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DLCDroid an android apps 
analysis framework to analyse the 
dynamically loaded code
Rati Bhan1,2, Rajendra Pamula2, K Susheel Kumar3, Nand Kumar Jyotish4,  
Prasun Chandra Tripathi5,6, Parvez Faruki7 & Jyoti Gajrani8

To combat dynamically loaded code in anti-emulated environments, DLCDroid is an Android app 
analysis framework. DL-CDroid uses the reflection API to effectively identify information leaks 
due to dynamically loaded code within malicious apps, incorporating static and dynamic analysis 
techniques. The Dynamically Loaded Code (DLC) technique employs Java features to allow Android 
apps to dynamically expand their functionality at runtime. Unfortunately, malicious app developers 
often exploit DLC techniques to transform seemingly benign apps into malware once installed on 
real devices. Even the most sophisticated static analysis tools struggle to detect data breaches 
caused by DLC. Our analysis demonstrates that conventional tools areill-equipped to handle DLC. 
DLCDroid leverages dynamic code interposition techniques for API hooking to expose concealed 
malicious behavior without requiring modifications to the Android framework. DLCDroid can 
unveil suspicious behavior that remains hidden when relying solely on static analysis. We evaluate 
DLCDroid’s performance using a dataset comprising real-world benign and malware apps from reputed 
repositories like VirusShare and the Google Play Store. Compared to state-of-the-art approaches, the 
results indicate a significant improvement in detecting sensitive information leaks, more than 95.6% 
caused by reflection API. Furthermore, we enhance DLCDroid’s functionality by integrating it with an 
event-based trigger solution, making the framework more scalable and fully automated in its analysis 
process.

Keywords Dynamic Code, Reflection API, Android Malware, Application Security

The exponential increase among smart devices, especially Android smartphones, has become an essential part 
of everyday lives over the last decade. The inaugural Android phone, the “HTC Dream”,was formally launched 
on September 23, 2008. It was the inaugural handset to operate on Android, a smartphone OS released by 
Google. People have embraced intelligent devices coupled with high-speed Internet, enabling confidential 
personal and office data at the user’s fingertips. The smartphone is a unique digital platform enriching the ease 
and performance enhancement, thus improving overall user interaction. The Statista 20231 reports indicate 
the growth of smartphone users from 1.06 billion to 7.2 billion between the years 2012 to 2023, as illustrated 
in Fig. 2. A recent report shows 1.75 billion smartphones sold in 2023, a more than ten-fold increase from 
127 million units in 20072. Around 4.5 million smartphone devices have been regularly activated every day, 
a tremendous amelioration of smartphone users. Fig. 1a indicates the uses of smartphones (69%of overall 
electronic communicating) against laptops, desk-based PC systems3. It confirms that the study of MID security 
is essential4. Fig. 1b illustrates the importance of smartphone OS, especially the Android sky-rocketing to 70.7% 
against the iOS global share reaches at 28.57%. However, the share of other smart-device OS is less than 1%in 
the year 2023. It emphasizing the importance of Android phone in the smartphone market5.
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Applications can extend their functionality at runtime using dynamic code loading techniques like reflection 
and dynamic class loading. These capabilities were inherited from Java and have been incorporated into the 
Dalvik Virtual Machine (DVM), which is also supported by Android Runtime (ART), the successor to Dalvik. 
ART is responsible for executing applications and system services in Android, and it employs ahead-of-time 
(AOT) compilation to generate .oat files from DEX files. ART can run applications developed for the DVM 
and is backward compatible with the Dalvik platform. Dynamic Loaded Code (DLC) allows developers to load 
classes into memory during runtime. Similar to DVM, ART enables developers to load additional source code 
from remote servers, allowing apps to import files originating from external sources like the internet6. These files 
are stored in internal memory and contain valid classes.dex files within .apk, .jar, and .zip files. Android provides 
a hierarchy of class loaders to facilitate the transfer of classes into application memory.

Just as shared libraries assist programmers in building modular software, DLC empowers developers to 
enhance an app’s functionality by dynamically loading it from various sources, such as internal storage and the 
internet, at runtime. Some Android apps utilize dynamic updates retrieved from the internet, employing class 
loaders for this purpose. Rather than delivering updated versions, these apps offer incremental improvements 
in functionality. App updates are loaded dynamically from the internet using class loaders. While the current 
app may receive enhancements in functionality7, it doesn’t necessarily provide updated versions of the app. Apps 
can rely on common frameworks tailored to their specific functionality, like an ad-supported framework that 
displays ads to users. These common frameworks are installed as standalone applications, and dependent apps 
import their code dynamically. Without DLC, each dependent app would need to implement the framework’s 
functions individually. DLC allows the framework to be updated to enhance the underlying functionality for all 
dependent apps, rather than requiring updates to each individual app. The aim of this study aimed to address the 
subsequent research enquiries: 

Fig. 2. The number of smartphone users increased from 2012 to 2023.

 

Fig. 1. Smartphone Platform Status Worldwide in 2023.
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 1.  Research Question 1 (RQ1): Why is the dynamically loaded code technique more dangerous than other 
malware developers employ?

 2.  Research Question 2 (RQ2): To what extent do malware applications utilise downloadable content (DLC) to 
enhance their destructive capabilities?

 3.  Research Question 3 (RQ3): How can we initially categorise the malware apps with DLC functionality amidst 
the vast amount of malware developed daily?

 4.  Research Question 4 (RQ4): What is the additional execution cost necessary to assess malware applications 
that utilise DLC code to enhance their dangerous functionality?Static analysis methods are ineffective to 
detect the malware that dynamically modifies application code to perform malicious actions. Notable static 
analysis frameworks such as AmanDroid8, IccTA9, DroidSafe10, DroidRA11, and FlowDroid12 are 
failed to identify data leaks resulting from dynamically loaded application code. Consequently, a significant 
necessity is to incorporate a reflection-aware dynamic analysis technique with ICC.

To tackle this difficulty, we proposed a framework named DLCDroid, which integrates static and dynamic 
evaluations of applications utilising DCL and reflection APIs. DLCDroid employs dynamic code interposition 
techniques for API hooking, allowing it to reveal undetectable malicious behaviour without altering the Android 
architecture. We test DLCDroid’s accuracy using a dataset from reputed benchmarks like VirusShare and the 
Google Play Store. The primary contributions of this work is encapsulated as follows: 

 1.  Our analyzed dataset comprises a substantial collection of benign applications and malware samples ob-
tained from multiple reputable repositories. Our findings indicate that a significant number of Android 
malware applications utilize dynamically loaded code to perform malicious activities.

