distributions, making it a powerful tool for transfer learning. However, as the target

labels yt are not usually available for this formulation, the target conditional distribution p ytjXtð Þ is

unknown, making it challenging to match the joint distributions between the source and target datasets. A

method for obtaining target pseudo-labels ŷt in a semi-supervisedmanner has been discussed in Long et al.

(2013) where a base classifier trained on source labels is predicted in the unlabelled target domain.

Gardner et al. (2021a) built on this method by considering a metric-informed approach; a normalized

distancemetric—specifically, theMahalanobis squared distance (MSD)—is used to find themost suitable

target pseudo-labels, by assuming that for each class, the source cluster is closest to the target cluster. The

MSD has been successfully used for outlier detection in SHM (Worden et al., 2000) where it is used to

determine whether a new datapoint is similar or not to normal condition training data.
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2.3. Pseudo-labeling using distance metrics

The method described in Gardner et al. (2021a) for identifying target pseudo-labels using the MSD is,

• Calculate the MSD for each class in the labeled source domainD2
c xsi
� �

∀c∈ 1,2,…,Cf g by using a

sample mean μ̂ D cð Þ
s

� �

and covariance Σ̂ D cð Þ
s

� �

per class. The MSD in Worden et al. (2000) is

defined as,

D2
i ¼ xi� μ̂ð ÞTΣ̂

�1
xi� μ̂ð Þ, (3)

where xi is the current data point, and μ̂ and Σ̂ are the calculated mean and covariance determined from

X¼ xif gNi¼1 (X is the source labeled data in this case).

• A threshold T is then calculated for each class using anMonte Carlo approach. The reader is referred

to Worden et al. (2000) for more detail.

• TheMSD for each class is normalized using the threshold for each class, that is, �D
2

c xið Þ¼D2
c xið Þ=Tc.

All MSD values below the threshold are subsequently set to zero. The normalization allows for

objective comparison between each class.

• A normalized MSD vector is now available for each class in the normalized MSD feature space

D2
C ∈ℝ

ns + ntð Þ×C ¼ �D
2

c xið Þ
n o

∀c∈ 1,2,…,Cf g.

• The ith target instance is given the pseudo-label from the class with the minimum normalizedMSD,

that is, the c where D2
c ¼ min D2

C

� �

.

For a description of the pseudo-labeling algorithm for metric-informed JDA, the reader is referred to

Gardner et al. (2021a).

The assumption for the abovemethod is that theMSD calculated for each source class, when applied to

the unlabelled target data D2
c xtj

� �

will provide the smallest MSD values for target data from the same

corresponding class. In this article, this assumption is used to locate damage on a structure where the

severity of damage in source and target clusters may be different, but similar. As a result, it is important to

identify damage-sensitive features in both the source and target structures that are also sensitive to the

damage location. In the next section, the experimental case study used in this article for damage location is

introduced, with a detailed exploration of features used for transfer learning.

3. The experimental dataset from the LUMO structure

The Leibniz University test structure forMOnitoring (LUMO) is a steel lattice mast structure that includes

reversible damagemechanisms (Wernitz et al., 2021, 2022). Located in Hannover, Germany, the structure

provides a benchmark dataset for SHM, containing data pertaining to its dynamic, mechanical, and

thermal behavior. Comprehensive documentation of the structure, as well as the open-source measure-

ment data, can be found at https://data.uni-hannover.de/dataset/lumo. In this article, the data collected

from the structure between September 2020 to July 2021 are explored.

The structure which stands at 9 m in height and weighs 90 kg has three tubular legs, 21 bracing levels,

and short connections at each bracing level. Figure 1a presents a photograph of the structure. LUMO is

equipped with 18 uni-axial accelerometers located across 9 measurement levels (ML), that measure

its orthogonal deflection and the horizontal motion. Pairs of accelerometers are placed at each ML in the

x- and y-directions. At the 10th measurement level (ML10), three strain gauges (one on each of the three

legs) and a thermocouple also measure the strain and the temperature of the structure, respectively. At six

locations throughout the structure, controlled damage states can be introduced using reversible damage

mechanisms. Figure 1b presents a schematic that highlights the measurement levels, the reference axes,

and the locations that contain the damage mechanisms. Figure 1c shows the damage mechanisms that are
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installed on the lowest damage level of the structure. An in-depth discussion of the damage states is held in

Section 3.1.

As the structure is situated outside, it is excited by natural sources. As a result, the structure represents a

realistic case for SHM monitoring. Given its location, the structure is exposed to, and is affected by

environmental and operational variations (EOVs). These environmental variations can stem from

seasonal and daily changes in temperature, change in wind directions, ice build-up, and freezing

temperatures, to name a few. Each time the reversible damage states are repaired, operational variations

are also introduced to the structure, which are discussed in detail in Wickramarachchi et al. (2023).

3.1. Damage states of the LUMO dataset

Themain feature of the LUMO structure is the ability to introduce and repair damage states in a controlled

manner, whilst the structure operates under realistic environments. The damage states essentially

introduce stiffness (and possibly mass) changes to the structure by removing the damage mechanisms

(Figure 1c) connected to the bracing supports. These mechanisms are present in six locations of the

structure (DAM1–DAM6 in Figure 1b). At each of these levels, one, two, or three damage mechanisms

can be removed.

The dataset used in this article contains measurements collected during six individual damage

scenarios across three locations. At each of these three damage locations, a minor damage and a major/

severe damage are introduced. Aminor damage is when one damagemechanism is removed, and amajor/

severe damage is when all three damage mechanisms are removed. Table 1 presents the damage states,

their locations, and the corresponding labels assigned in the dataset used in this work.

As the structure has a triangular cross-section, removing just one damage mechanism from a brace

level leads to an asymmetrical reduction in structural stiffness. As a result, discrepancies between the data

from the accelerometers that capture the dynamic behavior of the structure are to be expected.

It is the aim of this article to locate damage states using domain adaptation when the labels of the target

structure are assumed unavailable. Therefore, it is pivotal that damage-sensitive features are obtained

from themeasured data in order tomake inferences about damage locations. In the next section, the feature

selection process is discussed and the selected features are provided.

(a) (b) (c)

Leg 1

Leg 2

Leg 3

Figure 1. (a) Photograph of the LUMO structure, (b) A schematic of the structure highlighting

measurement levels (ML) and damage locations (DAM) with the reference axes, and (c) Damage location

6 (DAM6) displaying the reversible damage mechanisms. Images reconstructed from Wernitz et al.

(2022).
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3.2. Feature selection

Feature selection is a vitally important step in any monitoring campaign in order to identify damage-

sensitive features that provide useful information to the model. In this article, the eigenfrequencies and

the mode shapes of structure are considered as features, because they are sensitive to the damage states

described in Table 1. The Bayesian operational modal analysis (BAYOMA) and mode tracking

methods described in Au et al. (2013) and Jonscher et al. (2023) are used to extract the natural

frequencies from the acceleration signals. For a detailed description of the dynamics of the structure,

the reader is referred to Wernitz et al. (2022), where 15 modes (first 5 bending modes in x-direction,

first 5 bending modes in the y-directions, and first 5 torsional modes) were identified from the current

sensor setup.

One of the main benefits of the LUMO dataset is the continuous nature of the monitoring campaign.

The structure operates in an environment representative of realistic operational civil structures and is

purely excited via natural sources. In order to replicate a realistic application of a continuous SHM

campaign, the behavior of the natural frequencies throughout time is considered.

The dynamic behavior of the LUMO structure, given its dimensions and physical composition,

is predisposed to producing closely spaced modes, that is, some of the natural frequencies occur

very close to one another. In such cases, smallest system changes are particularly noticeable through

a change in the alignment of the bending mode shape in the mode subspace (Jonscher et al., 2023).

