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Abstract

Let �( f ) = K [x][y; f d
dx

] be an Ore extension of a polynomial algebra K [x] over an

arbitrary field K of characteristic p > 0 where f ∈ K [x]. For each polynomial f, the

automorphism group of the algebras �( f ) is explicitly described. The automorphism group

AutK (�( f )) = S ⋊ G f is a semidirect product of two explicit groups where G f is the

eigengroup of the polynomial f (the set of all automorphisms of K [x] such that f is their

common eigenvector). For each polynomial f, the eigengroup G f is explicitly described. It

is proven that every subgroup of AutK (K [x]) is the eigengroup of a polynomial. It is proven

that the Krull and global dimensions of the algebra �( f ) are 2. The prime, completely prime,

primitive and maximal ideals of the algebra �( f ) are classified.

Keywords A skew polynomial ring · Automorphism · The eigengroup of a polynomial ·
A prime ideal · A completely prime ideal · A primitive ideal · A maximal ideal ·
Simple module · The Krull dimension · The global dimension · The centre · Localization ·
A left denominator set · An Ore set · A normal element

Mathematics Subject Classification (2010) 16D60 · 13N10 · 16S32 · 16P90 · 16U20

1 Introduction

In this paper, module means a left module, K is a field of characteristic p > 0 and K is its

algebraic closure, K × := K\{0}, K [x] be a polynomial algebra in the variable x over K,

DerK (K [x]) = K [x] d
dx

is the set of all K-derivations of the algebra K [x],

� := �( f ) := K [x][y; δ := f
d

dx
] = K 〈x, y | yx − xy = f 〉 =

⊕

i≥0

K [x]yi

is an Ore extension of the algebra K [x] where f = f (x) ∈ K [x]. Given an algebra D and its

derivation δ, the Ore extension of D, denoted D[y; δ], is an algebra generated by the algebra
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V.V. Bavula

D and y subject to the defining relations yd − dy = δ(d) for all d ∈ D. The algebra � is a

Noetherian domain of Gelfand-Kirillov dimension 2.

The aim of the paper is for each polynomial f to give an explicit description of the

automorphism group AutK (�( f )) of the algebra �( f ).

We can assume that the polynomial f is monic, i.e. its leading coefficient is 1 provided

f �= 0 (by changing the generators from (x, y) to (x, l−1 y) where l is the leading coefficient

of the polynomial f ). Then the algebras {�( f ) | f ∈ K [x]} as a class is a disjoint union

of four subclasses: f = 0, f = 1, the polynomial f has only a single root in K and the

polynomial f has at least two distinct roots in K .

If f = 0 then the algebra �(0) = K [x, y] is a polynomial algebra in two variables and

its group of automorphisms is well-known [16]: The group AutK (K [x, y]) is generated by

the automorphisms:

tμ : x �→ μx, y �→ y,

�n,λ : x �→ x + λyn, y �→ y,

�′
n,λ : x �→ x, y �→ y + λxn,

where n ≥ 0, μ ∈ K ×, and and λ ∈ K .

If f = 1 then the algebra �(1) is the (first) Weyl algebra

A1 = K 〈x, ∂ | ∂x − x∂ = 1〉 ≃ K [x][y; d

dx
].

In characteristic zero Dixmier [10], and in prime characteristic Makar-Limanov [13], gave

an explicit set of generators for the automorphism group AutK (A1) (see also [4] for more

results on AutK (A1)): The group AutK (A1) is generated by the automorphisms:

�n,λ : x �→ x + λyn, y �→ y,

�′
n,λ : x �→ x, y �→ y + λxn,

where n ≥ 0 and λ ∈ K .

The first Weyl algebra A1 belongs to a wide class of algebras - the class of generalized Weyl

algebras. In [3], Bavula and Jordan found explicit generators for generalized Weyl algebras

over a polynomial algebra in a single variable over a field of characteristic zero. Alev and

Dumas [1] initiated the study of automorphisms of Ore extensions �( f ) in characteristic zero

case. Their results were extended also to prime characteristic by Benkart, Lopes and Ondrus

[6]. The algebra �(x2) (the Jordan plane) was studied by Shirikov [14], Cibils, Lauve, and

[9], and Iyudu [11]. The example of the enveloping algebra of the nonabelian Lie algebra of

dimension 2 studied by Martha K. Smith [15, Corollary 18]. Gadis [8] studied isomorphism

problems for algebras on two generators that satisfy a single quadratic relation.

Isomorphism problems for the algebras �( f ). Theorem 1.1 is an isomorphism criterion

for the algebras �.

Theorem 1.1 Let f , g ∈ K [x] be polynomials. Then �( f ) ≃ �(g) iff g(x) = λ f (αx + β)

for some elements λ, α ∈ K × and β ∈ K .

In characteristic zero, Theorem 1.1 was proven by Alev and Dumas [1, Proposition 3.6]

(1997) and in prime characteristic – by Benkart, Lopes and Ondrus [6, Theorem 8.2] (2015).

Benkart, Lopes and Ondrus [6, Theorems 8.3 and 8.6] gave a description of the set of

automorphisms groups of algebras �( f ) over arbitrary fields and if the automorphism group

of �( f ) is given they presented information on the type of the polynomial f , [6, Corollary
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8.7] (in general, if one fixes the type of the polynomial then the automorphism group is larger

than the one which is naively expected). In this paper, we proceed in the opposite direction: if

the polynomial f is given then the automorphism group AutK �( f ) is explicitly described.

The eigengroup G f (K ) of a polynomial f ∈ K [x]. Recall that AutK (K [x]) =
{σλ,μ | λ ∈ K ×, μ ∈ K } where σλ,μ(x) = λx + μ.

Definition 1.2 [5] For a polynomial f ∈ K [x],

G f = G f (K ) := {σ ∈ AutK (K [x]) | σ( f ) = λσ f for some λσ ∈ K ×} (1)

is called the eigengroup of the polynomial f.

Clearly, the set G f (K ) is a subgroup of AutK (K [x]), it is the largest subgroup of

AutK (K [x]) such that the polynomial f is their common eigenvector. For all scalars μ ∈ K ,

Gμ = AutK (K [x]). For all scalars ν ∈ K ×, G f = Gν f . So, in order to describe the eigen-

group G f (K ) we can assume that the polynomial f is a monic polynomial. It is proven that

every subgroup of AutK (K [x]) is the eigengroup of a polynomial (Theorem 4.35). For each

subgroup G of AutK (K [x]) all the polynomials f ∈ K [x] with G f = G are explicitly

described in the case when the field K is algebraically closed. The most interesting and dif-

ficult case is when the group G is a finite group. There are three types of finite subgroups in

AutK (K [x]) that are not the identity group. For each such group G, the polynomial f with

G f = G has a unique form/presentation the, so-called, eigenform of f.

The eigengroup G f has an isomorphic copy in the automorphism group AutK (�( f )):

The map

G f (K ) → AutK (�( f )), σλ,μ �→ σλ,μ : x �→ λx + μ, y �→ λdeg( f )−1 y (2)

is a group monomorphism where deg( f ) is the degree of the polynomial f . We identify

the group G f (K ) with its image in AutK (�( f )). The group G f (K ) is the most impor-

tant/difficult part of the group AutK (�( f )). Approximately half of the paper is about how

to find it. If the group G f (K ) is a finite group it is a semidirect product of two subgroups,

G f (K ) = G̃ f (K ) ⋊ G f (K ) (Theorem 4.4).

There are four distinguish cases:

1. G̃ f �= {e}, G f �= {e},
2. G̃ f �= {e}, G f = {e},
3. G̃ f = {e}, G f �= {e},
4. G̃ f = {e}, G f = {e}.

In the case when K = K , Theorem 4.24, 4.27, 4.30 and 4.32 are criteria for each case to hold,

respectively (see also Proposition 4.10). These four theorems are also explicit descriptions

of the eigengroup G f (K ). They also show that in each of four cases the polynomial f admits

a unique presentation – the eigenform of f (introduced in the paper).

At the end of Section 4, a finite algorithm is given of finding the eigengroups G f (K ) and

G f (K ), and the eigenform of f.

In the case when K �= K , similar results are obtained, see Theorem 4.33. Proposition 4.34

gives criteria for the groups G̃ f (K ), G f (K ) and G f (K ) to be {e}.

The group of automorphisms of the algebra �( f ). Given a group G, a normal subgroup

N and a subgroup H. The group G is called the semidirect product of N and H, written

G = N ⋊ H , if G = N H := {nh | n ∈ N , h ∈ H} and N ∩ H = {e} where e is the identity

of the group G.
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The automorphism group AutK (�( f )) of the algebra �( f ) contains an obvious subgroup

S := S(K ) := {sp | p ∈ K [x]} ≃ (K [x],+), sp �→ p where sp(x) = x and sp(y) = y + p.

(3)

Theorem 1.3 Suppose that f ∈ K [x] is a monic non-scalar polynomial. Then

AutK (�( f )) = S(K ) ⋊ G f (K ).