 2.  We developed and executed DLCDroid, a system that integrates static and dynamic analysis to uncover 
concealed malicious activities. DLCDroid analyzes dynamically loaded code and resolves the targets of Re-
flection API, enhancing the application’s control flow graph with information acquired during static analysis. 
Consequently, DLCDroid can be utilized alongside additional static analyzers to enhance the precision of 
their analyses.

 3.  We assessed DLCDroid using a collection of actual apps. We observe that DLCDroid effectively identified 
malicious activities that was undetected during static analysis.The remainder of the paper is structured as 
follows. Section 2 offers an overview of dynamic class loading and the reflection API, and illustrates various 
methods by which malware might use reflection code to perform malicious functionality. Section 3 deline-
ates the issue statement and provides a comprehensive overview of DLCDroid, whilst Section 4 addresses the 
implementation specifics. Section 5 presents the analysis of results, while Section 6 addresses the limits of 
the existing implementation. Section 6 delineates the linked work, while Section 7 finishes the research and 
anticipates future endeavors.

Background
Android is the most popular Operating System (OS) platform for mobile devices, a modified version of Linux 
OS as per resource constraints of mobile devices like lack of memory register, limited battery, and computation 
power over desktop machines. Some extra features added in Android like alarm driver, power management, 
kernel debugger, shared memory driver, and Android logger as Android Architecture is shown in Fig. 3. 
Android uses its C library known as Bionic for quick execution as compared to GNU C. Likewise; Android 
uses its Virtual Machine known as Dalvik Virtual Machine(DVM)13, which is later replaced by Android Run 
Time (ART). Furthermore, Android uses Yet Another Flash File System(YAFFS) in NAND-type flash memory 
to fast read/write access compared to a hard disk drive. Android app is mainly written in the java language 
known as Android apps. Apps developers use an extensive collection of Application Programming Interfaces 
(APIs) regulated by the Android Software Development Kit (SDK). The archive file combined Apps bytecode 
and resources named Android Application Package (APK) and executed in a secured environment known as 
Sandbox using ART environment14.

Android application
Android apps have four components named Activity, Service, Content Provider, and Broadcast-receiver. The 
Activity component is used to provide a user interface to the user, and the Service component is used to provide 
process execution in the background, not interact with the user15, Content Provider uses to provide the data to 
apps which are shared across multiple apps. Finally, the Broadcast-receiver is mainly used to announce messages 
system-wide.

Application configuration
AndroidManifest.xml is the mandatory configuration file for every app. It specifies the principal component 
which constitutes the apps, along with their types, requirement, capabilities, and permission needed16. All the 
values defined in the manifest file are given at the compile time of apps. Therefore, the user cannot modify them 
during run-time.

Inter-Component communication
Android isolates and distributes system resources by a sandbox mechanism to provide protection. Android apps 
interact with other apps by message passing, known as Inter-component communication (ICC). Android apps 
use ICC mainly for Intent messages. Set of Intent-Filters used to specify component capabilities to respond to 
its kind of requests17. The Intent specifies the action performed by the event and the required data. There are 
many ways to invoke components like implicit or explicit, inter-apps or intra-apps. Android’s ICC provides late 
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binding or run-time binding within the same or among multiple apps. Android apps can call the components by 
event messaging, an essential property of an event-driven system, while such calls are not mentioned explicitly 
in its code. There are many security issues introduced by researchers based on the mechanism of ICC18. For 
example, it is possible to temper or intercepts the message of the Intent event since authentication or encryption 
is not applied19,20. Android has no mechanism to prevent the intention of misrepresenting the third party ICC 
caller to its callee21.

Permissions
Apart from sandboxing, imposing permissions is also a good mechanism to protect Android apps. Android 
permissions mechanism is a pillar of Android app security. The permissions define in the manifest file allow 
access to sensitive resources and interaction with other apps in a secure way2223. The Android system asks for user 
authorization of requested permissions at app installation. Users can refuse the grant of requested permission 
and cancel the app installation. Along with required permissions, the app may impose those permissions 
held by other Android apps and have the permission to interact with such apps. Apart from built-in Android 
permission, any app can define its permissions to self-protection of different system resources. The current 
model of Android permission has a shortcoming, discussed by various researchers24. For example, some defects 
occurred due to permission violation of the least privilege principle25. Delegation attack due to access control 
permission at individual app2625. Some attacks are performed due to uninformed decisions of end-users having 
a lack of awareness of Android permissions2728.

Android layered architecture
As depicted in Fig. 3, the Android smartphone OS is based on Linux with some modifications due to resources 
constrained environment. The functionality of Android OS is based on many layers explained as follows.

Kernel: It is the lowest layer responsible for managing system components like network, memory, process 
and device security, and so on.

Fig. 3. Android layered architecture.
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Hardware Abstraction Layer (HAL): It serves as a communication link between the apps and device drivers 
of specific hardware components like Bluetooth, camera, GPS, and many more. The way HAL is implemented 
differs from one manufacturer to the next.

Virtual Machine (VM): Android uses two types of virtual machines (VMs) to execute apps in a protected 
environment, known as Sandboxing. In later Android versions 5.0 onwards, ART is recognized advanced 
execution environment, whereas all preceding versions of Android use DVM. VM delivers excellent run-time 
performance by optimizing garbage collection and reducing power consumption.

Libraries: Native C/C++ libraries are used to provide essential system services and Android components 
such as HAL, DVM, and ART. Several libraries (Inbuilt API) are available to help build an app’s user interface, 
graphics drawing, and database access.

Apps development tools: Android Studio and SDK provide a complete collection of development tools as 
well as a Java-based API for developing Android apps. The debugger, QEMU-based emulator, and sample code 
repository are helpful tools.

Application layer: This layer is found at the top of the stack and includes both system native apps that 
provide essential functions like web surfing, messaging, email composition, and audio/video calling, as well as 
third-party apps, downloaded and installed from various App Stores by the user.

Implications of reflection API in android apps
Reflection API refers to a JAVA program’s ability to treat its code as data and modify it while running29. It enables 
the JAVA program to introspect and alter its behaviour during runtime dynamically. Reflection plays a crucial 
role in Android application development, offering the flexibility to avoid static inspection. Most researchers 
have made efforts to analyze Android apps using Reflection API. Android apps leverage Java’s reflection APIs 
extensively for obtaining Class objects, inspecting and creating instances of classes, modifying Class members, 
and invoking their methods. All these characteristics also attract malware developers’ attention to gain 
information about app code during execution.