In addition, the alignment is also subject to the greatest uncertainty. Consequently, the mode tracking

algorithm used to obtain the natural frequencies can, at times, misclassify the data and introduce

large data scatter. This effect is especially prominent during damage (Jonscher et al., 2023; Wickra-

marachchi et al., 2023). As a result, a number of bending modes that are affected by these

misclassifications are excluded from analysis in order to avoid progression of these errors further

down the line.

The torsional modes are also excluded from the input features in this work. Although the torsional

modes are highly sensitive to damage of the LUMO structure, they are affected by the mode tracking

misclassification, as a result of the sensor setup. Moreover, the use of torsional modes is not prevalent in

industrial applications as they are not typically highly sensitive to changes within structures. Conse-

quently, the torsional modes are not considered further, to ensure the industrial applicability of the damage

localisation method developed here.

The bending modes in the x-direction are also excluded during the feature selection process because

of their low sensitivity to the minor damage states. To demonstrate the sensitivities of the x and y-

direction eigenfrequencies to the minor damage states, PCA is used. Here, PCA is calculated on the

natural frequencies during the time period where minor damages were introduced to the structure

(20.04.2021 to 12.07.2021). Table 2 presents the principal component coefficients for the first two

principal components (PC1 and PC2) which capture over 95.97% of the total variance. The results show

that the bending moments in the y-direction have a much higher contribution to the variance compared

to those in the x-direction. As the minor damage states are asymmetric (they are initiated by removing

Table 1. The damage states are included in the dataset

Damage location Location label Damage severity Condition of the structure Damage label

DAM6 L1 Severe All struts removed D1

DAM4 L2 Severe All struts removed D2

DAM3 L3 Severe All struts removed D3

DAM6 L1 Minor Strut between legs 2 and 3 removed D4

DAM4 L2 Minor Strut between legs 2 and 3 removed D5

DAM3 L3 Minor Strut between legs 2 and 3 removed D6

Note. Each damage state and each location is assigned a label. The damage states are listed in the order they were introduced to the structure.
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the damage mechanism between the second and third legs) in this dataset, the accelerometers in the

y-direction are more sensitive than those in the x-direction. As a result, x-direction data are omitted from

the dataset, purely from a feature-selection standpoint, given their reduced sensitivity to some of the

damages.

Finally, considering the above, the y-direction bending modes one (B1-y), two (B2-y), and four (B4-y)

are chosen as suitable features that encapsulate damage. These features are presented in Figure 2, where

each datapoint represents 10-minutes of measurements. The sensitivity of these features to damage states

(D1–D6) can be seen in this figure. In this article, the data pertaining to damage states D1–D6, are

extracted manually from the chosen input features in Figure 2. It is also possible to automatically extract

input data collected during damage by using a damage detection method, such as the one suggested in

Wickramarachchi et al. (2023).

During the months of January toMarch, large shifts in the natural frequencies are present. By studying

the temperature of the structure and the surrounding area,1 it is found that these shifts correlate with

freezing temperatures. As a result, it is assumed that a stiffening effect (SE) on the structure has caused

these shifts, though inspections of the structure during this period were not conducted.

In the next section, domain-adaptation techniques are utilized to localize the severe damage states of

the LUMO structure by considering the location of the minor damage states.

Table 2. The principle component coefficients calculated on the data pertaining to minor damages.

Highlighted are the bending moments in the y-direction showing a much higher contribution to the

variance compared to those in the x-direction

PC1 PC2

B1-y 0.092 0.018

B1-x 0.037 �0.014

B2-y 0.991 �0.060

B2-x 0.061 �0.030

B4-y 0.061 0.997

B4-x 0.005 �0.031
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Figure 2. The features selected from the LUMO structure. The behavior of natural frequencies B1-y, B2-y,

and B4-y throughout time. Each datapoint represents 10-minutes of measurements. D1–D6highlight data

collected during the damage states.

1The air temperature of the surrounding area is measured by a meteorological mast positioned 20 m away from the structure by

the Institute of Meteorology and Climatology of Leibniz University Hannover.
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4. Damage localisation using M-JDA

Damage localisation, the second step in Rytter’s hierarchy (Rytter, 1993) aims to find the location of the

damage preset in the system. As discussed previously, damage localisation in SHM through domain

adaptation has been attempted in past literature to address the problem of repair, on the Gnat aircraft wing

(Gardner et al., 2021a). The methods in question have relied on repeated measurements of the same

damage scenarios under laboratory environments, for knowledge transfer. Although these method have

proven to be successful, the scenarios in which they are attempted are not extremely likely in operational

structures, that is, it is unlikely that the same damage will repeat in the same position over the life of a

structure. Amore appropriate situation is that a damage could reoccur in the same position with a different

severity. For example, a large damage could follow an inadequate repair of a small damage. Consequently,

this section explores damage localisation in the presence of different severity of damage states that appear

in the same locations. Here, the metric-informed joint distribution adaptation (M-JDA) method is

employed via a population-based approach, where in the first instance, the number of damage classes

in the source domain is equal to the number of damage classes in the target domain.

In order to identify source and target domains for M-JDA, the LUMO mast is first viewed as a

homogeneous population.

4.1. Viewing the LUMO structure as a population

To localize severe damage states by transferring knowledge from minor damage states, the LUMO

structure is considered a homogeneous population with a source and target domains. The source domain

includes the data collected during the minor damage states. The target domain includes data collected

during the severe damage states. Table 3 presents the way in which the data has been separated. The

assumption here is that for the source domain, the class labels and the parameters are known, that is, the

shape of each cluster, the data within each cluster, and the location label are known for damage states D4–

D6. Within the target domain (D1–D3), the number of classes, as well as the class labels (locations and

severity) are assumed to be unknown.

At this stage, statistical alignment techniques developed for domain adaptation are used on the source

and target domains in order to align the lower-order statistics. The aim here is to reduce the distance

between the source and target domains—and, therefore, the effects of any EOVs—to aid positive transfer.

Specifically, normal condition alignment (NCA) explained in Poole et al. (2022), and used in Wickra-

marachchi et al. (2023) to address the repair problem of the LUMO structure, is used here. Normal-

condition alignment is a domain adaptation method that is robust to class imbalance, making it a suitable

technique in this workwhen the number of possible classes in the target domainmay be unknown. Normal

condition alignment uses affine transformations to align the first two statistical moments of normal

condition data in order to reduce distribution distance, and improving the generalization of a source

classifier. In this article, the first two statistical moments (extracted from the first 7 days) of the normal

condition data—captured prior to each damage state—are used to standardize each normal-condition state

Table 3. The LUMO structure is viewed as a population where the source structure contains the minor

damage states and the target structure contains the severe damage states

Domain Location label Damage severity Condition of the structure Damage label

Source L1 Minor Strut between legs 2 and 3 removed D4

L2 Minor Strut between legs 2 and 3 removed D5

L3 Minor Strut between legs 2 and 3 removed D6

Target L1 Severe All struts removed D1

L2 Severe All struts removed D2

L3 Severe All struts removed D3
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and the following damage state. For example, from Figure 2, the statistics from the first 7 days of normal

condition after damage state D1 are used to standardize the normal condition between D1 and D2 and

damage state D2. This type of standardization can be extremely useful in PBSHM to reduce domain shifts

initiated from any number of changes—including EOVs—across populations. The resulting features,

post-standardization, are presented in Figure 3.

After standardization, the natural frequencies displayed in Figure 3 present interesting observations.