The Krull and global dimensions of the algebra �( f ). It it proven that the Krull and

global dimensions of the algebra �( f ) are 2 (Theorem 2.5).

Classifications of prime, completely prime, primitive and maximal ideals of the alge-

bra �( f ). Theorem 2.3 classifies prime, completely prime, primitive and maximal ideals of

the algebra �( f ). The height 1 prime ideals were classified in [6, Theorem 7.6]. It is proven

that every nonzero ideal of the algebra �( f ) meets the centre of �( f ) (Corollary 2.2).

Classifications of simple �( f )-modules. In [2], simple modules were classified for all

Ore extensions A = D[x; σ, ∂] where D is a Dedekind domain, σ ∈ is an automorphism of

D and ∂ is a σ -derivation of D (for all a, b ∈ D, ∂(ab) = ∂(a)b + σ(a)∂(b)). Recall that

the ring A is generated by D and x subject to the defining relations: For all elements d ∈ D,

xd = σ(d)x + ∂(d). The algebras �( f ) is a a very special case of the rings A.

Theorem 2.4 classifies simple left �( f )-modules, see also [7]. For each simple left �( f )-

module an explicit K-basis is given and the actions of the canonical generators x and y of the

algebra �( f ) on the basis is explicitly described.

A classification of simple right �( f )-modules is obtained at once from the classification

of simple left �( f )-modules by using the fact that the opposite algebra �( f )op of the algebra

�( f ) is isomorphic to

�( f )op ≃ �(− f ). (4)

Recall that the opposite algebra Aop of an algebra A coincides with the algebra A as vector

space but the multiplication in Aop is given by the rule a · b = ba. Every right A-module is

a left Aop-module and vice versa.

2 Spectra, the Centre, the Krull and Global Dimensions of the Algebra3

In this section, K is a field of characteristic p > 0 (not necessarily algebraically closed)

and f = p
n1

1 · · · p
ns
s is a non-scalar polynomial of K [x] where p1, . . . , ps are irreducible,

co-prime divisors of f (i.e. K [x]pi + K [x]p j = K [x] for all i �= j). The aim of this section

is to find the centre of the algebra �( f ); to classify simple �( f )-modules; to classify prime,

completely prime, primitive and maximal ideals of the algebra �( f ); and to prove that the

Krull and global dimension of the algebra �( f ) is 2.

The centre of the algebra �( f ). It follows from the direct sum

A1 =
p−1⊕

i, j=0

K [x p, ∂ p]x i∂ j

and the commutation relation [∂, x] = 1, that the centre Z(A1) of the Weyl algebra is equal

to K [x p, ∂ p], a polynomial algebra in two variables. Let K (x p, ∂ p) be the field of fractions
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of the polynomial algebra K [x p, ∂ p]. The localization A1 of the Weyl algebra A1 by the Ore

set K [x p, ∂ p]\{0} is a simple p2-dimensional algebra

A1 =
p−1⊕

i, j=0

K (x p, ∂ p)x i∂ j .

This follows from the relation [∂, x] = 1. So, Z(A1) = K (x p, ∂ p). Hence, every nonzero

ideal of the Weyl algebra A1 meets the centre of A1.

The polynomial algebra K [x] is a left A1-module where ∂ acts as the derivation d
dx

.

Furthermore, the kernel of the corresponding algebra homomorphism

A1 → EndK (K [x]), x �→ x, ∂ �→ d

dx
(5)

is generated by the central element ∂ p . So, A1/(∂
p) =

⊕p−1
i=0 K [x]∂ i ⊆ EndK (K [x]). The

factor algebra A1/(∂
p) is a subalgebra of the algebra D(K [x]) of differential operators on

the polynomial algebra K [x] and the Weyl algebra A1 is not. This is in sharp contrast with

the characteristic zero case where A1 = D(K [x]).
The algebra � = �( f ) can be identified with a subalgebra of the Weyl algebra A1 by the

monomorphism:

� → A1, x �→ x, y �→ f ∂. (6)

So, � = K 〈x, y = f ∂〉 ⊂ A1. Theorem 2.1 describes the centre of the algebra �( f ). It

also gives explicit expressions for the p’th power of various elements of the algebras �( f )

and A1 that are key facts in finding the centre of �( f ).

The fact that the centre of the algebra �( f ) is equal to K [x p, y p − (δ p−2( f ))′y] was

proven by Benkart, Lopes and Ondrus, [6, Theorem 5.3,(2)]. Here we present a short proof

of this fact.

Theorem 2.1 Let δ = f d
dx

∈ DerK (K [x]) where f ∈ K [x]\{0}, and g′ := dg
dx

where

g ∈ K [x]. Then:

1. δ p = (δ p−2( f ))′δ ∈ DerK (K [x]).
2. In the algebra �( f ), y p = f p∂ p + (δ p−2( f ))′y. In particular, in the Weyl algebra A1,

( f ∂)p = f p∂ p + (δ p−2( f ))′ f ∂ .

3. The centre Z(�( f )) of the algebra �( f ) is the polynomial algebra

K [x p, y p − (δ p−2( f ))′y] = K [x p, f p∂ p]
and f p∂ p = y p − (δ p−2( f ))′y.

4. The algebra �( f ) =
⊕p−1

i, j=0 Z(�( f ))x i y j is a free Z(�( f ))-module of rank p2.

5. The localization of the algebra �( f ) at the Ore set Z(�( f ))\{0} is A1.

Proof 1. Since δ p ∈ DerK (K [x]), we have that δ p = g d
dx

where g = δ p(x) = δ p−1( f ) =
(δ p−2( f ))′ f . Therefore,

δ p = (δ p−2( f ))′ f
d

dx
= (δ p−2( f ))′δ.

2. Notice that y p = ( f ∂)p = f p∂ p +
∑p−1

i=1 ai∂
i for some elements ai ∈ K [x]. Recall

that A1/(∂
p) =

⊕p−1
i=0 K [x]∂ i ⊆ EndK (K [x]). By statement 1,

( f ∂)p ≡
p−1∑

i=1

ai∂
i ≡ (δ p−2( f ))′δ ≡ (δ p−2( f ))′ f ∂ ≡ (δ p−2( f ))′y mod (∂ p),
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and so a1 = (δ p−2( f ))′ f and a2 = · · · = ap−1 = 0.

3–5. By statement 2, f p∂ p = y p − (δ p−2( f ))′y ∈ Z(�( f )). Hence,

Z ′ := K [x p, y p − (δ p−2( f ))′y] = K [x p, f p∂ p] ⊆ Z(�( f ))

and �( f ) =
⊕p−1

i, j=0 Z ′x i y j . Now,

(Z ′\{0})−1�( f ) =
p−1⊕

i, j=0

K (x p, ∂ p)x i y j =
p−1⊕

i, j=0

K (x p, ∂ p)x i∂ j = A1,

and so statement 5 is obvious and statements 3–4 follow. ⊓⊔

Let A be an algebra and a ∈ A. The map ada = [a,−] : A → A, b �→ [a, b] := ab − ba

is a derivation of the algebra A which is called the inner derivation of A associated with the

element a.

Corollary 2.2 Every nonzero ideal of the algebra �( f ) meets the centre of �( f ).

Proof Let I be a nonzero ideal of the algebra �( f ). Fix a nonzero element of I , say a =∑p−1
i, j=0 zi j x i∂ j for some elements zi j ∈ Z(�( f )), by Theorem 2.1.(4). Then applying

several times the inner derivation adx := [x,−] of the algebra �( f ), we obtain a nonzero

element, say b ∈ I ∩ Z(�( f ))[x]. Then 0 �= bp ∈ I ∩ Z(�( f )). ⊓⊔

The prime, completely prime, primitive and maximal spectra of the algebra �. An

ideal p of a ring R is called a completely prime ideal if the factor ring R/p is a domain. A

completely prime ideal is a prime ideal. The sets of prime and completely prime ideals of

the ring R are denoted by Spec(R) and Specc(R), respectively. The annihilator of a simple

R-module is called a primitive ideal of R. Every primitive ideal is a prime ideal of R. The set

of all primitive ideals is denoted by Prim(R). The set of all maximal ideals of R is denoted

by Max(R). Clearly, Max(R) ⊆ Prim(R) ⊆ Spec(R).

An element a of an algebra A is called a normal element of A if Aa = a A. An element

a of an algebra A is called a regular element if it is not a zero divisor. The set of all regular

elements of the algebra A is denoted by CA. Each regular normal element a of the algebra A

determines an automorphism of the algebra A given by the rule:

ωa : A → A, b �→ ωa(b) where ab = ωa(b)a. (7)

The elements p1, . . . , ps are regular normal elements of the algebra � = �( f ) (recall

that f =
∏s

i=1 p
ni

i ) since

ypi = pi (y − p−1
i f ) and xpi = pi x .

Therefore, ωpi
(x) = x and ωpi

(y) = y + p−1
i f .