In app analysis, a “sink” refers to any method that can expose user data. At the same time, a “source” denotes 
any mechanism that reveals the user’s sensitive information using Reflection API. Android apps utilize reflection 
APIs to obscure the interactions with critical sources and sinks. We explained the reflection APIs categorized into 
five main groups30, accompanied by examples illustrating how each category can address sensitive information 
leakage like User Communications Details, Contact Information, Financial Information, Identification 
Information, Authentication Credentials, Device Information IMEI number etc. while executing apps.

Creating an instance of the class and determining the class name of an object.
The reflection APIs can instantiate a class that matches the members of sensitive sources and sinks. In this 
section, We demonstrate how to get and leak Device IMEI number using Reflection API, which has never been 
statically declared in the source code and cannot be determined by static string inference.

For instance, in the MainActivity, an object is provided through the newInstance() API, and to 
obtain an object of BaseClass, the method forName() is used, followed by accessing the field Str using 
the getField() method. Taint analysis is used to recognize the instantiation of the class and distinguish 
between sinks and sources appropriately.

Listing 1. Accessing Device’s IMEI.

In the code snippet shown in Listing  1 Accessing Device’s IMEI, the class Reflection_IMEI has data 
member Device_IMEI, arg is a single argument of the constructor, and two methods setIMEI() and 
getIMEI().
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Listing 2. Create object of the Reflective class.

The code snippet shown in Listing  2 dynamically loaded the class ReflectionClass using Class.
forName(Name-_of_class) method and create an object of loaded class ob using newInstance() 
method of reflection API. The code clarifies that the real class name, ReflectionClass, passed as an argument 
of the reflection API.

Call and misuse the methods of sensitive classes
This section discussed how to load the code dynamically from a remote server and call the method of sensitive 
classes (e.g., get and leak Device IMEI number ) using Reflection API and thwart taint analysis techniques. This 
technique illustrates an attempt to obfuscate the flow of sensitive information using reflection API, making it 
challenging for static analysis tools to detect and analyze such behaviour. The methods of java.lang.reflect 
class, such as invoke() and getMethod(), are employed to invoke a method and thwart taint analysis 
dynamically. In the getMethod() method of java.lang.reflect class, the first argument provided is 
the method identifier to be called dynamically, followed by an array specifying the method arguments. The 
getField() and newInstance() methods of the reflection API are used to obtain the field and create an 
object of the dynamically loaded class. Additionally, it utilizes the invoke() methods of the reflection API to 
retrieve and execute the methods of the dynamically loaded class.

Listing 3. Dynamically call the method using Reflection API.

The device’s IMEI is retrieved and stored in the variable Device_IMEI in Listing 3 using the reflection 
API method getDeviceId(). When this IMEI is used as a source for any potential data sink, a taint 
analysis technique is activated to mark the Device_IMEI variable as tainted, thereby detecting the potential 
information leak from the device. To evade this taint analysis, the sample code attempts to subvert the analysis 
by storing this information in another field using reflection. This approach aims to prevent the proliferation of 
taint markings.

The ob variable holds an object of the ReflectionClass after being initialized through the reflection 
API. Then, utilizing the getMethod() method, the ReflectionClass object is used to create a method 
called setIMEI(string), where the subsequent parameter is specified as a String since the method 
expects arguments of type String. The invoke() method is subsequently invoked with two arguments, ob 
and Device_IMEI, to call the setIMEI(String) method dynamically. Significantly, the identifier and 
signature of the setIMEI(String) method cannot be determined statically from the source code alone.

Access and set the fields of dynamically loaded classes
This section discussed how to access and change the value of the fields of the dynamically loaded classes using 
Reflection API. The Java java.lang.reflect APIs utilized for setting and retrieving the contents of class 
fields. The Reflection APIs enable access to the specified data members of a dynamically loaded class in the form 
of field objects through methods getField() and getDeclaredField().

Listing 4. Access and set the fields of dynamically loaded classes to thwart taint analysis.

In the code snippet presented in Listing 4, field reflection APIs are employed to prevent the propagation of 
taint analysis. The code assigns the value of Device_IMEI to the field IMEI using the set_IMEI field object 
of the ReflectionClass.

The IMEI field is created as a field object called get_IMEI, which is utilized to retrieve the value and place 
it in the field named reflective_device_Id. Since the field name, IMEI, is not statically resolved, this small 
piece of code effectively halts the static taint from spreading while reflectively storing the value of Device_
IMEI in reflective_device_Id. To conceal the device information leak, it forwards reflective_
device_Id to the sink rather than Device_IMEI.

Getting and instantiating constructor of dynamically loaded classes
This section discussed how to get and instantiate the constructor of dynamically loaded classes using Reflection 
API. The constructor of the dynamically loaded class retrieved the Device_IMEI. Subsequently, the IMEI 
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number of the device is sent as an SMS using SmsManager. The traditional assessment methods cannot detect 
such information leaks through reflection API.

Using the Reflection API forName(), we can dynamically load the ReflectionClass, create its object 
through the newInstance() API, retrieve its constructor with the getConstructor() API, and then 
access its variables by employing the getField() API. The getConstructor() API is used to obtain the 
constructor based on the specified argument types. The constructor’s object is returned if it matches the defined 
parameters of the argument. The object, obtained through the newInstance() API, can be used to invoke 
the constructor. Malicious apps exploit constructors within the class field to access confidential information and 
reveal device details.

Listing 5. Instantiate Constructor to leak device information through Reflection API.

In the example presented in Listing 5, an instance of the constructor of ReflectionClass is created using 
the reflection API. The constructor is then invoked with Device_IMEI as an argument. The constructor 
within the ReflectionClass object ob stores the Device_IMEI. Subsequently, with the assistance of the 
field reflection API, the IMEI is retrieved and sent as an SMS using SmsManager. An effective assessment 
should be capable of handling the reflection API to detect such information leaks.

Leak sensitive information using intent reflection API
This section demonstrated how to leak sensitive information using the Intent Reflection API. The Reflection APIs 
can dynamically load the code and leak sensitive information in various ways, which is relatively straightforward 
to implement. More complex scenarios, like encryption, array subscripts, unresolved intents, concatenation, 
and substring operations, are employed to evade static analysis. Additionally, reflection enables the invocation 
of intents, classes, and methods and performs malicious activity. A different approach that demonstrates the 
invocation of intents using Reflection API is illustrated in Listing 6.

Listing 6. Leak phone IMEI number using Intent Reflection API.