Relative to the normal condition/healthy states (H), the clusters that represent damage state data (D1–D6)

always appear at a different direction to the SE state. For example, when considering B1-y versus B2-y,

the damage clusters are formed in the horizontal direction whereas the SE state moves vertically (and

diagonally) from the H state. Given the damage states introduce a stiffness reduction to the structure, this

apparent change in direction of the SE state suggests that it is a result of a stiffness increase globally across

the structure due to freezing weather. The statistical alignment techniques used here have made it possible

to find physical interpretation of the clusters and their position in the feature space, which can be

extremely useful when attempting to localize damage.

From the features in Figure 3, the damage states described in Table 3 are then extracted for damage

localisation. The behavior of these features used in the source and target structures can be studied in

Figure 4a, where standardized data are presented. It is clear that there is a common pattern between the

source and target structures, as the locations have an influence on the damage state data in the feature

space. Physical interpretability of the feature space can be extremely helpful in transfer learning when

labels for the target structure are unavailable (as assumed in this article and demonstrated in Figure 4b); the

confidence in the mapping may be increased as the feature space makes sense in reality. Some physical

knowledge could also be incorporated into the process in order to make decisions about feature choice.

The features used in this work have been carefully engineered in order to pursue a successful

localisation technique whilst reducing the risk of negative transfer (Bull et al., 2021). In transfer learning,

negative transfer refers to the scenario where the performance of the transfer learner is worse than if a

learning model was conducted solely on the target domain (Gardner et al., 2021b). The choice of features

is important in any machine learning technique, as the chosen features should reflect the system well, and

Figure 3. The standardized natural frequencies in the y-direction are plotted against each other. D1–D6

represent damage states, and H represents the normal condition data.
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be sensitive to the attributes that are being discriminated. In the presence of unsuitable features, negative

transfer can occur even if the system in question is very similar (Pan et al., 2010; Gardner et al., 2021a,

2021b). The features used in this work are a sensible choice, as they represent the natural frequencies of

the structure in the direction of the largest deflection, which are known to be sensitive to the presence of

damage. The normalization techniques used here transform the data in a way in which the physical

interpretability is preserved.

Figure 4a also shows that the conditional and marginal distributions between the source and target

clusters are different, that is, p Xsð Þ ≠ p Xtð Þ and p ysjXsð Þ ≠ ytjXtð Þ. As the severity of the damage states are

different in the source structure compared to the target structure, this observation is not surprising.

However, the structure of the classes within each domain shows similarity. This structural information in

the feature space is leveraged to aid transfer. The differences in the direction and distance between each

pair of classes in the source and target domains motivate the use of joint distribution adaptation, which

aims to match both the conditional and marginal distributions. Additionally, the metric-informed

approach is well suited here given the similarity in the within-domain classes, as well as the differences

in the conditional distributions; a very large difference in conditional distributions can cause negative

transfer when using naïve pseudo-labeling (Gardner et al., 2021a).

4.2. Localizing severe damage states using M-JDA

Once the source and target domains are identified (Table 3) and suitable features are selected, the M-JDA

approach can be applied to the LUMO dataset for damage localisation.

First, the location information is inserted into the source domain data by replacing their labels ys. For

example, damage cluster D4 is relabelled as L1. Then, the source and the target datasets in Table 3 are

separated further into training and testing sets. The training data are used to obtain the estimates for ys and

W ; the training data from the source and target sets are used to infer themapping of the domain adaptation,

where the target training data are unlabelled (Gardner et al., 2021a). In this work, 300 samples are

randomly chosen from each class for the training sets and the rest are used for testing.

The training and testing data from the source and the target domains are then normalized using the first

and second moments of the corresponding source and target training sets, respectively. Then, the pseudo-

labeling procedure described in Section 2.3 is undertaken on the training data. Figure 5 presents the
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(predicted) pseudo-labels obtained for the training sets. It is clear that the initial labels in the target training

set matches the source training set, suggesting that the metric-informed approach has proven helpful here.

Next, the JDAmethod presented in Section 2.1 is conducted on the training data to calculateW , which

is used to find the transformed feature spaces for source and target training and testing data. Here, the

Gaussian kernel K x,yð Þ¼ exp �∥x� y∥2= 2L2
� �� �

(where L is a scale parameter) is used to provide an

embedding of the features into the RKHS to calculate the MMD in equation (1)). The scale parameter or

the width of the kernel L is calculated here using the median heuristic (Gretton et al., 2012; Garreau et al.,

2017), as it has been shown to be robust in numerous studies for PBSHM (Gardner et al., 2020, 2022;

Poole et al., 2022). The Gaussian kernel is a characteristic kernel that is continuous and universal in the

RKHS, making the MMD a metric on the space of Borel probability measures, that is, MMD p,qð Þ¼ 0 if,

and only if, p¼ q (Fukumizu et al., 2007; Gretton et al., 2012).

In order to classify the transformed data within and following the M-JDA approach, a K-nearest

neighbor (KNN) classifier with 10-fold cross-validation is employed. As the JDA and M-JDA methods

map the data between the source and target domains to reduce their Euclidean distances, the KNN

classifier is an appropriate choice here, as its aim is to find the closest class in the training set. These

classifiers are only trained on the source training data. They are then applied independently to the source

testing, target training, and testing sets.

4.3. Locating severe damage states: results

The results of severe damage localisation in the target domain when using minor damage states in the

source domain are presented in Figures 5 and 6. Here, the regularization (or trade-off) parameter μ is set to

0.1 (following the analysis in Pan et al., 2010; Gardner et al., 2021a), and the number of transfer space

dimensions k is set to 2 (as dimensionality reduction is expected from a feature space with a dimension of

3). For the Monte Carlo approach to obtain the pseudo-labels, 10,000 simulations are calculated to find

each threshold with a 99% confidence bound.

In Figure 5, the confusion matrices between the true labels and predicted labels obtained using the

MSD metric shows that the pseudo-labeling regime is robust during training.

In Figure 6, the left panel presents the training data mapping whilst the right panel displays the testing

datamapping. It is clear that theM-JDA approach has successfullymapped the severe damage states to the

minor damage states, thereby localizing the damage on the target structure, using information from the

source. In comparison to classifying the normal-condition aligned features (Figure 4a), the M-JDA

approach alongside NCA data has improved the classification accuracy of the target dataset significantly,
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Figure 5.Confusionmatrices between the true labels and predicted pseudo-labels were obtained by using

the MSD metric for (left) the training datasets in the source domain and (right) training datasets in the

target domain. Here, the source domain contains the minor damage states and the target domain contains

the severe damage states.
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as seen in Figure 7. These results demonstrate the advantage of using metric-informed labels over naïve

pseudo labels.

In order to evaluate the performance of the classifiers, the F1 scores and accuracy values are calculated.

The F1 scores are calculated by,

F1 ¼
TP

TP+ 1
2
FP + FNð Þ

, (4)

where TP are the true positives, FP are the true negatives and FN are the false negatives. The macro F1
score is used to demonstrate the average for all classes. The accuracy is calculated by,
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Accuracy¼
TP+TN

TP+TN+FP +FN
, (5)

where TN are the true negatives. The classification performances of the training data and testing data

mapping are presented in Table 4. The results show that the classifier has performed extremely well

following the M-JDA approach when using normal-condition aligned data. For comparison, Table 5

presents the KNN classification performances when using non-aligned data in the M-JDA formulation. It

is clear that the model is unable to generalize in the target domain because there is a lack of the physical

interpretability within the feature space in this scenario. These results indicate that a method such as NCA

is required to reduce EOV differences between source and target structures, in order to attempt successful

transfer of operational structures. Consequently, the combination of M-JDA and NCA has proven useful

for SHM to locate damage using labels from disparate damage states and structures under different EOVs.