For an ideal a of an algebra A, we denote by V (a) the set of all prime ideals of A that

contain the ideal a. Let min a be the set of minimal primes of a. These are the minimal

elements of the set V (a) with respect to inclusion. Suppose that the set Sa := {ai | i ≥ 0} is

a left Ore set of a domain A. The algebra Aa := S−1
a A = {a−i b | i ≥ 0, b ∈ A} is called the

localization of A at the powers of the element a.

For a commutative algebra C and a non-nilpotent element s ∈ C , the map

Spec(C)\V (s) → Spec(Cs), p �→ S−1
s p
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is a bijection with the inverse map q �→ C ∩ q. We identify the sets Spec(C)\V (s) and

Spec(Cs) via the bijection above, i.e. Spec(C)\V (s) = Spec(Cs).

Recall that the centre of the Weyl algebra A1 = K [x][∂; d
dx

] is the polynomial algebra

K [x p, ∂ p] (the result is well-known). Then

f p ∈ K [x p] ⊆ Z(�( f )) = K [x p, f p∂ p] ⊆ K [x p, ∂ p] = Z(A1)

and

L = �( f ) ⊆ L f = A1, f = L f p = A1, f p =
p−1⊕

i, j=0

Z(L) f p x i yi

=
p−1⊕

i, j=0

Z(A1) f p x i∂ i =
p−1⊕

i, j=0

K [x p, ∂ p] f p x i∂ i . (8)

In particular, Z(L) f p = Z(A1) f p = K [x p, ∂ p] f p , and so we can write

Spec(Z(L))\V ( f p) = Spec(Z(L) f p ) = Spec(Z(A1) f p ) = Spec(K [x p, ∂ p] f p )

= Spec(Z(A1))\V ( f p) = Spec(K [x p, ∂ p])\V ( f p).

Theorem 2.3 gives explicit descriptions of the sets of prime, completely prime, primitive

and maximal ideals of the algebra �. Let Specc(�, ht = 1) be the set of completely prime

ideals of height 1 of the algebra �( f ).

Theorem 2.3 Let K be a field of characteristic p > 0, � = K [x][y; δ := f d
dx

] where

f ∈ K [x]\K . Let f = p
n1

1 · · · p
ns
s be a unique (up to permutation) product of irreducible

polynomials of K [x]. Then:

1. The elements p1, . . . , ps are regular normal elements of the algebra � (i.e. pi is a

non-zero-divisor of � and pi� = �pi ).

2. min( f ) = {(p1), . . . , (ps)}.
3. Specc(�) = {0,�pi , (pi , qi ) | i = 1, . . . , s; qi ∈ Irrm(Fi [y])} where Fi := K [x]/(pi )

is a field and Irrm(Fi [y]) is the set of monic irreducible polynomials of the polynomial

algebra Fi [y] over the field Fi in the variable y. If, in addition, K = K and λ1, . . . , λs

are the roots of the polynomial f then Specc(�) = {0,�(x − λi ), (x − λi , y − μ) | i =
1, . . . , s; μ ∈ K }.

4. Spec(�) = Specc(�)
∐

{�p | p ∈ Spec(Z(�))\{(0), V ( f p)}.
5. For all p ∈ Spec(Z(�))\V ( f p),

k(p) ⊗Z(�) �/(p) ≃
p−1⊕

i, j=0

k(p)x i yi =
p−1⊕

i, j=0

k(p)x i∂ i ≃ Mp(k(p)),

the algebra of p × p matrices over the field of fractions k(p) of the domain Z(�)/p.

6. Max(�) = Prim(�) = {(pi , qi ),�m | i = 1, . . . , s; qi ∈ Irrm(Fi [y]),m ∈
Max(Z(�))\V ( f p)}.

7. Specc(�, ht = 1) = {(p1), . . . , (ps)}. If, in addition K = K , then Specc(�, ht = 1) =
{(x − λ1), . . . , (x − λt )} where {λ1, . . . , λt } is the set of roots of the polynomial f.

Proof 1. Statement 1 is proven above.

2. Since

�/�pi ≃ Fi [y] (9)
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is a polynomial algebra with coefficients in the field Fi (since yx − xy = f ∈ �pi ), the

ideal �pi is a completely prime ideal of �. Now, statement 2 follows from the equality of

ideals ( f ) = (p1)
n1 · · · (ps)

ns .

5. Since p ∈ Spec(Z(�))\V ( f p), the element f p is a unit in the field k(p). Now, the first

isomorphism and the equality in statement 5 follows from Eq. 8. Then using the equalities,

[y, x i ] = i x i−1 and [yi , x] = iyi−1,

and the fact that k(p) is a field, we see that the algebra
⊕p−1

i, j=0 k(p)x i∂ i is a simple, central

k(p)-algebra of dimension p2 over the field k(p). Therefore, it is isomorphic to the matrix

algebra Mp(k(p)).

3-4. The algebra � is a domain, hence 0 ∈ Specc(�). We have seen in the proof of

statement 2 that the ideals (p1), . . . , (ps) of the algebra � are completely prime ideals. By

Eq. 9,

V ( f ) = {�pi , (pi , qi ) | i = 1, . . . , s; qi ∈ Irrm(Fi [y])} ⊆ Specc(�).

Given a nonzero prime ideal P of � such that P /∈ V ( f ) = V ( f p). Then P f is a nonzero

prime ideal of the algebra � f p = A1, f p . By Corollary 2.2, the intersection p := P ∩ Z(�)

is a nonzero prime ideal of the centre Z(�) of the algebra �. By Theorem 2.1.(4), � =⊕p−1
i, j=0 Z(�)x i yi . Now, by statement 5, �p ∈ Spec(�)\V ( f ) and the prime ideal �p is

not completely prime. Now, statements 3 and 4 follows from statement 5.

6. Statement 6 follows from statement 4.

7. Statement 7 follows from statement 3. ⊓⊔

Classification of simple �( f )-modules For a �-module M, we denote by ann�(M) the

annihilator of the �-module M. For an algebra A, we denote by Â, the set of isomorphism

classes of (left) simple A-modules. An isomorphism class of a simple A-modules M is denoted

by [M]. Let elements a1, . . . , an ∈ A be generators for a left ideal I of the algebra A. Then

we write I = A(a1, . . . , an). Theorem 2.4 is a classification of simple �( f )-modules.

Theorem 2.4 Let K be a field of characteristic p > 0, � = K [x][y; δ := f d
dx

] where

f ∈ K [x]\K . Let f = p
n1

1 · · · p
ns
s be a unique (up to permutation) product of irreducible

polynomials of K [x]. Then:

1. The map

Max(�) → �̂, m �→ L(m)

is a bijection with inverse [M] �→ ann�(M) where L(m) is a unique (up to isomorphism)

simple direct summand/submodule/factor module of the (simple) matrix algebra �/m.

In particular, for all m ∈ Max(�)\V ( f p), dimK (L(�m)) = p · dimK (Z(�)/m) < ∞.

2. For each maximal ideal (pi , qi ) of �, where i = 1, . . . , s and qi ∈ Irrm(Fi [y])},

L(pi , qi ) = �/(pi , qi ) ≃ K [y]/(qi )

and dimK (L(pi , qi )) = dimK (K [y]/(qi )) = degy(qi ) < ∞.

3. Suppose that K = K . For each maximal ideal �m of �, where m ∈ Max(Z(�))\V ( f p),

L(�m) ≃ �/�(m, x − p
√

ξ) =
p−1⊕

i, j=0

K yi 1̄

≃ A1, f p /A1, f p (m, x − p
√

ξ) =
p−1⊕

i, j=0

K ∂ i 1̂,
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where x p − ξ ∈ m for a unique element ξ ∈ K , 1̄ = 1 + �(m, x − p
√

ξ) and 1̂ =
1 + A1, f p (m, x − p

√
ξ), dimK L(�m) = p < ∞.

Proof 1. Statements 1 follows at once from Theorem 2.3.(5,6).

2. Statement 2 is obvious.

3. Notice that (x − p
√

ξ))p = x p − ξ ∈ m.

By Theorem 2.1.(4) and the choice of the ideal m, we have that

�/�m =
p−1⊕

i=0

K yi ⊗ K [x]/(x p − ξ) =
p−1⊕

i=0

K yi ⊗ K [x]/((x − p
√

ξ)p),

direct sums of tensor products of vector spaces. Hence,

�/�(m, x − p
√

ξ) ≃
p−1⊕

i=0

K yi ⊗ K [x]/(x − p
√

ξ) ≃
p−1⊕

i, j=0

K yi 1̄

is a p-dimensional �-module that is annihilated by the maximal ideal m. By statement 1, it

must be L(�m). Since m /∈ V ( f p), the central element f p acts as a bijection on the module

L(�m). Therefore,

L(�m) = L(�m) f p = � f p /� f p (m, x− p
√

ξ) ≃ A1, f p /A1, f p (m, x− p
√

ξ) =
p−1⊕

i, j=0

K ∂ i 1̂.