The ICC and Intent Reflection APIs in Listing  6 demonstrate how to expose the phone’s IMEI 
number. ActivityPrimary employs Intent (Intent1) to send the Device_IMEI number, while 
ActivitySecondary uses Intent (Intent2) to receive it as a parameter named IMEI. The Device_
IMEI2 information is leaked by ActivitySecondary through the use of the sendTextMessage API.

Problem description and proposed solution: DLCDroid
Nowadays, smartphones have become an integral part of life and act as personal assistants, carrying the user’s 
sensitive information like Device Information, Personal Identification Information (PII), Contact Information, 
Location Data, Communications, Financial Information, Authentication Credentials, Multimedia, Health 
Information, Browsing History and App Usage etc. in various forms like short message service (SMS), audio and 
video recording, voice calls, Device and Network Details and image capturing. Android Smartphone’s popularity 
among users and developers is due to its open architecture and third-party apps. Third-party developers can 
update the app to introduce malicious activities. Smartphone security is an active area of research that effectively 
identifies information leaks within malicious apps, where malware developers continuously involve new 
innovative techniques like reflection and code obfuscation.

Applications can extend their functionality at runtime using Dynamic Loaded Code (DLC) techniques, such 
as dynamic class loading and reflection. Unfortunately, malicious app developers often exploit these techniques 
to transform seemingly benign apps into malware once installed on real devices. Even the most advanced 
static analysis tools struggle to detect data breaches resulting from DLC code. Our analysis demonstrates that 
conventional tools need to be equipped to handle apps containing DLC components. Malware apps leverage 
intent reflection to obscure communication between source and sink components.

Our analysis of 50 Android apps, sourced from repository AndroZoo31, revealed that reflection is widely 
used with non-constant arguments in both benign and malicious apps. Static analysis techniques, such as 
FlowDroid12and DroidSafe10, were employed to identify reflection-related behaviors, and dynamic validation 
was performed in a sandboxed environment to observe runtime execution. We found that over 70% of reflective 
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calls used dynamically constructed arguments, such as concatenated strings or runtime variables, which static 
string-based analysis could not detect effectively. These findings motivated the design of DLCDroid to overcome 
the limitations of reflection-aware static analysis.

By misusing reflection APIs, attackers obscure the path between source and sink methods. These attackers 
are well-versed in evasive strategies, particularly those involving reflection with parameter obfuscation and 
ICC. Static analysis approaches aware of reflection APIs typically do not uncover dependent leaks during app 
execution. In such cases, dynamic analysis proves to be beneficial. Our goal with dynamic analysis is to enhance 
the capabilities of modern static analyzers in detecting leaks driven by reflection that might otherwise remain 
unnoticed. The objectives of reflection APIs, such as execution time dependency and identification obfuscation, 
will aid in identifying all leaks caused by reflection.

Static analysis techniques struggle to identify malware that dynamically updates app code to execute 
malicious activities. Prominent static analysis frameworks like AmanDroid8, IccTA9, DroidSafe10, and 
FlowDroid12 fail to identify the demonstrated leak because reflection hinders taint analysis. Additionally, 
DroidRA11, a reflection-aware static assessment tool, does not detect the data leakage caused by dynamically 
loaded app’s code. DroidRA failure results from the dynamic construction of the app’s method name.

Therefore, there is a strong need for a reflection-aware dynamic analysis technique integrated with ICC. 
To address this challenge, the authors have introduced a framework called DLCDroid, which combines 
static and dynamic assessments of apps employing DCL and reflection APIs. DLCDroid leverages dynamic 
code interposition techniques for API hooking, enabling it to expose concealed malware behaviour without 
modifying the Android framework. We evaluate DLCDroid’s performance using a dataset comprising real-world 
apps from benchmarks like VirusShare and the Google Play Store. The results indicate a significant improvement 
in detecting sensitive information leaks caused by reflection compared to static analysis tools. DLCDroid can 
unveil suspicious behaviour that remains hidden when relying solely on static analysis.

The DLCDroid framework comprises two phases in the analysis process. Static analysis of an app occurs 
on the system, while during dynamic analysis, the app runs on an actual Android mobile phone or an Android 
emulator. The DLCDroid framework allows for the easy integration of any static analyzer, facilitating the work 
of analysts. The system’s static analyzer initially generates the application’s Control Flow Graph (CFG). The 
dynamic analysis results obtained from the app’s emulator execution are combined to perform a comprehensive 
analysis. Through API hooking techniques, the dynamic analysis component of DLCDroid monitors dynamic 
behaviour by intercepting calls to dynamically loaded code.

DLCDroid effectively integrates dynamic analysis and code instrumentation, as demonstrated in Listings 
4.3 to 4.6, to handle execution dependencies and prevent static inference of details regarding the return values 
and arguments of reflection APIs. The purpose of including dynamic analysis is to gather such information by 
observing reflection APIs associated with the categories described in Section 2.3. Figure 3 illustrates the process 
diagram of our proposed DLCDroid. The steps of the DLCDroid approach are outlined below.

 1.  Determine the Presence of DLC Code: Verify whether DLC code exists within the application. If it does, 
proceed to DLCDroid analysis; otherwise, proceed with static analysis to identify information leaks. There 
are multiple ways to detect the presence of DLC code in apps are as follows:

• Manual Code Review: Perform an exhaustive manual inspection of the source code, methodically scru-
tinizing for any indicators of the utilization of Java’s Reflection API. Examine the code to identify the 
inclusion of classes and methods derived from the java.lang.reflect package, namely Class, Method, and 
Field. It is advisable to exercise vigilance in identifying certain keywords such as Class.forName, getField, 
getConstructor, and getMethod, as they may indicate the presence of Reflection API implementation.

• Static Analysis Tools: Utilise static code analysis tools to automate the identification of Reflection API uti-
lisation inside the codebase. These tools are capable of inspecting the code for known patterns and meth-
od calls associated with reflection. Well-regarded tools for this purpose include AndroGuard, FindBugs, 
Project Management Professional (PMD), and Checkstyle. In addition, modern Integrated Development 
Environments (IDEs) may feature built-in code analysis capabilities designed to identify Reflection API 
usage.

• Bytecode Analysis: Utilize specialized bytecode analysis tools like Abstract Syntax Manipulation (ASM), 
Byte Code Engineering Library (BCEL), or Byte Buddy to scrutinize the compiled bytecode of your Java 
application. These tools demonstrate proficiency in identifying occurrences of reflective activities at the 
bytecode stage. It is important to acknowledge that this particular approach is more complex and requires 
a more comprehensive comprehension of the subtleties of bytecode.