These results can be extremely useful for population-based SHM, where information pertaining to the

type, location, or severity of damagemay not be available frommany structures within the population. By

transferring knowledge from the source structure where labels are available, it is possible to learn more

information about the target structure; in this case, the location of the damage is determined. The results

here show that severe damage states can be located using smaller/minor damage states, as long as the data-

based features follow a similar pattern. Localizing damage can be extremely useful when deploying

engineers to repair structures, as they can immediately concentrate on an optimal location without having

to inspect the entire structure.

The success of this method is attributed to the similarity in the damage mechanisms; both severe and

minor damage states are caused by a local reduction of stiffness in the structure, which drives the dynamic

response measured by the accelerometers. However, features collected from the accelerometers in the

y-direction are more sensitive to the damage states compared to those facing the x-direction. This may be

because, the severe damage states in the LUMO structure introduce a symmetric reduction in stiffness

(as all three bracing supports are affected), whereas, the minor damage states introduce an asymmetric

Table 4. The performance of the classifiers when severe damage states (target) are localized using

information from the minor damage states (source)

F1 score

Accuracy (%)L1 L2 L3 All

Source Training 1.000 0.998 0.998 0.999 99.89

Testing 1.000 1.000 1.000 1.000 100.00

Target Training 1.000 1.000 1.000 1.000 100.00

Testing 0.999 1.000 1.000 1.000 99.97

Note. Here, normal condition-aligned data are used in the M-JDA method.

Table 5. The performance of the classifiers when using the M-JDA method without conducting NCA

F1 score

Accuracy (%)L1 L2 L3 All

Source Training 0.933 0.929 0.913 0.925 92.56

Testing 0.879 0.921 0.766 0.855 89.65

Target Training 0.411 0.555 0 0.321 37.56

Testing 0.321 0.566 0 0.296 36.27

Note. Here, minor damage states are in the source domain and severe damage states are in the target domain.
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reduction in stiffness (given only one bracing support is affected in a structure with a triangular cross-

section). Therefore, it is possible that the sensitivity of the accelerometers to the damage may vary if a

different bracing support (in the same location) is removed instead. This issue can be avoided by placing

the accelerometers in the y-direction on a separate leg to the x-direction. Also, in structures with circular

cross sections such as wind turbine towers, the issue of asymmetric damage states does not arise.

Given the natural frequencies of the source and target structures have been used here for damage

localisation, drawbacks of traditional SHM localisation techniques are avoided for a structure of this scale;

specifically, a network of well-placed sensors near the damage location of the target structure is not

necessary for damage localisation in a PBSHM setting, when using damage sensitive natural frequencies.

Consequently, the number of sensors within the target structure could be reduced when using this method,

saving installation times and costs.

4.4. Influence of the training dataset size

As the transfer mappings are ascertained using training data, the influence of the training dataset size on

the performance of the classifiers is scrutinized in Figure 8a,b. In these figures, the F1 scores and

classification accuracies are presented for each training and testing phase in both the source and target

domains. Asmentioned previously, 300 datapoints from each class (each damage state) is used for training

in this article up to now. To test the influence of the training dataset size, this value is increased to

306 datapoints—which amounts to 80% of the data within the smallest class (the class with the least

number of data points). Therefore, the total number of datapoints in source training set is 918 (80% of data

from the three classes), whilst the same number is used in the target training set. The lowest amount of

training data used is 10% of the smallest class which is 38 datapoints (or around 6 hr of data because each

datapoint represents 10 mins). It is clear that the training dataset size has little influence on the

performance of the classifiers when conducting metric-informed joint distribution adaptation; the

classification performance values are all in the range of 99.5–100. This result demonstrates the importance

of the feature selection process, as well-chosen features can reduce the burden on the methods that follow.

This M-JDA method could therefore be implemented in operational structures where very little training

data is necessary, as long as the chosen features show a similar behavior in both domains (in order to avoid

negative transfer).

4.5. Transferring severe damage information to locate minor damage states

Unsurprisingly, the NCA + M-JDA method can be implemented in the opposite direction where the

location of the severe damage states (source) can be used to determine the location of the minor damage

states (target). Table 6 presents the results from this case, where a high classification performance is

achieved. Figure 9 presents comparison of model performances between classifiying the normal-

condition aligned data and the M-JDA method in this case. The M-JDA method shows much higher

classification performances, yet again. These results show that utilizing transfer learning methods in a
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PBSHM setting enables successful localisation of minor damage states in the LUMO structure. In

comparison, when using standard SHM practices—analyzing the LUMO structure as a single structure

—Kalman filter-based methods found it challenging to localize minor damage states (Wernitz, 2022). In

practice, theM-JDAmethodmay be suitable if one test structure within a population is used as the source,

where large damage states are introduced to explore its behavior and collect damage labels. Then, label

information could be mapped onto structures in operation that present minor damage states (unlabelled

target structures).

So far, the damage localisation method using domain adaptation techniques has relied heavily on

balanced classes in the source and target domain, that is, the number of damage classes in the source

domain is equal to the number of damage classes in the target domain. In the next section, the effect of

class imbalance on damage localisation of the LUMO structure is investigated.

5. The effect of class imbalance on damage localisation

In the previous section, a successful method for localizing severe damage states fromminor damage states

is developed via the use of metric-informed joint distribution adaptation combined with normal condition

alignment. The method mapped three damage states in the target domain on to three damage states that

shared the same location in the source domain. In realistic applications of this method, however, the

presence of class imbalances is likely—specifically, the extreme case where no data for a given class is

Table 6. The performance of the classifiers when minor damage states (target) are localized using

information from the severe damage states (source)

F1 score

Accuracy (%)L1 L2 L3 All

Source Training 1.000 1.000 1.000 1.000 100.00

Testing 1.000 1.000 1.000 1.000 100.00

Target Training 0.998 0.997 0.998 0.998 99.78

Testing 0.996 0.997 1.000 0.998 99.67
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Figure 9. The comparison of KNN model performance between using NCA and NCA + M-JDA

approaches. Here the source domain contains the severe damage states and the target domain contains

the minor damage states.
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available, that is, the number of damage classes in the source domain may not be equal to the number of

damage classes in the target domain. Therefore, in this section, the effect of class imbalance on M-JDA

and the classifier performance is evaluated, and methods for addressing issues with class imbalances are

suggested. First, the imbalances of damage classes within the formulation are explored. Then, the class

imbalances from environmental and operational variations, specifically, the stiffening effects of the

LUMO structure due to freezing conditions are studied.

5.1. Damage class imbalance

In the first example explored, one damage class is withheld from either the source or the target dataset, so

the problem is deviating from the homogeneous label space assumption made by conventional domain

adaptation. The idea here is to investigate (a) the effect of having a source structure that contains more

classes than the target structure—this paradigm is referred to as partial domain adaptation (Cao et al.,

2018), where the available target classes consist of subset of available source tasks—and (b) the effect of

the target structure containingmore classes than the source structure—this idea is also known as universal

domain adaptation (Zhuang et al., 2020). The same method of NCA + M-JDA and KNN classification

from the previous section is applied here, with the only difference being the subset of classes used in the

source and target domains. Table 7 presents the classification performances during a class imbalance. In

this table, the results from six scenarios are presented alongside the results from the previous

section where the classes are balanced. In scenarios one to three, one class is withheld from the target

domain. For example, in the entry Scenario 1 that states Source (All), Target (L2 and L3), the data

pertaining to L1 in the target domain is omitted from the mapping. As a result, the source domain contains

more classes than the target domain (partial domain adaptation). In scenarios four to six, one location is

excluded from the source domain, thereby the target domain containing more classes than the source

domain (universal domain adaptation).