⊓⊔
The action of the elements x and y on the K-basis {y1̄ | i = 0, . . . , p − 1} of the �( f )-

module L(�m) of Theorem 2.4.(3) is given below:

x · 1̄ = ξ
1
p 1̄,

x · yi 1̄ = ξ
1
p yi 1̄+

i−1∑

j=0

(
i

j

)
ξi j y j 1̄ where ξi j =(−1)i− jφi j (ξ

1
p ), φi j =δi− j−1( f )∈ K [x],

y · yi 1̄ = yi+11̄ where 0 ≤ i ≤ p − 2,

y · y p−11̄ = ρ1̄ where y p − ρ ∈ m for a unique element ρ ∈ K .

The Krull and global dimensions of the algebra �( f ).

Theorem 2.5 Let K be a field of characteristic p > 0, � = K [x][y; δ := f d
dx

] where

f ∈ K [x]\K . Then:

1. The Krull dimension of � is K.dim (�) = 2.

2. The global dimension of � is gldim(�) = 2.

Proof Let � = �( f ).

1. By Theorem 2.1.(4), the algebra � is a finitely generated Z(�)-module. Therefore, the

Krull dimension of the algebra � is equal to the Krull dimension of the polynomial algebra

Z(�) in two variables (Theorem 2.1.(3)), and statement 1 follows.

2. By [12, Theorem 7.5.3.(i)], gldim(�) ≤ gldim(K [X ]) + 1 = 1 + 1 = 2.

Let f = p
n1

1 · · · p
ns
s be a unique (up to permutation) product of irreducible polynomials

of K [x]. By Eq. 9, gldim(�/�pi ) = gldim(Fi [Y ]) = 1 < ∞. Now, by [12, Theorem

7.3.5.(i)],

gldim(�) ≥ gldim(�/�pi ) + 1
(9)= gldim(Fi [Y ]) + 1 = 1 + 1 = 2.
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Therefore, gldim(�) = 2. ⊓⊔

3 Isomorphism Problems and Groups of Automorphisms for Ore

Extensions K[x][y; f d
dx

]

In this section, a proof Theorem 1.3 is given. It can be deduced from Theorem 1.1 but we

give a different proof.

Let K (x) be the field of rational functions in the variable x. Then the Ore extension

B1 := K (x)[∂; d
dx

] is the localization B1 = S−1 A1 of the Weyl algebra A1 at the Ore

set S = K [x]\{0} of A1. The multiplicative set S is an Ore set of the algebra � such that

B1 = S−1�, by Eq. 6.

Notice that

S(K ) ⋊ G f (K ) = {σλ,μ,p | λ ∈ K ×, μ ∈ K , p ∈ K [x]} (10)

where

σλ,μ,p(x) = λx + μ and σλ,μ,p(y) = λd−1 y + p

since σλ,μ,p = sλ−d+1 pσλ,μ where d = deg( f ).

Proof of Theorem 1.3 Let σ be an automorphism of the K -algebra � = �( f ). It can be

uniquely extended to a K -automorphism, say σ , of the algebra K ⊗K �. Let λ1, . . . , λt be

the roots of the polynomial f in K . By Theorem 2.3.(7), the automorphism σ permutes the

set

Specc(K ⊗K �, ht = 1) = {(x − λ1), . . . , (x − λt )}
of height 1 completely prime ideals of the algebra K ⊗K � that are generated by regular

normal elements x − λ1, . . . , x − λt of the domain K ⊗K � and the set K
×

is the group of

units of the algebra K ⊗K �. So, we must have that

σ(x) = λx + μ

for some elements λ ∈ K
×

and μ ∈ K . Since K [x] = � ∩ K [x], we must have that

σ(x) ∈ σ(�) ∩ σ(K [x]) = � ∩ K [x] = K [x],

and so λ ∈ K × and μ ∈ K . So, the automorphism σ respects the polynomial algebra K [x].
In particular, it respects the Ore set S = K [x]\{0} of the algebra �. The automorphism σ can

be uniquely extended to an automorphism of the algebra B1 = S−1�. Then σ(∂) = λ−1∂+q

for some element q ∈ K (x). In particular,

σ(y) = σ( f ∂) = σ( f )(λ−1∂ + q) = λ−1 σ( f )

f
y + p where p := σ( f )q ∈ K [x]

and σ( f ) = γ f for some element γ ∈ K ×. Clearly, γ = λd where d = deg( f ) is the degree

of the polynomial f (since σ(x) = λx + μ). So,

σ(x) = λx + μ and σ(y) = λd−1 y + p,

i.e. σ ∈ S(K ) ⋊ G f (K ), as required. ⊓⊔.

By Theorem 1.3,

G f (K ) = S(K ) ⋊ G f (K ) = {σλ,μ,p | λ ∈ K ×, μ ∈ K , p ∈ K [x]} (11)
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where the multiplication and the inversion in the group G f (K ) are given by the rule (where

d = deg( f )):

σλ1,μ1,p1σλ2,μ2,p2 = σ
λ1λ2,λ2μ1+μ2,λd−1

2 p1+p2
,

σ−1
λ,μ,p = σλ−1,−λ−1μ,−λ−d+1 p.

The algebra B1 and its automorphism group The element f is a regular normal element

of � (i.e. � f = f �) since

f y = y f − f ′ f = (y − f ′) f where f ′ = d f

dx
.

It determines the K -automorphism ω f of the algebra �:

f u = ω f (u) f , u ∈ �,

ω f : x �→ x, y �→ y − f ′.

We denote by � f and A1, f the localizations of the algebras � and A1 at the powers of

the element f, i.e.

� f = S−1
f � and A1, f = S−1

f A1 where S f = { f i }i≥0.

By Eq. 6,

� ⊂ A1 ⊂ � f = A1, f = K [x, f −1][∂; d

dx
] ⊂ B1. (12)

Recall that AutK (K [x]) = {σλ,μ | λ ∈ K ×, μ ∈ K }, σλ,μ(x) = λx + μ and

AutK (K (x)) = {σM | M ∈ PGL2(K )} ≃ PGL2(K ), σM → M where σM (x) = ax + b

cx + d
,

M =
(

a b

c d

)
∈ PGL2(K ) := GL2(K )/K ×E and E =

(
1 0

0 1

)
.

The maps

AutK (K [x]) → AutK (A1), σλ,μ �→ σλ,μ : x �→ λx + μ, ∂ �→ λ−1∂,

AutK (K (x)) → AutK (B1), σM �→ σM : x �→ ax + b

cx + d
, ∂ �→ 1

σM (x)′
∂,

are group monomorphisms where g′ = dg
dx

for g ∈ K (x). We identify these groups with their

images, i.e.

AutK (K [x]) ⊆ AutK (A1) and AutK (K (x)) ⊆ AutK (B1).

Notice that σM (y) = σM ( f ∂) = σM ( f )
f σM (x)′ f ∂ = σM ( f )

f σM (x)′ y. The automorphism group

AutK (B1) acts in the obvious way on the algebra B1. Let

S1 := StAutK (B1)(x) := {σ ∈ AutK (B1) | σ(x) = x},

the stabilizer of the element x ∈ B1 in AutK (B1). Clearly,

S1 = {sq : | q ∈ K (x)} ≃ (K (x),+), sq �→ q

where sq(x) = x and sq(∂) = ∂ + q .

Lemma 3.1 1. AutK (B1) = S1 ⋊ AutK (K (x)) = {σM,q := sqσM | M ∈ PGL2(K ), q ∈
K (x)}.
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2. AutK (B1, K [x]) := {σ ∈ AutK (B1) | σ(K [x]) = K [x]} = S1 ⋊ AutK (K [x]) =
{σl,μ,q | λ ∈ K ×, μ ∈ K , q ∈ K (x)} where σl,μ,q(x) = λx + μ and σλ,μ,q(∂) =
λ−1∂ + q.

Proof 1. Since S1 := StAutK (B1)(x), we must have S1 ∩ AutK (B1) = {e} and σS1σ
−1 ⊆ S1

for all automorphisms σ ∈ AutK (B1). Hence, AutK (B1) ⊇ S1 ⋊ AutK (K (x)).

To prove that the reverse inclusion holds we have to show that every element σ ∈
AutK (K (x)) belongs to the group S1⋊AutK (K (x)). The group of units K (x)× := K (x)\{0}
of the algebra B1 is a σ -invariant set, i.e. σ(K (x)×) = K (x)×. Hence so is the field K (x).

Let τ be the restriction of the automorphism σ to the field K (x). Then σ1 := τ−1σ ∈ S1,

and so σ = τσ1 ∈ S1 ⋊ AutK (K (x)), as required.

2. Statement 2 follows from statement 1. ⊓⊔

Below is a different proof of Theorem 1.1 is given.