• Custom ClassLoader: One possible approach to determining the utilization of the Reflection API involves 
the development of a customized class loader. The custom, as mentioned earlier, loader possesses the capa-
bility to intercept the process of loading classes and offer valuable insights pertaining to dynamically load-
ed classes. Although it may not directly identify the use of the Reflection API, it can shed light on dynamic 
class loading, which is frequently associated with reflective techniques.

• Logging and Monitoring: Implement a system for logging and monitoring within your application. By in-
corporating custom code to record instances of Reflection API usage during runtime, you can accumulate 
valuable data concerning where and how reflection is employed within your application. This approach 
serves to enhance your overall understanding of reflection utilization.

 2.  Modify the Emulator and Configure the App: Modify the emulator to evade the anti-emulation techniques 
employed by modern malware to identify emulated environments and evade detection. The app itself is con-

Scientific Reports |         (2025) 15:3292 8| https://doi.org/10.1038/s41598-025-88003-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


figured using APIMonitor to capture all reflection APIs in the particular format specified within the Android 
logcat 4 during the execution of the application.

 3.  Execute the App and Collect Logs: Execute the Configured app on a modified emulator to intercept the dy-
namically loaded code during execution and capture every reflection API in the Android Logcat. The Logcat 
file contains the details regarding the methods being called and their arguments, including the stack-trace in 
the context of a reflection API.

 4.  Parse and Analyze the Log File: Parse the log file to determine the line number of each reflection API and 
searches for the two specified tags, WRAP_API and REF_CALL. Analyze the data collected from the log 
files and create app’s Control Flow Graph (CFG). Examines every downloaded file to determine if it contains 
additional Methods of Interaction (MOIs).

 5.  Instrumentation and Transform the App Code: DLCDroid generates instrumented apps using API hook-
ing. Transform the app code by replacing the invocation of reflection methods with equivalent non-reflection 
APIs. We stack-trace information for both the reflection and DLC scenarios is used to determine which MOI 
initiated the call.

 6.  Reveal Concealed Malicious Behaviour: In the final phase, the transformed app undergoes static analysis 
to identify suspicious activities. The suspicious patterns, such as reflective calls to Android APIs protected by 
unsafe permissions and suspicious inputs, assist in identifying concealed malicious behavior via reflection 
APIs.

Implementation
Fig.4 Depicts the step-by-step process of the DLCDroid framework. DLCDroid conducts a comprehensive 
analysis of the app’s code, focusing on instances of reflection and DCL techniques. It begins by creating a Control 

Fig. 4. Methodology of Proposed DLCDroid Framework.
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Flow Graph (CFG) of the app’s content. If no instances of reflection or DCL are found, DLCDroid terminates its 
analysis. However, if such instances are detected, DLCDroid engages a Python program to perform static analysis 
using the AndroGuard framework, which represents the app’s compiled code as a collection of manipulable 
Python objects. DLCDroid is compatible with most static analysis tools examining .dex and .apk files and 
enhances the identification of suspicious behavior by modifying the permission map in AndroGuard.

DLCDroid extracts the classes.dex file from the app and scans the code for instances of DLC and 
reflection calls. It then proceeds to modify an emulator to resist anti-emulation techniques and conducts 
dynamic analysis. The app under analysis is installed on the emulator, and the Unique Identifier (UID) of the 
analyzed APK is obtained. DLCDroid parses log messages from logcat, presented in JSON format, which 
contain parameters such as stack, operation, UID, method and classes (optional), and output and source 
(optional). Messages generated by the app are chosen based on the UID field, and DLCDroid records outcomes 
and completes its operation if the user ends the analysis.

DLCDroid’s technique for analyzing reflection initiation events, such as the newInstance() method, 
involves extracting class names and method signatures invoked through reflection. The stack-trace is 
obtained from the message, and the initial occurrence of a reflection invocation within the stack is identified. 
DLCDroid then compares this method with the set of Methods of Interaction (MOIs) from the app’s runtime. 
Once the method is found, DLCDroid integrates the data into the CFG and removes it from the set of 
undiscovered invoking MOIs.

DLCDroid retrieves the file’s originating address containing the dynamically loaded code (DLC) based on 
data from the app, downloads the file, and processes it. The file’s hash is calculated, and it is transferred to 
the results directory with a modified filename incorporating the hash value. This prevents the reexamination 
of previously investigated code. DLCDroid conducts source code analysis for MOIs within the DLC, and this 
method is responsible for identifying and categorizing dynamically loaded class invocation details.

DLCDroid can execute on either a physical device or a software-based emulator, offering convenience 
but potentially encountering emulator-related limitations. To observe dynamic behavior facilitated by DLC, 
DLCDroid intercepts various Android API functions serving as interfaces to reflection and DLC functionalities. 
Native method hooking functionalities are incorporated into DLCDroid using inline hooking. The emulator 
used by DLCDroid is platform-agnostic and capable of intercepting custom code across native operations and 
Java functions within the Android system, ensuring compatibility with different Android versions. DLCDroid 
communicates data about DCL and reflection events, such as method calls and class construction, through 
messages in JSON format, capturing relevant stack trace information and MOI details. In the following 
subsections, all the phases are detailed in more detail.

Determining the DLC code
We identify whether the app’s code contains reflection APIs since reflection-induced leaks are the primary 
focus of our research. To detect the presence of reflection APIs, we employ AndroGuard32, a Python-based 
static analysis framework that works with .apk files. We only proceed with the analysis of applications that 
AndroGuard has identified as containing reflection APIs.

Modify emulator and execute apps
In this step, the apps to be analyzed are executed in the modified emulator to make them resistant to environment-
aware malware techniques. While the app is running, the logcat file captures the specified tags and logs. The 
portion of the logs that matches the examples provided in Listings 4.3 to 4.6 shows that the tags REF_CALL and 
WRAP_API are used to log the methods and class names of reflection APIs. DLCDroid achieves the resolution 
of reflection calls with run-time dependencies by monitoring during execution analysis.

Dynamic analysis is employed to access the dynamically loaded code during execution and to augment the 
app’s Control Flow Graph (CFG). In the proposed approach, dynamic assessment occurs on a modified emulator 
that intercepts API calls through a vtable tampering scheme. DLCDroid logs every event whenever the app 
initiates a call using reflection or dynamically loads code. These events are accompanied by additional data, 
such as details regarding the methods being called and their arguments, including the stack-trace in the 
context of a reflection call. In the context of a DLC call, both the location of the DLC code and the stack trace are 
provided, and all this data is gathered through the Android log file.