Some interesting observations can be made from the classification performances. Firstly, as expected,

the performance of the classifiers reduces significantly in the presence of class imbalances. When a target

class is excluded, the resulting F1 score for that class is zero.

When a class is withheld from the target domain, the metric-informed procedure finds pseudo-labels

for the target data by considering all the classes in the source that are most similar. This process leads to

mislabelling of the existing target domain classes, resulting in poor classification performances for some

damage locations. The pseudo-labels assigned for Scenario 2 demonstrate this effect in Figure 10a. In

Scenario 2, high classification performances are obtained as the pseudo-labeling procedure is not hindered

by the removal of the L2 class in the target domain. The classification performances are high here because

the excluded target damage class (L2) appears between L1 and L3 in the feature space (Figure 4a) as well

as in the physical locationswithin the structure (Figure 1b). Consequently, the data in target classes L1 and

L3 are more similar and closer in distance to the corresponding source classes. In scenarios one and three

the opposite is true, leading to negative transfer.

Given the true target labels are not available to determine the classification performances in reality, it is

challenging to ensure that the assigned target labels are correct. This further supports the use of physically

interpretable features, such as those used in this article, which hopefully provides some structure to the

feature space, that leads to a sensible M-JDA mapping.

In universal domain adaptation scenarios four to six (where there are fewer classes in the source

domain than the target), it is not possible to obtain the F1 scores for a target class if it does not appear in the

source domain. Here, the target pseudo-labels are only assigned from existing classes in the source

domain, which may not always correspond to the same damage scenario, as seen in Figure 10b. As a

result, the classification performances decrease in Table 7, as expected.

In order to investigate the influence of the initial target pseudo-labels from the metrics-informed

approach on the JDA method when considering a class imbalance, Figures 11 and 12 are presented. In

Figure 11 where partial domain adaptation is concerned, theM-JDA and JDAmethods perform relatively

similarly (except in Scenario 3 where the performance of the M-JDA is comparatively worse). However,
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in Figure 12 that presented the universal domain adaptation results, the JDA performance is much better

than that of the M-JDA. This result suggests that the initial pseudo-labeling procedure using the metric-

informed approach hinders the target pseudo-labeling procedure down the line. Figure 13a,b presents the

JDA pseudo-labeling results for Scenario 2 and 4 in order to provide a comparison to the pseudo-labeling

of the M-JDA process in Figure 10a,b. The assumption “for each class, the source cluster is closest to the

target cluster” made in the metric-informed method is not applicable in the class-imbalance problem,

leading to the higher degree of negative transfer.

5.2. Methods to address class imbalance in damage localisation

In the presence of class imbalance, the risk of negative transfer can increase, as seen in the previous

section. However, analysis in Figure 14 shows that if the number of classes in the source and target domain

Table 7. The performance of the KNN classifiers in the presence of a class imbalances within the

source and target domains

Scenario

F1 score

Accuracy (%)L1 L2 L3 All

Source (All) Training 1.000 0.998 0.998 0.999 99.89

Testing 1.000 1.000 1.000 1.000 100.00

Target (All) Training 1.000 1.000 1.000 1.000 100.00

Testing 0.999 1.000 1.000 1.000 99.97

1 Source (All) Training 1.000 1.000 1.000 1.000 100.00

Testing 0.998 0.998 0.994 0.997 99.78

Target (L2 and L3) Training 0 0.020 0.997 0.339 50.17

Testing 0 0.016 1.000 0.339 53.77

2 Source (All) Training 1.000 1.000 1.000 1.000 100.00

Testing 0.999 0.999 0.994 0.997 99.89

Target (L1 and L3) Training 1.000 0 0.995 0.665 99.50

Testing 1.000 0 0.998 0.666 99.69

3 Source (All) Training 0.925 0.955 0.897 0.926 92.56

Testing 0.589 0.784 0.328 0.567 67.40

Target (L1 and L2) Training 0.634 0.718 0 0.451 62.00

Testing 0.639 0.758 0 0.465 64.41

4 Source (L2 and L3) Training 0.868 0.872 0.870 87.00

Testing 0.811 0.324 0.567 70.41

Target (All) Training 0.623 0.885 0.754 59.78

Testing 0.689 0.880 0.784 67.83

5 Source (L1 and L3) Training 0.948 0.945 0.947 94.67

Testing 0.846 0.364 0.605 75.23

Target (All) Training 0.393 0.627 0.510 44.78

Testing 0.394 0.705 0.550 49.72

6 Source (L1 and L2) Training 0.846 0.807 0.826 82.83

Testing 0.807 0.782 0.795 79.52

Target (All) Training 0.995 0.664 0.830 66.44

Testing 0.994 0.636 0.815 59.00

Note. The locations (or classes) that are included in each M-JDA formulation are given in the second column. For example, the results for Scenario 1,

Source (All), Target (L2 and L3) refer to the case where all the classes (L1–L3) are included in the source domain while only the L2 and L3 classes are

included in the target domain. Macro-averaging of the F1 scores is used here as it treats all classes as equal, and therefore, is insensitive to class

imbalances.
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Figure 10.Confusion matrices between the true labels and predicted pseudo-labels were obtained by using

the MSDmetric for (left) the training datasets in the source domain and (right) testing datasets in the target

domain. (a) The partial domain adaptation Scenario 2 is testedwhere all locations are in the source domain

and only L1 and L3 are in the target domain. (b) The universal domain adaptation Scenario 5 is testedwhere

all locations are in the target domain and only L1 and L3 are in the source domain.
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Figure 11. The comparison of model performances between JDA and M-JDA when considering the

partial domain adaptation scenarios one to three. Here, L1–L3 are included in the source domain.
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Figure 13.Confusion matrices between the true labels and predicted pseudo-labels obtained by using the

JDA approach for (left) the training datasets in the source domain and (right) testing datasets in the target

domain. (a) The partial domain adaptation Scenario 2 is tested where all locations are in the source

domain and only L1 and L3 are in the target domain. (b) The universal domain adaptation Scenario 5 is

tested where all locations are in the target domain and only L1 and L3 are in the source domain.
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Figure 12. The comparison of model performances between JDA and M-JDA when considering the

universal domain adaptation scenarios four to six. Here, L1–L3 are included in the target domain.
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are balanced, the highest classification performance is always achievedwhen using the same classes in the

source and target domains. Given the number of classes in the source domain is known a priori, a leave-

one-out method such as that used to obtain Figure 14 may be useful here. However, given target labels are

assumed to be unavailable, it is not possible to obtain the classification performance metrics in real time.

Again, the physical interpretability of the feature space may be extremely useful here to provide more

confidence in the results; knowledge relating to the patterns between the clusters (that are driven by

physics) in each domain, may be transferred across, leading to a better understanding of themappings. For

example, a Bayesian multi-task approach for fleet analysis described in Bull et al. (2022) encodes the

domain expertise and constraints the model assumptions/prior beliefs in order to better share knowledge

across domains. A similar method could be helpful here.

From the literature, a number of other methods have been suggested to address class imbalance when

the target labels are unavailable. For addressing the class imbalance in the field of image recognition using

convolutional neural networks, researchers have developed a number of techniques. For example, feature

transfer learning (Yin et al., 2019) seeks to augment the feature space of under-represented subjects using

common subjects, large-scale fine-grained categorization (Cui et al., 2018) employs the Earth movers

distance to estimate domain similarity. Adding auxiliary weights into the formulation to handle class

imbalances is also explored, where class-specific auxiliary weights are placed into the MMD formulation

in Yan et al. (2017), and into the samples in the source and target datasets in Al-Stouhi and Reddy (2016).