Proof of Theorem 1.1 Let σ : �( f ) → �(g) be an isomorphism of the K-algebras. It can be

uniquely extended to a K -isomorphism σ : K ⊗K �( f ) → K ⊗K �(g). Let λ1, . . . , λs

(resp., λ′
1, . . . , λ

′
t ) be the roots of the polynomial f (resp., g) in K . By Theorem 2.3.(7), the

automorphism σ maps bijectively the set {(x − λ1), . . . , (x − λs)} of height 1 completely

prime ideals of the algebra K ⊗K �( f ) to the set {(x − λ′
1), . . . , (x − λ′

t )} of height 1

completely prime ideals of the algebra K ⊗K �(g). Therefore, s = t . Since the elements

x − λ′
1, . . . , x − λ′

t are regular normal elements of the domain K ⊗K �(g) and the set K
×

is the group of units of the algebra �(g), we must have that

σ(x) = λx + μ

for some elements λ ∈ K
×

and μ ∈ K . Since K [x] = �(g) ∩ K [x], we must have that

σ(x) ∈ σ(�( f )) ∩ σ(K [x]) = �(g) ∩ K [x] = K [x], and so λ ∈ K × and μ ∈ K . So,

the isomorphism σ respects the polynomial algebra K [x] of the algebras �( f ) and �(g).

In particular, it respects the Ore sets S = K [x]\{0} of the algebras �( f ) and �(g), i.e.

σ(S) = S. The isomorphism σ can be uniquely extended to an isomorphism

σ : B1 = S−1�( f ) → B1 = S−1�(g).

Then σ(∂) = λ−1∂ + q for some element q ∈ K [x]. In particular,

σ(y) = σ( f ∂) = σ( f )(λ−1∂ + q) = λ−1 σ( f )

g
y + p where p := σ( f )q ∈ K [x]

and σ( f ) = γ g for some element 0 �= γ ∈ K [x]. Applying the same argument for the

isomorphism σ−1 : �(g) → �( f ), we have that σ−1(g) = γ1 f for some element 0 �= γ1 ∈
K [x]. Therefore,

f = σ−1σ( f ) = σ−1(γ g) = σ−1(γ )γ1 f ,

and so γ, γ1 ∈ K ×, and γ1 = γ −1. Clearly, γ = λd where d = deg( f ) is the degree of the

polynomial f (since σ(x) = λx + μ), and the theorem follows. Furthermore,

σ(x) = λx + μ and σ(y) = λd−1 y + p.

⊓⊔
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4 The EigengroupGf of a Polynomial f

For each non-scalar monic polynomial f (x), Proposition 4.10, Theorem 4.24, 4.27, 4.30 and

4.32 are explicit descriptions of the eigengroup G f (K ) in the case when the field K is alge-

braically closed. The case of an arbitrary field is obtained from these results, Theorem 4.33.

The aim of this section is to prove these results.

The eigengroup GU (K )

Definition 4.1 [5] Given a group, a G-module V over a field K and a non-empty subset U

of V. The eigengroup of the set U in G, denoted by GU (K ), is the set of all elements of the

group G such that the elements of the set U are eigenvectors of them with eigenvalues in the

field K. Clearly, the eigengroup is a subgroup of G.

Clearly,

GU =
⋂

u∈U

Gu

where Gu := G{u} = {g ∈ G | gu = λ(g)u for some λ(g) ∈ K }. If K is a subfield of a field

K ′ then GU (K ) ⊆ GU (K ′) where U is a subset of the G-module K ′ ⊗K V over the field

K ′.
Finite subgroups of AutK (K [x]) Let K be a field of prime characteristic p > 0, Fp =

Z/Zp is the field that contains p elements, for each n ≥ 1, Fpn is the finite field that contains

pn elements, Fp =
⋃

n≥1 Fpn is the algebraic closure of the field Fp . Clearly, Fp ⊆ K and

group of roots of 1 in the field K is F
×
p := Fp\{0}. The group AutK (K [x]) = {σλ,μ | λ ∈

K ×, μ ∈ K } where σλ,μ(x) = λx + μ and

AutK (K [x]) ≃ Sh(K ) ⋊ T ≃ K ⋊ K ×

where Sh(K ) := {σ1,μ | μ ∈ K } ≃ (K ,+), σ1,μ �→ μ and T := {σλ, 0} | λ ∈ K ×} ≃ K ×,

σλ,0 �→ λ is the the algebraic 1-dimensional torus.

The set U = U(K ) = K ∩ F
×
p is the group of roots of 1 of the field K. The map

U → T, λ �→ σλ,0 is a group monomorphism and we identify the group U with its image,

i.e. U = {σλ,0 | λ ∈ U}. Let or(g) be the order of an element g of a group G.

Lemma 4.2 The group Sh(K ) ⋊ U(K ) = {σu,μ | u ∈ U(K ), μ ∈ K } is the set of all finite

order automorphisms of the group AutK (K [x]). The order of the element σu,μ = σu,0σ1,μ is

or(σλ,μ) =

⎧
⎪⎨
⎪⎩

or(λ) if λ �= 1,

p if λ = 1, μ �= 0,

1 if λ = 1, μ = 0.

Proof For all λ ∈ K ×\{1} and μ ∈ K , σ i
1,μ = σ1,iμ and σ i

λ,μ = σ
λi , 1−λi

1−λ
μ

, and statement 1

follows. ⊓⊔

By Lemma 4.2,

1 → Sh(K ) → Sh(K ) ⋊ U(K )
ϕ→ U(K ) → 1, where ϕ(σλ,μ) = λ, (13)

is a short exact sequence of group homomorphisms.

Lemma 4.3 If an element λ ∈ U(K ) is a primitive n’th root of unity then Fp(λ) = Fpm where

m = min{k ≥ 1 | n|(pk − 1)} = the degree of the minimal polynomial of λ over the field Fp .
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Proof The element λ is algebraic over the field Fp . Let ϕ be its minimal polynomial over Fp .

Then the field Fp(λ) ≃ Fp[x]/(ϕ) is a finite field, and so Fp(λ) = Fpm for some m ≥ 1.

Now,

deg(ϕ) = [Fp(λ) : Fp] = [Fpm : Fp] = m.

Notice that the order of the group 〈λ〉, which is n (since λ is a primitive n’th root of unity)

divides the order of the group F×
pm , which is pm −1. Clearly, m ≥ m′ := min{k, | n|(pk −1)}.

We claim that m = m′. Suppose that m > m′, wee seek a contradiction. Then λpm′
= λ, and

so λ ∈ F
pm′ , hence Fpm = Fp(λ) ⊆ F

pm′ . Therefore, m|m′, a contradiction. ⊓⊔

The next theorem is a classification of all the finite subgroups of the automorphism group

AutK (K [x]).

Theorem 4.4 Let G be a finite subgroup of AutK (K [x]). Then:

1. G = G̃ ⋊ G where G̃ = G ∩ Sh(K ) = {σ1,μ | μ ∈ V }, V ⊆ K is a finite dimensional

Fp(λn)-subspace of K and G = 〈σλn ,(1−λn)ν〉 is a cyclic group of order n where λn is a

primitive n’th root of 1 and ν ∈ K .

In particular, the order of the group G is npl where l = dimFp
(V ) such that m|l where

Fp(λn) = Fpm for some m ≥ 1 (Lemma 4.3).

2. Conversely, given a finite dimensional Fp(λn)-subspace V of K, an automorphism

σλn ,(1−λn)ν where λn ∈ K is a primitive n’th root of unity and ν ∈ K . Let G̃ :=
{σ1,μ | μ ∈ V } and G := 〈σλn ,(1−λn)ν〉. Then:

(a) The semidirect product G̃ ⋊G is a finite subgroup of AutK (K [x]) of order npl where

l = dimFp
(V ) such that m|l.

(b) The element ν ∈ K is unique up to adding an arbitrary element of V , i.e.

G̃ ⋊ 〈σλn ,(1−λn)ν〉 ≃ G̃ ⋊ 〈σλn ,(1−λn)ν′〉 iff ν′ − ν ∈ V .

Furthermore, G = {σ i
λn ,(1−λn)ν

σ1,v | 0 ≤ i ≤ n − 1, v ∈ V } and

σ i
λn ,(1−λn)νσ1,v = σλi

n ,(1−λi
n)νσ1,v : x �→ λi

n x + (1 − λi
n)ν + v.

Proof Let G be a finite subgroup of AutK (K [x]). Then, by (13), the group ϕ(G) is a finite

subgroup of U(K ) of order n, hence ϕ(G) = 〈λn〉 where λn is a primitive n’th root of 1.

Fix an element, say σλn ,(1−λn)ν ∈ G where ν ∈ K , such that ϕ(σλn ,(1−λn)ν) = λn . Then

G = 〈σλn ,(1−λn)ν〉 is a cyclic group of order n = |G| since σ i
λn ,(1−λn)ν

= σλi
n ,(1−λi

n)ν for all

i ≥ 1. Therefore,

G = G̃ ⋊ G where G̃ := G ∩ Sh(K ) = {σ1,μ | μ ∈ V },

V ⊆ K is a finite dimensional Fp-subspace of K since σ i
1,μ = σ1,iμ for all i ≥ 0.

Furthermore, λn V ⊆ V , i.e. the Fp-vector space V is a Fp(λ)-module since

σ−1
λn ,(1−λn)ν

σ1,μσλn ,(1−λn)ν = σ1,λμ.

Clearly, |G| = |G̃||G| = pln and m|l since V is a Fpm -module and dimFpm (V ) = l
m

.