Tag, configure and log reflection API
In this stage, the app is configured to log its usage of reflection APIs in the Android logcat while it is running. 
These APIs are logged along with information about the method and class names involved. To facilitate the 
analysis of repackaged apps, we employ APIMonitor33. This code inserts instructions into the app to report 
the usage of the APIs listed in its configuration file. In order to monitor these reflection APIs effectively, we 
utilize APIMonitor and modify the reflection APIs in its configuration file.

When the repackaged apps are running, APIMonitor logs the reflected APIs and their arguments and 
returns results that include a specified tag. We set the tag REF_CALL in the scripts file to log all predefined 
reflection APIs. It is necessary for us to report both the wrapper API (class and method) and the reflection API. 
However, one limitation of APIMonitor is that it does not provide information about the wrapper (method 
and class). To address this limitation, we initially instrument the app using the sootmodule34. This allows 
us to record the reflection API along with the associated wrapper (method and class) using the specified tag 
WRAP_API.
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Parsing and analysing log file
The log parsing process examines each line of the log and searches for the two specified tags, WRAP_API and 
REF_CALL. When it encounters the WRAP_API tag, it saves the matching wrapper method and class to be used 
as the primary key in a hash map and retains the line number in an internal variable. Subsequently, if the log 
entry with the REF_CALL tag is found, all necessary data is extracted.

DLCDroid analyzes the data collected from the log files. When a reflection call is made, an additional edge is 
added to the app’s Control Flow Graph (CFG), linking the node of the method that invoked the process through 
reflection. When DLC is activated, DLCDroid records the file’s location, downloads the file, which includes the 
DLC code, and performs static analysis. The gathered data is then integrated into the app’s CFG. Furthermore, 
DLCDroid examines every downloaded file to determine if it contains additional Methods of Interaction 
(MOIs). The stack-trace information for both the reflection and DLC scenarios is used to determine which 
MOI initiated the call.

Instrumentation of DLC code and generate CFG
DLCDroid’s crucial aspect is the generation of instrumented apps by replacing the invocation of reflection 
methods with identical non-reflection APIs. Modern static analyzers with taint analysis capabilities should be 
capable of detecting breaches in these instrumented applications. Since the app’s source code is unavailable, 
instrumentation is carried out in an intermediate representation of the Jimple code within the Soot 
framework. Initially created for Java bytecode analysis, Soot has been adapted for Android.

The IR code is well-suited for instrumentation due to its representation in a three-address code form with just 
fifteen different operations. Following instrumentation, the original reflection calls are retained to ensure that 
subsequent static analysis approaches are unaffected. The key challenge lies in creating non-reflection calls while 
maintaining data flows. This implies that the outcomes of a non-reflection API should be assigned to an identical 
variable as the outcomes of a corresponding reflection statement. Additionally, as described in the previous 
section, the arguments of a non-reflection expression must match the arguments of the equivalent reflection call. 
Therefore, instrumentation employs both forward and reverse data-flow analysis methods on Jimple code to 
unpack each parameter within an object’s array.

Generating the Control Flow Graphs (CFGs) for the apps is the next step. CFGs illustrate the connections 
between invoked methods, and DLCDroid is then used to analyze the apps, including the reflection code. 
We search for the APIs that the app calls through reflection across each resulting CFG. We experiment with 
two types of tools: Androguard and SAAF (Soot Android Analysis Framework). While the 
Androguard approach analyzed all the apps, it requires proper recognition of the reflection API. Results from 
SAAF often outperform those from Androguard. SAAF can accurately identify the targets of reflection calls. 
However, when arguments are composed of numerous strings within the apps, encrypted strings, or extracted 
from a hashtable, SAAF may fail to identify the targets in those situations. DLCDroid proves to be more effective 
than SAAF because it introduces a dynamic aspect to address the reflection API. Results from the other apps, 
as indicated by “DLCDroid” reveal that DLCDroid correctly identifies each of the methods invoked using 
reflection.

Reveal concealed malicious behaviour
Permissions protect many Android APIs, and these permissions must be explicitly declared in the 
AndroidManifest.xml file to mitigate potential harm to the Android operating system or user data. 
We classify an app’s behavior patterns as potentially harmful based on these permissions. Some applications 
dynamically load code containing API calls protected by permissions. Malicious apps can exploit this strategy 
to evade detection by static analyzers because the security-sensitive API is dynamically loaded. These apps 
use reflection APIs to invoke methods secured with risky permissions. The names of methods used to deliver 
malicious messages are encrypted and decoded only during execution, making it impossible for static analyzers 
to detect malicious SMS sent using this technique. DLCDroid identifies and raises warnings if these patterns 
are detected during its investigation. Additionally, we conduct further analysis on the arguments provided to 
methods invoked through reflection APIs. Suspicious patterns, such as reflective calls to Android APIs protected 
by unsafe permissions, along with suspicious inputs like the sendTextMessage() method with premium 
number parameters, assist in identifying concealed malicious behavior via reflection APIs.

Result analysis
In this Section, we present an overview of our application’s sample suite and share the results from our 
experimental analysis. DLCDroid underwent evaluation using a dataset comprising authentic benign and 
malicious applications derived from real-world scenarios. The server and emulator ran on a computing device 
equipped with 16-core Intel Core i7-13700HX Processor operated at 5.0 GHz clock speed, 30 MB Intel Smart 
Cache supported by 16 GB LPDDR5X RAM and 1 TB PCIe 4.0 SSD memory.

The assessment dataset included a total of 38,344 applications, with 25,036 classified as benign and 13,308 
classified as malicious, belonging to 211 distinct malware families. The benign applications were selected based 
on their prevalence on the Google Play marketplace. To compile our comprehensive dataset, we sourced malware 
samples from various reputable repositories, including VirusShare35, VirusTotal36, Contagio Minidump37and 
use IEEE DataPort service. In addition to downloaded applications, our research involved experimenting with a 
variety of malicious app samples spanning from 2010 to 2023. These samples were sourced from well-established 
datasets such as Genome38, DREBIN39, AndroTracker40, SAPIMMDS41, AndroProfiler42, AndroZoo31, 
CICAAGM201743, AMD44, MalDozer45, CICAndMal201746, AOM47, CDFG48and CICMalDroid202049.