In Khan et al. (2019), a loss function that focuses on classes with low probability is defined, to classify

biomedical images with a class imbalance.
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Figure 14.The classification performancewhen using a leave-one-outmethodwith theM-JDAapproach.
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When considering the JDA method explored in this article, the most suitable development from

previous literature that address class imbalances is balanced distribution adaptation (BDA) (Wang et al.,

2017). BDA considers both marginal and conditional distributions just as JDA, but does not give equal

importance to both distributions. It does this by adaptively adjusting the importance of the distributions

based on specific tasks. Aweighted-BDA (W-BDA) method is also proposed in Wang et al. (2017) that

adaptively varies the weight of each class to address class imbalance.

In BDA, the equivalent distance between the joint distributions is described as,

D Ds,Dtð Þ≈ 1�μð ÞD p Xsð Þ,p Xtð Þð Þ+ μD p ysjXsð Þ,p ytjXtð Þð Þ, (6)

where μ∈ 0,1½ � is a balance factor that leverages the importance of distributions. The conditional

distributions for the class imbalance problem are calculated using,

p ysjXsð Þ�p ytð jXtÞk k2
ℋ
¼ αs p Xsjysð Þ�αt p Xtð jytÞk k2

ℋ
, (7)

where αs and αt are weights that are approximated by the class priors of the respective domains. For a

detailed explanation on how the marginal and conditional distributions are calculated in BDA and

W-BDA, the reader is referred to Wang et al. (2017).

Figure 15 presents the BDA andW-BDA results when using μ¼ 0:5 for Scenario 1 from Table 7. The

left figure shows the M-JDA mapping, the middle is the BDA mapping, and on the right is the W-BDA

mapping. To reiterate, in scenario one, the source domain contains data from all classes, whereas the target

domain has classes two and three. In these figures, the target classes have been given new labels B and C

(equivalent to the source labels L2–L3), as their location labels are assumed to be unavailable during the

mapping.

From the classification performance results fromTable 7 suggest that in Scenario 1, the source class L3

should bemappedwell to target class C. The other classes do not classifywell. However, visual inspection

of the M-JDAmappings in Figure 15 suggests that source class L1 is also similar to target class B (which

should correspond to source class L2). The outlier-driven pseudo-labeling procedure leads to this result.

The BDA and W-BDA mappings, however, present source class L3 and target class C together with the

other classes separated, providing a helpful solution to the class imbalance problemwhen target labels are

unavailable.

These algorithms typically rely on minimizing marginal distribution distance, which is part of the

objective in M-JDA. However, where there is significant class imbalance, accurate estimation of the
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Figure 15. The results of M-JDA (left), BDA (middle), andW-BDA (right) mappings for Scenario 1 are in

Table 7. Target class B has been incorrectly mapped to source class L1 in both the M-JDA and BDA

results, leading to negative transfer.
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underlying marginal distributions is challenging, leading to alignment based on biased estimations.

Thus, this objective may lead to suboptimal mappings. An alternative solution is to rely on adapting

the conditional distributions, as would be the case with BDAwhere μ¼ 1, but this increases the risk of

negative transfer because of noisy pseudo-labels (Poole et al., 2022). Weighting schemes have also

been proposed to correct for class imbalance (Cao et al., 2018, 2019; Zhang et al., 2018), but these

issues may further limit the application of domain adaptation to similar domains, as considered in this

article. In Rombach et al. (2023) an approach for generating synthetic data to represent unseen/

unavailable target classes is presented to address the partial domain adaptation problem. Although not

considered here, this approach may be considered in future work on this dataset.

5.3. Class imbalance from EOVs

During long-term monitoring of structures, it is likely that environmental and operational variations will

affect the collected data. Data affected by EOVs could present as abnormalities and should be dealt with

appropriately. Automated outlier detectionmethodswithin SHMcampaignsmay identify data affected by

EOVs as anomalous. Although detecting these abnormalities can be helpful to owners—as discussed in

Wickramarachchi et al. (2023)—methods to distinguish EOVs from damage are necessary. Without such

a discrimination, and without labels, it is entirely possible that the assumed SE cluster from Figure 3, for

example, is misrepresented as damage, and included in the formulation when conducting damage

localisation.

As the stiffening effect of the structure is unlikely to be localized in the same way as the damage

states, including the SE state can be detrimental to the M-JDA mapping, and the following classifier

performance (Table 8). As the methods used in this article focus on mapping unlabelled target data to

labeled source data, the assumption is that information about the source data is known a priori. As a

result, it is assumed that SE data would not be included in the source domain when attempting damage

localisation. Clearly, it is also important to disregard the SE data from the target domain when

attempting to localize damage. Given the unavailability of labels in the target class, the input features

(the bending modes) within the target class could be studied as a population during the feature selection

process, in order to eliminate the SE data from analysis; by considering a distance metric such as the

MMD introduced in Section 2.1, the dissimilarity of the SE cluster can be identified in a principled way,

without damage labels. Figure 16 presents the MMD values between the classes in the target training

data. A high MMD value (dark blue) across the population suggests dissimilarity. The SE state has a

higher MMD compared to other classes in the target training data, as it behaves differently to the

damage state data; the stiffening effect increases the stiffness, whereas, the damage states introduce a

reduction in stiffness. The effect of these different behaviors is also evident in Figure 3. The information

in Figure 16 can, therefore, aid feature selection at the start of the analysis chain to discount SE data

from the transfer learning process.

Table 8. The classification performance after M-JDA when considering the SE state data within the

target domain

F1 score

Accuracy (%)L1 L2 L3 All

Source Training 1.000 1.000 1.000 1.000 100.00

Testing 1.000 0.998 0.976 0.991 99.78

Target Training 0.992 0.580 0.913 0.828 70.25

Testing 0.836 0.038 0.702 0.526 53.38
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6. Conclusions and future work

This is the first article in the context of SHM that investigated the use of domain adaptation for damage

localisation when there exists discrepancies between the damage states in the labeled source structure and

unlabelled target structure, under natural excitations. Differences such as severity and type of damage

between source and target domains are likely in realistic applications of transfer learning, outside of

laboratory environments. This is also the first article in SHM to address the effects of EOVs on real,

operational structures that may affect the damage localisation process in transfer learning.

For damage localisation, metric-informed joint distribution adaptation was used to reduce the distance

between the source and target domainswith the help of informative pseudo-labels. This approachwas able

to leverage information from a mast structure (under natural excitations) with minor damage states in

order to localize severe damage states, by only using the natural frequencies as input features. TheM-JDA

method was applied alongside normal correlation alignment in order to reduce the effect of disparities in

the environments between the source and target datasets. The classification accuracy of theKNNclassifier

exceeded 99.97% in testing, where an overall F1 score of 1.0 was achieved. TheM-JDA+NCAmethod is

extremely helpful in identifying the location of damage in a target structure (that does not contain any

damage labels), which can then be used to optimize any following repair andmaintenance procedures. By

using a population-based approach, it may be possible to avoid installing a network of strategically-placed

sensors for damage localisation, that are essential to traditional SHM methods.

Realistic applications of transfer learning are likely to encounter class imbalance where the source and

target structures contain different number of classes. Consequently, this article also tested the suitability of

the NCA + M-JDA method when there exists a class imbalance within the source and target domains.

Classification performances remained high in some instances and reduced significantly in others. Given

the unavailability in target labels in realistic implementations of this method, incorrect mappings can be

detrimental to the decision-making process for intervention. Methods to address class imbalance have,

therefore, been suggested here. In future work, a comprehensive method to address the issue of class

imbalance will be studied.