The converse, is obvious.

Clearly, G̃ ⋊ 〈σλn ,(1−λn)ν〉 ≃ G̃ ⋊ 〈σλn ,(1−λn)ν′〉 iff there is natural number i such that

1 ≤ i ≤ n − 1 and a vector v ∈ V such that

σλn ,(1−λn)ν′ = σ i
λn ,(1−λn)νσ1,v = σλi

n ,(1−λi
n)(ν+(1−λi

n)−1v)

iff i = 1 and ν′ = ν + (1 − λi
n)−1v ∈ V iff ν′ − ν ∈ V since (1 − λi

n)−1V = V . ⊓⊔
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The automorphism group AutK (K [x]) acts on the set Max(K [x]) of maximal ideals of

K [x] in the obvious way. If K = K then Max(K [x]) = {(x − γ ) | γ ∈ K } and the action

takes the form: For all σ ∈ AutK (K [x]) and γ ∈ K ,

σ((x − γ )) = (x − σ−1(γ )) where σ−1(γ ) := σ−1(x)|x=γ . (14)

Let us identify the set Max(K [x]) with K via (x − γ ) �→ γ . Then the action of the group

AutK (K [x]) on Max(K [x]) = K is given below:

AutK (K [x]) × K → K , (σ, γ ) �→ σ ∗ γ := σ−1(γ ) = σ−1(x)|x=γ . (15)

If σ = σλ,μ then σ−1
λ,μ = σλ−1,−λ−1μ and σλ,μ ∗ γ = σ−1

λ,μ(γ ) = σλ−1,−λ−1μ(γ ) =
λ−1γ − λ−1μ.

Every automorphism σλ,μ ∈ AutK (K [x]) with λ �= 1 can be uniquely written in the form

σλ,(1−λ)ν where ν = (1 − λ)−1μ. Notice that

σλ,(1−λ)ν ∗ (ν) = ν.

Furthermore, the set {ν} is the only 1-element orbit in K of the cyclic group 〈σλ,(1−λ)ν〉
generated by the automorphism σλ,(1−λ)ν . The number of elements in any other orbit is equal

to the order of the group 〈σλ,(1−λ)ν〉 which is the order of the element λ in the group (K ×, ·).
Suppose that K = K . Let f ∈ K [x] be a non-scalar monic polynomial that has at least two

distinct roots in K = K . Recall that R( f ) is the set of all roots of the polynomial f counted

with multiplicity and Rd( f ) be the set of all distinct roots of f (i.e. each root has multiplicity

1). Example. For f = (x − 1)2(x − 2)3, R( f ) = {1, 1, 2, 2, 2} and R( f ) = {1, 2}.
The group G f permutes the roots in R( f ) and Rd( f ) via the action Eq. 14. Let us

stress that the action of G f on R( f ) respects the multiplicity. If the group G f is finite then

G f = G̃ f ⋊ G f and G̃ f = ShV is a normal subgroup of G f . For a set R = R( f ), Rd( f )

and a group G = G f , G̃ f , G f , we denote by R/G the set of G-orbits in R.

Invariants and eigenalgebras of finite subgroups of AutK (K [x]) Notice that

x p − x =
∏

i∈Fp

(x − i). (16)

For each element μ ∈ K ×, let

fμ(x) :=
p−1∏

i=0

σ i
1,μ(x) =

p−1∏

i=0

(x − iμ) =
∏

i∈Fp

(x − iμ) = x p − μp−1x . (17)

The equality above follows at once from (16): fμ(x) =
∏p−1

i=0 (x − iμ) = μp
∏p−1

i=0 (μ−1

x − i) = μp((μ−1x)p − μ−1x) = x p − μp−1x . For all α, β ∈ Fp:

fμ(αx + βx ′) = α fμ(x) + β fμ(x ′)

since γ p = γ for all γ ∈ Fp . In particular, the map K → K , λ �→ f (λ) is a Fp-linear map.

Hence for all elements λ ∈ K ,

x p − μp−1x − (λp − μp−1λ) = fμ(x) − fμ(λ) = fμ(x − λ)

=
p−1∏

i=0

(x − λ − iμ) =
∏

i∈Fp

(x − λ − iμ). (18)
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Given a K-algebra A, and a subgroup G of the automorphism group AutK (A). A group

homomorphism χ : G → K × is called a character of the group G in K ×. Let Ĝ(K ) be the

(multiplicative) group of characters of the group G in K × . The multiplication in the group

Ĝ(K ) is given by the rule: For all χ,ψ ∈ Ĝ(K ), (χψ)(g) = χ(g)ψ(g) for all elements

g ∈ G.

Definition 4.5 The direct sum of G-eigenspaces,

E(A) = E(A, G) :=
⊕

χ∈Ĝ(K )

Aχ , where Aχ := {a ∈ A | g(a) = χ(g)a for all g ∈ G},

is called the G-eigenalgebra of A. The direct sum is a Ĝ(K )-graded algebra since Aχ Aψ ⊆
Aχψ for all χ,ψ ∈ Ĝ(K ).

If e is the identity element of the character group Ĝ(K ) then Ae = AG is the algebra of

G-invariants. In particular AG ⊆ E(A, G).

The set Supp(A, G) := {χ ∈ Ĝ(K ) | Aχ �= 0} is called the support of G in A. For each

character χ ∈ Supp(A, G), the vector space Aχ is called the χ-weight/eigenvalue subspace

of the algebra A. If the algebra E(A, G) is a domain (eg, the algebra A is a domain) then

the support Supp(A, G) is a submonoid of Ĝ(K ) and the algebra E(A, G) is a Supp(A, G)-

graded algebra. If the algebra A is a commutative algebra then the Frobenius endomorphism

Fr : A → A, a �→ a p is a Fp-algebra endomorphism of A. It is a monomorphism if the

algebra A is a domain. By the very definition, the Frobenius endomorphism commute with

all endomorphisms of the ring A.

Lemma 4.6 Let A be a commutative K-algebra and G be a subgroup of the automorphism

group AutK (A).

1. The algebras E(A, G) and AG are Fr-stable (that is Fr(E(A, G)) ⊆ E(A, G) and

Fr(AG) ⊆ AG ).

2. Suppose that the algebra A is reduced and Fr(K ) = K . If g(Fr(a)) = χ(g)Fr(a)

for all g ∈ G then g(a) = (χ(g))
1
p a. In particular, Fr ∈ AutFp

(E(A, G)) and Fr ∈
AutFp

(AG).

Proof 1. The Frobenius endomorphism commutes with all endomorphisms of the ring A, and

statement 1 follows.

2. The equality Fr(K ) = K implies that Fr ∈ AutFp
(K ). Since the algebra A is reduced

the Frobenius endomorphism A is a monomorphism. If g(Fr(a)) = χ(g)Fr(a) for all g ∈ G

then (g(a) − (χ(g))
1
p a)p = 0, and so g(a) = (χ(g))

1
p a for all g ∈ G, and statement 2

follows. ⊓⊔

Let V ⊆ K be a Fpm -subspace of K. The subgroup ShV := {σ1,v | v ∈ V } of AutK (K [x])
is called the shift group that is determined by the Fpm -subspace V . Proposition 4.7 describes

the algebra of invariants and the eigenalgebra of the shift group ShV .

Proposition 4.7 Let V ⊆ K be a nonzero Fpm -subspace of K. Then E(K [x], ShV ) =
K [x]ShV .

1. If dimFpm (V ) = ∞ then K [x]ShV = K .

2. If l = dimFpm (V ) < ∞ and {μ1, . . . , μl} is a basis of the vector space V over Fpm then

(a) the fixed algebra K [x]ShV = K [ fV ] is a polynomial algebra in fV :=
∏

v∈V (x −v),

the polynomial fV is divisible by the polynomial
∏l

i=1 fμi
,
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(b) for all elements α, β ∈ Fpm and λ ∈ K , fV (αx + βλ) = α fV (x) + β fV (λ). In

particular, the map K → K , λ �→ fV (λ) is a Fpm -linear map,

(c) If V ⊂ V ′ are distinct Fpm -subspaces of K then fV | fV ′ and fV �= fV ′ ,

(d)
d fV

dx
�= 0.

3. In particular, for all elements μ ∈ K ×, K [x]σ1,μ = K [ fμ].

Proof For all elements μ ∈ K , the map

σ1,μ − 1 : K [x] → K [x], ψ(x) �→ ψ(x + μ) − ψ(x)

is locally nilpotent map. Therefore, the element 1 is the only eigenvalue for the map σ1,μ,

and so E(K [x], ShV ) = K [x]ShV .

1. Statement 1 follows from statement 2. Let {μi }i∈N be a family of Fpm -linearly inde-

pendent elements of the vector space V and Vi =
⊕i

j=1 Fpm μi . Then V1 ⊂ V2 ⊂ · · · ⊂
V∞ :=

⊕
i≥1 Fpm μi ⊆ V . Hence,

K [x]ShV1 ⊇ K [x]ShV2 ⊇ · · · ⊇ K [x]ShV∞ =
⋂

i≥1

K [x]ShVi =
⋂

i≥1

K [ fVi
] = K ⊇ K [x]ShV ⊇ K ,

and so K [x]ShV = K .