Fig. 4 illustrates the frequency of dynamic code application programming interface (API) updates within the 
analyzed dataset and DLCDroid’s effectiveness in augmenting control flow graphs (CFGs). The data presented 
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shows the proportion of applications within the combined dataset of malicious and benign applications that 
utilize invoke, DLC, and newInstance() methods. It is observed that approximately 90% of the applications 
employ newInstance() and invoke() methods, while about 48% of the applications utilize DLC. This 
demonstrates a substantial increase in the usage of DLC compared to previous state-of-the-art findings. The 
growth in DLC utilization can be attributed to the increasing complexity of Android applications.

Table 1 demonstrate the performance evaluation for detecting commonly found top ten malware families 
by the proposed framework DLCDroid. The DLCDroid average detection rate of malware families is 95.63%, 
which is better than state-of-the-art approaches. DLCDroid demonstrated the ability to expand the CFG by at 
least one node in 80% of the examined applications. This expansion was performed solely through reflection, 
encompassing malicious and benign apps. The minor percentage increase may be attributed to applications that 
exclusively utilize reflection as a dynamic code change capability. The impact of DLC on CFG expansion and its 
implications for dynamic behaviour was investigated using findings from applications that employ DLC.

DLCDroid’s effectiveness is particularly relevant when mobile applications utilize DCL. The data indicates 
a significantly higher prevalence of potentially harmful permissions. Furthermore, malicious applications 
experience a substantial expansion of their code base by employing dynamic class loading (DCL). This 
observation suggests that malicious applications exploit sensitive application programming interfaces (APIs) 
within the executed code. An examination was conducted on the newly added nodes to verify their compliance 
with system-level permissions and signature-level authorization.

The analytical findings were further explored to identify potential indicators of malicious behavior exhibited 
by malware. In practical applications, malicious payloads may be embedded within legitimate applications, with 
the manifest file altered to conceal the additional permissions required for running the payload. In such cases, 
the final CFG of the application includes nodes protected by additional permissions not present in the original 
CFG.

This discussion focuses exclusively on applications that utilize Dynamic Class Loading (DCL). The findings 
reveal that around 67% of applications did not experience any growth in the number of permissions. Conversely, 
approximately 33% of applications demonstrated the use of additional permissions in dynamically updated code 
through DLCDroid.

Furthermore, when conducting a more comprehensive examination of DLC code in potentially harmful 
apps, a noticeable trend emerges regarding the inclusion of dangerous permissions, such as INTERNET and 
READ_PHONE_STATE. These permissions often indicate potential destructive capabilities, especially the 
unauthorized disclosure of private information. It is crucial to highlight that this observed behavior results 
from activating only a small portion of the overall Methods of Interaction (MOIs). The study’s findings provide 
empirical support for the notion that malware variants tend to possess a higher number of permission types 
necessary for dynamically loaded code. Consequently, it is justifiable to classify applications as suspicious when 
they exhibit an excessive level of privilege.

Malware 
Family Dangerous Permissions # CFG Expansion # MOI DLCDroid Performance

AnserverBot INTERNET READ_PHONE_STATE
# Nodes 1615 # 
Edges 2094

# Invoke() 5 # 
NewInstance() 5 # DLC 6

# Samples 117 # Detected 
110 DR 94.1 %

Base Bridge READ_PHONE_STATE INTERNET
# Nodes 1780 # 
Edges 2333

# Invoke() 5 # 
NewInstance() 3 # DLC 3

# Samples 113 # Detected 
109 DR 96.5 %

DroidDream

RECEIVE_BOOT_COMPLETED WRITE_SETTINGS CHANGE_WIFI_STATE 
INTERNET READ_PHONE_STATE WRITE_EXTERNAL_STORAGE 
CHANGE_NETWORK_STATE CHANGE_WIFI_STATE INSTALL_
PACKAGES

# Nodes 15724 # 
Edges 20369

# Invoke() 18 # 
NewInstance() 12 # DLC 5

# Samples 125 # Detected 
123 DR 98.4 %

DroidKungFu

SET_TIME_ZONE WRITE_SETTINGS BLUETOOTH BLUETOOTH_ADMIN 
INTERNET READ_PHONE_STATE WRITE_SYNC_SETTINGS MOUNT_
UNMOUNT_FILESYSTEMS CHANGE_NETWORK_STATE CHANGE_WIFI_
STATE ACCESS_COARSE_LOCATION

# Nodes 21170 # 
Edges 23590

# Invoke() 14 # 
NewInstance() 7 # DLC 2

# Samples 103 # Detected 
101 DR 98.1 %

FakeInstaller
SEND_SMS READ_PHONE_STATE INTERNET READ_CONTACTS 
ACCESS_FINE_LOCATION RECORD_AUDIO

# Nodes 1220 # 
Edges 2209

# Invoke() 20 # 
NewInstance() 12 # DLC 5

# Samples 110 # Detected 
104 DR 94.5 %

FakeNotify SEND_SMS
# Nodes 172 # 
Edges 193

# Invoke() 69 # 
NewInstance() 10 # DLC 0

# Samples 102 # Detected 
99 DR 97.1 %

GingerMaster
READ_SMS READ_PHONE_STATE READ_CONTACTS WRITE_
EXTERNAL_STORAGE INTERNET

# Nodes 195 # 
Edges 578

# Invoke() 21 # 
NewInstance() 8 # DLC 4

# Samples 115 # Detected 
110 DR 95.7 %

Obad
BIND_DEVICE_ADMIN READ_SMS READ_PHONE_STATE READ_
CONTACTS BLUETOOTH_ADMIN VIBRATE

# Nodes 467 # 
Edges 854

# Invoke() 21 # 
NewInstance() 12 # DLC 3

# Samples 109 # Detected 
106 DR 97.2 %

Plankton
INSTALL_SHORTCUT READ_PHONE_STATE INTERNET READ_
CONTACTS ACCESS_NETWORK_STATE ACCESS_WIFI_STATE

# Nodes 12075 # 
Edges 17093

# Invoke() 23 # 
NewInstance() 16 # DLC 7

# Samples 117 # Detected 
109 DR 93.2 %

SMSreg SEND_SMS READ_PHONE_STATE
# Nodes 538 # 
Edges 952

# Invoke() 193 # 
NewInstance() 1 # DLC 1

# Samples 118 # Detected 
108 DR 91.53 %

Table 1. Performance evaluation for the detection of top ten malware families by DLCDroid Terminology: 

DR: Detection Rate, #: No.of Samples.
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Related work
Currently, many highly effective static analysis framework HARVESTER50struggle to adequately address the 
concept of reflection. Bodden et al51. propose Java reflection code analysis framework named TAMIFLEX for 
Java applications, but these methods are not directly applicable to Android applications due to their reliance on 
runtime instrumentation, a technique not supported by the Android platform.