Data availability statement. The data used for this work from the LUMO structure can be found at https://data.uni-hannover.de/

dataset/lumo.

Acknowledgments. We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation)—SFB-1463—434502799. C.T.W. would also like to thank the Mercator fellowship program as well as The

Dynamics Research Group at the University of Sheffield for supporting this work.

Author contribution. Conceptualization: C.T.W.; Formal analysis: C.T.W.; Funding acquisition: R.R.; Investigation: C.T.W.;

Methodology: C.T.W., P.G.; Resources: R.R.; Supervision: C.H., R.R.; Visualization: C.T.W.; Writing—original draft: C.T.W.;

Writing—review and editing: P.G., J.P., C.J., C.H., R.R. All authors approved the final submitted draft.

L1 L2 L3 SE

L1

L2

L3

SE

0

0.2

0.4

0.6

0.8

1

M
M

D

Figure 16. TheMMDbetween each classwithin the training data.Darker shades indicate largeMMDvalues

and dissimilarities. It is clear that the SE class has a higher overall MMD compared to other damage classes.

Data-Centric Engineering e3-25

https://doi.org/10.1017/dce.2023.29 Published online by Cambridge University Press



Funding statement. This research was supported by grants from the Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation)—SFB-1463—434502799.

Competing interest. The authors declare none.

Ethical standard. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

References

Al-Stouhi S and Reddy CK (2016) Transfer learning for class imbalance problems with inadequate data. Knowledge and

Information Systems 48(1), 201–228.

Au S-K, Zhang F-L and Ni Y-C (2013) Bayesian operational modal analysis: Theory, computation, practice. Computers &

Structures 126, 3–14.

Ben-David S,Blitzer J,CrammerK and Pereira F (2006) Analysis of representations for domain adaptation. Advances in Neural

Information Processing Systems 19, 1–8.

Blitzer J, Dredze M and Pereira F (2007) Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment

classification. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Prague: ACL,

pp. 440–447.

Bull L, Di Francesco D, Dhada M, Steinert O, Lindgren T, Parlikad AK, Duncan A and Girolami M (2022) Hierarchical

Bayesian modeling for knowledge transfer across engineering fleets via multitask learning. Computer-Aided Civil and

Infrastructure Engineering 38, 821.

Bull L,Gardner P,Dervilis N, Papatheou E,Haywood-AlexanderM,Mills R andWordenK (2021) On the transfer of damage

detectors between structures: An experimental case study. Journal of Sound and Vibration 501, 116072.

Cao Z,Ma L, LongM andWang J (2018) Partial adversarial domain adaptation. In Proceedings of the European Conference on

Computer Vision (ECCV). Berlin: Springer.

CaoZ,YouK,LongM,Wang J andYangQ (2019) Learning to transfer examples for partial domain adaptation. InProceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: CVPR, pp. 2985–2994.

Cao P, Zhang S and Tang J (2018) Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural

network-based transfer learning. IEEE Access 6, 26241–26253.

Chesné S andDeraemaeker A (2013) Damage localisation using transmissibility functions: A critical review.Mechanical Systems

and Signal Processing 38(2), 569–584.

CsurkaG (2017) A comprehensive survey on domain adaptation for visual applications. InDomain Adaptation in Computer Vision

Applications. Cham: Springer, pp. 1–35.

Cui Y, Song Y, Sun C, Howard A and Belongie S (2018) Large scale fine-grained categorization and domain-specific transfer

learning. In Proceedings of the IEEE Conference on Computer Vision and pattern Recognition. Salt Lake City, UT: IEEE,

pp. 4109–4118.

Ding Y, Jia M and Cao Y (2021) Remaining useful life estimation under multiple operating conditions via deep subdomain

adaptation. IEEE Transactions on Instrumentation and Measurement 70, 1–11.

Dorafshan S, Thomas RJ and Maguire M (2018) Comparison of deep convolutional neural networks and edge detectors for

image-based crack detection in concrete. Construction and Building Materials 186, 1031–1045.

Farrar CR andWorden K (2012) Structural Health Monitoring: A Machine Learning Perspective. Hoboken, NJ: John Wiley &

Sons.

Fukumizu K, Gretton A, Sun X and Schölkopf B (2007) Kernel measures of conditional dependence. Advances in Neural

Information Processing Systems 20, 1–8.

Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M and Lempitsky V (2016) Domain-

adversarial training of neural networks. . The Journal of Machine Learning Research 17(1), 2096–2030.

GaoYandMosalamKM (2018) Deep transfer learning for image-based structural damage recognition.Computer-Aided Civil and

Infrastructure Engineering 33(9), 748–768.

Gardner P, Bull L,Dervilis N andWorden K (2021a) Overcoming the problem of repair in structural health monitoring: Metric-

informed transfer learning. Journal of Sound and Vibration 510, 116245.

Gardner P, Bull L,Gosliga J, Dervilis N andWorden K (2021b) Foundations of population-based shm, part III: Heterogeneous

populations–mapping and transfer. Mechanical Systems and Signal Processing 149, 107142.

Gardner P, Bull L, Gosliga J, Poole J, Dervilis N and Worden K (2022) A population-based SHM methodology for

heterogeneous structures: Transferring damage localisation knowledge between different aircraft wings. Mechanical Systems

and Signal Processing 172, 108918.

Gardner P, Liu X and Worden K (2020) On the application of domain adaptation in structural health monitoring. Mechanical

Systems and Signal Processing 138, 106550.

Garreau D, Jitkrittum W and Kanagawa M (2017) Large sample analysis of the median heuristic. arXiv preprint arXiv:

1707.07269.

Gosliga J, Gardner P, Bull L, Dervilis N and Worden K (2021) Foundations of population-based SHM, part II: Heterogeneous

populations–graphs, networks, and communities. Mechanical Systems and Signal Processing 148, 107144.

e3-26 Chandula T. Wickramarachchi et al.

https://doi.org/10.1017/dce.2023.29 Published online by Cambridge University Press



Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B and Smola A (2012) A kernel two-sample test. The Journal of Machine

Learning Research 13, 723–773.

Gretton A, Sejdinovic D, Strathmann H, Balakrishnan S, Pontil M, Fukumizu K and Sriperumbudur BK (2012) Optimal

kernel choice for large-scale two-sample tests. Advances in Neural Information Processing Systems 25, 1–9.

Jiao J, Zhao M, Lin J and Liang K (2020) Residual joint adaptation adversarial network for intelligent transfer fault diagnosis.

Mechanical Systems and Signal Processing 145, 106962.

Jonscher C, Hofmeister B, Grießmann T and Rolfes R (2023) Influence of environmental conditions and damage on closely

spaced modes. In European Workshop on Structural Health Monitoring, vol. 270. Cham: Springer International Publishing and

Imprint Springer, pp. 902–911.

Jonscher C, Liesecke L, Penner N, Hofmeister B, Grießmann T and Rolfes R (2023) Influence of system changes on closely

spacedmodes of a large-scale concrete tower for the application to structural healthmonitoring. Journal of Civil Structural Health

Monitoring 29, 328.

Khan NM, Abraham N, Hon M and Guan L (2019) Machine learning on biomedical images: Interactive learning, transfer

learning, class imbalance, and beyond. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR).

San Jose, CA: IEEE, pp. 85–90.

Li Y, Song Y, Jia L,Gao S,Li Q andQiuM (2020) Intelligent fault diagnosis by fusing domain adversarial training and maximum

mean discrepancy via ensemble learning. IEEE Transactions on Industrial Informatics 17, 2833–2841.