2. (a,b). For all elements v′ ∈ V ,

σ1,v′( fV ) =
∏

v∈V

(x − v′ − v) = fV .

Therefore, K [x]ShV ⊇ K [ fV ]. By Eq. 17, the polynomial
∏l

i=1

∏
u∈Fp

(x − uμi ) =
∏l

i=1 fμi
is a divisor of the polynomial fV . In particular, fV (0) = 0.

First, we prove that the statements (a) and (b) hold in the case when K = K and then we

deduce that the statements (a) and (b) hold for an arbitrary field K.

So, suppose that K = K . Let g(x) ∈ K [x]ShV be a non-scalar monic polynomial. Let

γ be a root of g(x). Then for all elements v ∈ V , the element γ + v is also a root of the

polynomial g(x). So, the set of all roots of the polynomial g(x) is a disjoint union of the sets∐s
i=1{γi + V } for some roots γi of g(x).

Therefore, the polynomial

g(x) =
s∏

i=1

∏

v∈V

(x − γi − v) =
s∏

i=1

fV (x − γi )

is a product of ShV -invariant polynomials fV (x − γi ) of the same degree plm . In particular,

every non-scalar ShV -invariant polynomial has degree at least plm . Therefore, for all elements

λ,μ ∈ K , the difference

cλ,μ := fV (x + λ) − fV (x + μ)

of two monic ShV -invariant polynomials of degree plm must be a constant which is equal to

fV (λ) − fV (μ). Therefore,

fV (x + λ) − fV (λ) = fV (x + μ) − fV (μ).

When μ = 0, we have that

fV (x + λ) = fV (x) + fV (λ) − fV (0) = fV (x) + fV (λ)
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since fV (0) = 0. Since for all elements u ∈ F×
pm ,

fV (ux) = u plm ∏

v∈V

(x − u−1v) = u
∏

v∈V

(x − v) = u fV (x),

and fV (0x) = 0 = 0 fV (x), we see that for all elements ξ ∈ Fpm , fV (ξ x) = ξ fV (x). Now,

the statement (b) follows.

Now, the polynomial

g(x) =
s∏

i=1

fV (x − γi ) =
s∏

i=1

( fV (x) − fV (γi )) ∈ K [ fV (x)]

and the statement (a) follows.

Suppose that K is not necessarily algebraically closed field and g(x) ∈ K [x]ShV be a

non-scalar monic polynomial. Then g(x) ∈ K [ fV (x)]. Since the K = K ⊕ W for some

K-subspace W of K and fV (x) ∈ K [x], we must have that g(x) ∈ K [ fV (x)] since

K [ fV (x)] = K [ fV (x)] ⊕
⊕

i≥0

W fV (x)i ⊆ K [x] ⊕
⊕

i≥0

W fV (x)i .

Now, the statements (a) and (b) hold for the field K.

(c) The statement (c) follows from the statement (a).

(d) WLOG we may assume that K = K . Suppose that
d fV

dx
= 0. Then fV = g p for some

polynomial g. This is not possible as every root of f has multiplicity 1.

3. Statement 3 is a particular case of statement 2. ⊓⊔

Notice that for all natural numbers m ≥ 1,

x pm − x =
∏

i∈Fpm

(x − i). (19)

By Eq. 19, for each element μ ∈ K ×, let

f pm ,μ(x) := fFpm μ(x) =
∏

i∈Fpm

(x − iμ) = x pm − μpm−1x . (20)

For all α, β ∈ Fpm :

f pm ,μ(αx + βx ′) = α f pm ,μ(x) + β f pm ,μ(x ′) (21)

since γ pm = γ for all γ ∈ Fpm . In particular, the map K → K , λ �→ f pm ,μ(λ) is a

Fpm -linear map. Hence, for all elements λ ∈ K ,

x pm−μpm−1x−(λpm −μpm−1λ) = f pm ,μ(x)− f pm ,μ(λ) = f pm ,μ(x−λ) =
∏

i∈Fpm

(x−λ−iμ).

(22)

Theorem 4.8 describes the algebra of invariants and the eigenalgebra of a ‘generic’ finite

subgroup of AutK (K [x]).

Theorem 4.8 Let G = G̃ ⋊ G be a finite subgroup of AutK (K [x]) (Theorem 4.4) where

G := 〈σλn ,(1−λn)ν〉 and G̃ := {σ1,μ | μ ∈ V }, λn ∈ K is a primitive n’th root of unity, n ≥ 2

and ν ∈ K , V is a nonzero finite dimensional Fp(λn)-subspace of K, and Fp(λn) = Fpm for

some m ≥ 1 (Lemma 4.3). Then:

1. σλn ,(1−λn)ν( fV (x − ν)) = λn fV (x − ν).
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2. K [x]G = K [ f n
V (x − ν)] is a polynomial algebra in f n

V (x − ν) :=
(

fV (x − ν)
)n

.

3. The G-eigenvalue subalgebra of K [x] is E(K [x], G) =
⊕n−1

i=0 f i
V (x −ν)K [x]G , a direct

sum of distinct G-eigenspaces.

Proof 1. Let σ = σλn ,(1−λn)ν . Suppose that l = dimFpm (V ). Then deg( fV (x)) = plm . Now,

by Proposition 4.7.(2b),

σ( fV (x − ν)) = fV (σ (x − ν)) = fV (λn(x − ν)) = λn fV (x − ν)

since λn ∈ K (λn) = Fpm .

2 and 3. By Proposition 4.7.(2b), the G̃-eigenvalue subalgebra of K [x] is the fixed algebra

K [x]G̃ = K [ fV (x)] = K [ fV (x − ν)] since

fV (x) = fV (x − ν + ν) = fV (x − ν) + fV (ν).

By statement 1, σ( fV (x − ν)) = λn fV (x − ν), hence the G̃-eigenvalue subalgebra of

K [x], K [ fV (x − ν)], is σ -invariant, and statements 2 and 3 follow. ⊓⊔

Proposition 4.9 describes the algebra of invariants and the eigenalgebra of the subgroup

G = 〈σλn ,(1−λn)ν〉 of AutK (K [x]) where λn ∈ K is a primitive n’th root of unity, n ≥ 2 and

ν ∈ K .

Proposition 4.9 Let G = 〈σλn ,(1−λn)ν〉 be a finite subgroup of AutK (K [x]) where λn ∈ K is

a primitive n’th root of unity, n ≥ 2 and ν ∈ K . Then:

1. σλn ,(1−λn)ν(x − ν) = λn(x − ν).

2. K [x]G = K [(x − ν)n] is a polynomial algebra in (x − ν)n .

3. E(K [x], G) = K [x] =
⊕n−1

i=0 (x − ν)i K [x]G is a direct sum of distinct G-eigenspaces.

Proof 1. Statement 1 is obvious.

2. Statement 2 follows from statement 1 and the fact that λn is a primitive n’th root of

unity.

3. Statement 3 follows from statement 2. ⊓⊔

The eigengroup G f (K ) of a polynomial f ∈ K [x] that has single root in K For an

element ν ∈ K , the subset

Tν(K ) := {σλ,(1−λ)ν | λ ∈ K ×} (23)

of AutK (K [x]) is a subgroup which is isomorphic to the algebraic torus T = (K ×, ·) via

Tν(K ) → T, σλ,(1−λ)ν �→ λ

since σλ,(1−λ)νσλ′,(1−λ′)ν = σλλ′,(1−λλ′)ν for all λ, λ′ ∈ K ×.

Suppose that a monic non-scalar polynomial f ∈ K [x] of degree d has single root, say

ν ∈ K . Then d = pr d1 where for unique natural numbers r and d1 such that p ∤ d1. Then

f = (x − ν)d = (x − ν)pr d1 = (x pr − ν pr

)d1 = x pr d1 − d1ν
pr

x pr (d1−1) + · · · . (24)

Therefore, f = (x − ν)d ∈ K [x] iff ν pr ∈ K (since p ∤ d1).

The next proposition describes all the monic polynomial f ∈ K [x] such that G f (K ) =
Tν(K ) for some ν ∈ K . Furthermore, it describes the group G f for all polynomial f ∈ K [x]
that has a single root in K .
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Proposition 4.10 1. Let f (x) ∈ K [x] be a monic non-scalar polynomial of degree d. Then

f (x) = (x − ν)d for some ν ∈ K iff G f (K ) = Tν(K ).

2. Let f (x) ∈ K [x] be a monic non-scalar polynomial of degree d that has a single root

ν ∈ K . Then G f (K ) =
{

Tν(K ) if ν ∈ K ,

{e} if ν /∈ K .

3. Let f (x) ∈ K [x] be a monic non-scalar polynomial of degree d that has a single root

ν ∈ K . Then f (x) = (x − ν)d for some ν ∈ K iff G f (K ) = Tν(K ).