TaintDroid52was one of the initial dynamic assessment frameworks for Android applications, monitoring 
the flow of information across the execution of a single app. It identifies the leakage of user personal data 
through network interfaces. DroidScope53adheres to this methodology. DroidScope facilitates the emulation 
of application execution and the tracing of context across various tiers of the Android OS at the bytecode level, 
native code level, and system API level. During the execution of an application in DroidScope, a security54–56 
analyst can monitor events at various levels and instrument parameters of invoked methods to identify malicious 
activity.

Dynamic analysis techniques are particularly challenging to automate because they require replicating 
extensive interactions between applications, the system, and user interface interactions. Various methodologies 
have been developed to automate the initiation of UI events, ranging from random event generation to more 
sophisticated techniques such as AppsPlayground57and SmartDroid58. Nonetheless, each continues to exhibit 
numerous constraints regarding the types of events they can manage and their scope of coverage.

Ripple59 is an investigative approach that incorporates reflection awareness, taint analysis, and type inference 
to achieve more robust and reliable results. Ripple has found that static taint analysis alone is insufficient for 
detecting data leaks in scenarios involving inter-component communication (ICC), unsound library summaries, 
unmodeled Android services, built-in containers, callbacks, and code obfuscation. However, type inference 
often generates a significant number of inaccurate warnings, particularly when statically inferring parameter 
names, such as in cases where the parameter name “IMEI” cannot be resolved statically.

The detection of reflective calls in DroidRA11 is modeled as an integrated constant propagation issue using 
COAL [154]. However, its reliance on continuous string inference proves inadequate when reflection API 
arguments contain runtime dependencies. For example, when attempting to pass getDeviceId(), DroidRA 
fails to identify leakages. DelDroid60 implements the concept of the principle of least privilege through static 
analysis, aiming to tackle the problem of excessive privileges in dynamically loaded code. It is worth noting that 
this issue, addressed by DelDroid, is distinct from the research problem we are currently investigating.

IntelliDroid61 possesses the capability to ascertain the exact sequence for injecting inputs and carries out 
this injection at the device-framework interface, ensuring the preservation of system integrity. DL

262effectively 
recognizes the behaviour, extracts path constraints, and executes malicious code using the Reflection API. 
SEALANT63 conducts compositional security analysis at an elevated level of abstraction.

In recent years, significant research has focused on hybrid analysis techniques to address reflection APIs 
in the Android operating system. Research such as StaDyna64 primarily concentrates on examining and 
resolving dynamic loading of code (DLC) and reflection through a hybrid technique. The initial step of the static 
assessment involves constructing the Method Call Graph (MCG) for the program, which is then augmented 
with supplementary data obtained during runtime. However, this evaluation primarily focuses on quantifying 
the increased quantity of edges and nodes, without considering potential privacy breach risks. The approach 
requires a customized version of the Android operating system, making installation and use more complex. 
Additionally, it is limited to Android OS version 4.1.2 r2, limiting its scalability. The system also lacks a direct 
means of enhancing the capabilities of established static analyzers, particularly in enabling them to conduct 
analyses sensitive to reflection.

DLCDroid exhibits several distinctions compared to Stadyna. DLCDroid’s emulator utilizes API hooking by 
manipulating a vTable as its underlying mechanism, avoiding the need to modify the Android OS, which makes 
it adaptable to various Android versions. DLCDroid is a software tool that analyzes the arguments supplied 
to procedures invoked via reflection APIs. In contrast to Stadyna, which requires user engagement for app 
evaluation, DLCDroid employs a triggering mechanism to fully automate the analysis process. Furthermore, 
DLCDroid is assessed on a much larger sample of apps, including 38.3K, with 25K being benign and 13.3K being 
malicious, while Stadyna’s evaluation is based on a smaller dataset of 10 apps, with five benign and five malicious. 
Table 2 presents a summary of the comparative outcomes involving highly pertinent tools, focusing on their 

Existing Approaches Type of Analysis Detection Rate (%) Evade Anti-Emulation Analyze ICC Analyze collusion attack Analyze DLC/Reflection

HARVESTER50 Hybrid 90% × × ×

√

SEALANT63 Static 93% ×

√ √

×

Ripple59 Static 85% × × ×

√

IntelliDroid61 Hybrid 90%
√

× ×

√

DroidRA11 Static 87% × × × ×

StaDyna64 Hybrid 90% × × ×

√

TAMIFLEX51 Static 80% × × ×

√

DelDroid60 Hybrid 94% ×

√ √ √

DLCDroid Hybrid 95.6%
√ √ √ √

Table 2. Comparison with the State-of-the-art Approaches.
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analytical capabilities and accessibility. The data reveals that DLCDroid surpasses its counterparts in support of 
a wide array of DLC analysis features.

Conclusions
In this paper, we introduced DLCDroid, a methodology combining dynamic and static analysis to assess Android 
applications in reflection and DLC comprehensively. This approach enables the expansion of an application’s 
Control Flow Graph (CFG) by capturing additional modules loaded during execution and identifying new 
processing paths concealed through reflection calls. Our proposed method employs code interposition 
through the hooking of reflection class methods without requiring modifications to the Android framework 
or the app itself. The evaluation results revealed that malware applications often exhibit a suspicious increase in 
dangerous permissions following the introduction of new DLC code. This finding underscores the effectiveness 
of DLCDroid in identifying and preserving dynamic functionalities used by applications at runtime. The 
comprehensive analysis conducted in this study demonstrates DLCDroid’s resilience against various runtime 
challenges, including obfuscation, encryption, and reliance on dynamically loaded code. Additionally, the 
approach can detect malware that utilizes the Inter-Component Communication (ICC) technique to propagate 
data breaches across different components within a unified application. The findings highlight the limitations 
of existing static analyzers in the context of reflection, leading to many false negatives. DLCDroid enhances 
precision by detecting leaks that may be overlooked by static and dynamic analyzers when used in isolation. 
Meanwhile, DLCDroid improves the effectiveness of current static analyzers by addressing false negatives 
associated with the reflection code. Furthermore, it is also essential to acknowledge some future improvements 
in our approach. Sometimes, test automation modules face difficulty in path traversal due to the numerous 
paths present in Android applications, potentially leading to the oversight of instances of reflection embedded 
within these paths. Different iterations can sometimes produce distinct real-time temporal values for specific 
parameters within reflection APIs. However, it isn’t easy to quantify every possible value of these parameters.

Data availability
The datasets analyzed are used during the implementation of the research work method, which is available in the 
repository. https:github.com/Ratibhan/DLCDroid
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