Li X, Yu S, Lei Y, Li N and Yang B (2023) Intelligent machinery fault diagnosis with event-based camera. IEEE Transactions on

Industrial Informatics 20, 380–389.

Li X, Zhang W, Ding Q and Sun J-Q (2019) Multi-layer domain adaptation method for rolling bearing fault diagnosis. Signal

Processing 157, 180–197.

Long M, Wang J, Ding G, Shen D and Yang Q (2013) Transfer learning with graph co-regularization. IEEE Transactions on

Knowledge and Data Engineering 26(7), 1805–1818.

LongM,Wang J,Ding G, Sun J and Yu PS (2013) Transfer feature learning with joint distribution adaptation. In Proceedings of

the IEEE International Conference on Computer Vision. Sydney, NSW: IEEE, pp. 2200–2207.

Long M, Zhu H,Wang J and Jordan MI (2016) Unsupervised domain adaptation with residual transfer networks. Advances in

Neural Information Processing Systems 29, 1–9.

Manson G, Worden K and Allman D (2003) Experimental validation of a structural health monitoring methodology: Part III.

Damage location on an aircraft wing. Journal of Sound and Vibration 259(2), 365–385.

Michau G and Fink O (2019) Domain adaptation for one-class classification: Monitoring the health of critical systems under

limited information. In International Journal of Prognostics and Health Management, Deep Learning and Emerging Analytics

Special Issue. State College, PA: PHM Society.

Murphy KP (2012) Machine Learning: A Probabilistic Perspective. Cambridge, MA: MIT Press.

Pan SJ, Tsang IW, Kwok JT and Yang Q (2010) Domain adaptation via transfer component analysis. IEEE Transactions on

Neural Networks 22, 199–210.

Poole J, Gardner P, Dervilis N, Bull L and Worden K (2022) On statistic alignment for domain adaptation in structural health

monitoring. Structural Health Monitoring 22, 1–20.

Poole J,Gardner P,Dervilis N,Bull L andWordenK (2022)On the application of partial domain adaptation for pbshm.European

Workshop on Structural Health Monitoring: EWSHM 2022 3, 408–418.

Rombach K,Michau G and Fink O (2023) Controlled generation of unseen faults for partial and open-partial domain adaptation.

Reliability Engineering & System Safety 230, 108857.

Rytter A (1993) Vibrational Based Inspection of Civil Engineering Structures. PhD Thesis, Aalborg University.

Stubbs N, Kim J-T and Farrar CR (1995) Field verification of a nondestructive damage localisation and severity estimation

algorithm. InProceedings-SPIE the International Society for Optical Engineering. Nashville, TN: SPIE International Society for

Optical, pp. 210.

TsialiamanisGP,WaggDJ,Gardner PA,Dervilis N andWordenK (2021)On partitioning of an SHMproblem and parallels with

transfer learning. In Topics in Modal Analysis & Testing, Volume 8: Proceedings of the 38th IMAC, A Conference and Exposition

on Structural Dynamics 2020. Houston, TX: Springer International Publishing, pp. 41–50.

Wang J, Chen Y, Hao S, Feng W and Shen Z (2017) Balanced distribution adaptation for transfer learning. In 2017 IEEE

International Conference on Data Mining (ICDM). New Orleans, LA: IEEE, pp. 1129–1134.

Wang X and Liu F (2020) Triplet loss guided adversarial domain adaptation for bearing fault diagnosis. Sensors 20, 320.

Wernitz S (2022) Damage Localisation in Data-Driven Vibration-Based Structural Health Monitoring using Linear Quadratic

Estimation Theory. PhD Thesis, Institut für Statik und Dynamik, Gottfried Wilhelm Leibniz Universität, Hannover.

Wernitz S,Chatzi E,Hofmeister B,WolniakM, ShenWand Rolfes R (2022) On noise covariance estimation for kalman filter-

based damage localisation. Mechanical Systems and Signal Processing 170, 108808.

Wernitz S,Hofmeister B, Jonscher C,Grießmann Tand Rolfes R (2021) Dataset: Lumo – Leibniz universtity test structure for

monitoring. https://doi.org/10.25835/0027803.

Wernitz S, Hofmeister B, Jonscher C, Grießmann T and Rolfes R (2022) A new open-database benchmark structure for

vibration-based structural health monitoring. Structural Control and Health Monitoring 29, e3077.

Wickramarachchi CT, Poole J, Hübler C, Jonsher C, Hofmeister B and Rolfes R (2023) Statistical alignment in transfer

learning to address the repair problem: An experimental case study. Preprint submitted to MSSP, pp. 1–25.

Data-Centric Engineering e3-27

https://doi.org/10.1017/dce.2023.29 Published online by Cambridge University Press



Worden K, Bull LA, Gardner P, Gosliga J, Rogers TJ, Cross EJ, Papatheou E, Lin W and Dervilis N (2020) A brief

introduction to recent developments in population-based structural health monitoring. Frontiers in Built Environment 6, 146.

Worden K, Manson G and Fieller NR (2000) Damage detection using outlier analysis. Journal of Sound and Vibration 229,

647–667.

Xu S and Noh HY (2021) Phymdan: Physics-informed knowledge transfer between buildings for seismic damage diagnosis

through adversarial learning. Mechanical Systems and Signal Processing 151, 107374.

Yan H, Ding Y, Li P, Wang Q, Xu Yand Zuo W (2017) Mind the class weight bias: Weighted maximum mean discrepancy for

unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Honolulu, HI: IEEE, pp. 2272–2281.

YinX,YuX, SohnK,LiuX andChandrakerM (2019) Feature transfer learning for face recognitionwith under-represented data.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Princeton, NJ: NEC Laboratories

America, pp. 5704–5713.

Zhang J, Ding Z, Li W and Ogunbona P (2018) Importance weighted adversarial nets for partial domain adaptation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, pp. 8156–8164.

Zhang W and Li X (2022) Data privacy preserving federated transfer learning in machinery fault diagnostics using prior

distributions. Structural Health Monitoring 21(4), 1329–1344.

Zhu J,ZhangC,QiH andLuZ (2020) Vision-based defects detection for bridges using transfer learning and convolutional neural

networks. Structure and Infrastructure Engineering 16(7), 1037–1049.

Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H and He Q (2020) A comprehensive survey on transfer learning.

Proceedings of the IEEE 109(1), 43–76.

Cite this article: Wickramarachchi CT, Gardner P, Poole J, Hübler C, Jonscher C and Rolfes R (2024). Damage localisation

using disparate damage states via domain adaptation. Data-Centric Engineering, 5, e3. doi:10.1017/dce.2023.29

e3-28 Chandula T. Wickramarachchi et al.

https://doi.org/10.1017/dce.2023.29 Published online by Cambridge University Press


	Damage localisation using disparate damage states via domain adaptation
	Impact Statement
	Introduction
	Original contributions
	Related work

	Transfer learning and domain adaptation
	Joint distribution adaptation
	Metric-informed joint distribution adaptation
	Pseudo-labeling using distance metrics

	The experimental dataset from the LUMO structure
	Damage states of the LUMO dataset
	Feature selection

	Damage localisation using M-JDA
	Viewing the LUMO structure as a population
	Localizing severe damage states using M-JDA
	Locating severe damage states: results
	Influence of the training dataset size
	Transferring severe damage information to locate minor damage states

	The effect of class imbalance on damage localisation
	Damage class imbalance
	Methods to address class imbalance in damage localisation
	Class imbalance from EOVs

	Conclusions and future work
	Data availability statement
	Acknowledgments
	Author contribution
	Funding statement
	Competing interest
	Ethical standard
	References