Proof 1. (⇒) Suppose that f = (x − ν)d . An automorphism σ ∈ AutK (K [x]) belongs to

the group G f (K ) iff σ(x − ν) = λ(x − ν) for some element λ ∈ K
×

. The last equality is

equivalent to the equality σ = σλ,(1−λ)ν , or equivalently, G f = Tν(K ).

(⇐) Suppose that G f = Tν(K ). Then K [x] =
⊕

i≥0 K (x − ν)i is a direct sum of the

eigenspaces of the group Tν(K ). Therefore, f (x) = (x − ν)d for some d ≥ 1.

2. Clearly, G f (K ) = G f (K ) ∩ AutK (K [x]) = Tν(K ) ∩ AutK (K [x]). By statement

1, G f (K ) �= {e} iff e �= σλ,(1−λ)ν ∈ Tν(K ) ∩ AutK (K [x]) where 1 �= λ ∈ K × and

(necessarily) ν ∈ K × iff G f (K ) = Tν(K ).

3. Statement 3 follows from statement 2. ⊓⊔
The eigengroup G f (K ) of a polynomial f ∈ K [x] that has at least two distinct roots

in K For each non-scalar monic polynomial f (x), Theorems 4.24, 4.27, 4.30 and 4.32 (resp.,

Theorem 4.33) are explicit descriptions of the eigengroup G f (K ) in the case when the field

K is algebraically closed (resp., in general case).

Lemma 4.11 is an explicit description of the roots of the polynomials of the type g( f n
V (x −

ν)).

Lemma 4.11 Suppose that λn ∈ K is a primitive n’th root of unity, n ≥ 2 and ν ∈ K , V

is a nonzero finite dimensional Fp(λn)-subspace of K, and K (λn) = Fpm for some m ≥ 1

(Lemma 4.3). Then:

1. For all elements ρ ∈ K ,

f n
V (x − ν) − f n

V (ρ) =
n−1∏

i=0

∏

v∈V

(x − ν − λi
nρ − v).

2. Let g(x) =
∏k

j=1(x − ξ j ) ∈ K [x] where R(g) = {ξ1, . . . , ξk} is the set of roots of the

polynomial g(x) counted with multiplicity. Then ξ j = f n
V (ρ j ) for some element ρ j ∈ K

and

g( f n
V (x − ν)) =

k∏

j=1

n−1∏

i=0

∏

v∈V

(x − ν − λi
nρ j − v).

Proof 1. By Proposition 4.7.(2b), the map fV is a K (λn)-linear map (since K (λn) = Fpm ),

and the result follows:

f n
V (x − ν) − f n

V (ρ) =
n−1∏

i=0

( fV (x − ν) − λi
n fV (ρ)) =

n−1∏

i=0

fV (x − ν − λi
nρ)

=
n−1∏

i=0

∏

v∈V

(x − ν − λi
nρ − v).

2. Notice that g(x) =
∏k

j=1( f n
V (x − ν) − f n

V (ρ j )), and statement 2 follows from statement

1. ⊓⊔
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Theorem 4.12 Suppose that a monic polynomial f (x) ∈ K [x] has at least two distinct

roots in K . Then the group G f (K ) is a finite group, G f (K ) = G̃ f (K ) ⋊ G f (K ) where

G f (K ) = 〈σλn ,(1−λn)ν〉 and G̃ f (K ) = ShV (K ), λn ∈ K is a primitive n’th root of unity,

ν ∈ K , V is a finite dimensional Fp(λn)-subspace of K, and Fp(λn) = Fpm for some m ≥ 1

(Lemma 4.3).

Proof Since G f (K ) = G f (K ) ∩ AutK (K [x]), it suffices to prove the theorem in the case

when the field K is an algebraically closed field. So, we assume that K = K . Recall that Rd

be the set of distinct roots of the polynomial f . The subgroup G̃ f = G f ∩ Sh(K ) is equal to

a group ShV where V is a finite dimensional vector space over the field Fp since |V | ≤ |Rd |
(as Rd + V ⊆ Rd ).

If G is a finite subgroup of G f that contains the group ShV then G = ShV ⋊ 〈σλn ,(1−λn)ν〉
where λn is a primitive n’th root of unity and ν ∈ K . The cyclic group 〈σλn ,(1−λn)ν〉 of

order n acts on the field K and on the set Rd , see Eq. 14. The point ν is the only fixed

point of the action and the orbit of every element λ �= ν contains precisely n elements. The

polynomial f contains at least two distinct roots. Therefore n ≤ |Rd |. Then, by Eq. 13,

the group ϕ(G f ) is equal to 〈σλn′ ,(1−λn′ )ν′〉 where λn′ is a primitive n′’th root of unity and

ν′ ∈ K . By Theorem 4.4, G f = ShV ⋊ 〈σλn′ ,(1−λn′ )ν′〉 is a finite group. ⊓⊔

Corollary 4.13 is a criterion for the group G f to be an infinite group.

Corollary 4.13 Let f (x) ∈ K [x] be a non-scalar monic polynomial. Then the following

statement are equivalent:

1. The group G f is an infinite group.

2. f (x) = (x − ν)d for some ν ∈ K .

3. G f (K ) = Tν(K ) (see Eq. 23 for the definition of the group Tν(K )).

Proof The corollary follows from Proposition 4.10.(3) and Theorem 4.12. ⊓⊔

Recall that the field K is an algebraically closed field, f (x) ∈ K [x] is a monic polynomial

that has at least two distinct roots, and R( f ) is the set of all roots of f counted with multi-

plicity. Recall that (Theorems 4.12 and 4.4) the group G f = G̃ f ⋊ G f is a finite subgroup

of AutK (K [x]) where G f := 〈σλn ,(1−λn)ν〉 provided G f �= {e} and G̃ f := {σ1,μ | μ ∈ V },
λn ∈ K is a primitive n’th root of unity, ν ∈ K , V is a finite dimensional Fp(λn)-subspace

of K, and Fp(λn) = Fpm for some m ≥ 1 (Lemma 4.3).

There are four distinguish cases:

1. G̃ f �= {e}, G f �= {e},
2. G̃ f �= {e}, G f = {e},
3. G̃ f = {e}, G f �= {e},
4. G̃ f = {e}, G f = {e}.

Below, in the case of K = K , for the polynomial f criteria are given in terms of its roots for

each case to hold.

A description of the group G̃ f (K ) and a criterion for G̃ f (K ) �= {e}.

Definition 4.14 Let f (x) ∈ K [x] be a non-scalar polynomial. Two distinct roots λ, λ′ ∈ K

of the polynomial f (x) are called a K-shift pair of f (x) if

λ − λ′ ∈ K and Fp(λ − λ′) + R( f ) ⊆ R( f ) (25)
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where R( f ) is the set of all roots in K of the polynomial F(x) counted with multiplicity.

The set of all K-shift pairs of the polynomial f (x) is denoted by SP( f , K ). The vector

space over K,

V ( f , K ) =
{∑

{λ,λ′}∈SP( f ,K ) Fp(λ − λ′) if SP( f , K ) �= ∅,

0 if SP( f , K ) = ∅.
(26)

is called the K-shift vector space of the polynomial f (x).

For fields K ⊆ L ⊆ K , we have SP( f , K ) ⊆ SP( f , L) ⊆ SP( f , K ) and V ( f , K ) ⊆
V ( f , L) ⊆ V ( f , K ).

Proposition 4.15 gives an explicit description of the group G̃ f (K ) and a criterion for

G̃ f (K ) �= {e}.

Proposition 4.15 Let f (x) ∈ K [x] be a non-scalar monic polynomial. Then:

1. G̃ f (K ) = ShV where V = V ( f , K ) is the K-shift vector space of f .

2. G̃ f (K ) = {e} iff SP( f , K ) = ∅ iff for all distinct roots λ, λ′ ∈ K of the polynomial f

such that λ − λ′ ∈ K (if they exist), Fp(λ − λ′) + R( f ) � R( f ).

3. G̃ f (K ) = {e} iff SP( f , K ) = ∅ iff for all distinct roots λ, λ′ ∈ K of the polynomial f ,

Fp(λ − λ′) + R( f ) � R( f ).

Proof 1. It follows from the description of the group G̃ f (K ) as a shift group, G̃ f (K ) = ShV ,

that V = V ( f , K ).

2 and 3. Statement 2 follows from statement 1 and statement 3 is a particular case of

statement 2. ⊓⊔

Definition 4.16 Let V be a nonzero finite dimensional Fp-subspace of K. The largest finite

field, denoted Fpe , where e = e(V ) ≥ 1, such that Fpe V ⊆ V is called the multiplier field

of V. The natural number e = e(V ) is called the p-exponent of V.

The multiplier field Fpe is the composite of all finite fields Fpm such that Fpm V ⊆ V . If

dimFp
(V ) = n then pm ≤ |V | = pn , and so m ≤ n.

Let λpe−1 be a primitive pe − 1’st root of unity (a generator of the cyclic group F×
pe ).

Since λpe−1 ∈ Fpe and Fpe V ⊆ V , we have that λpe−1V ⊆ V .

For each finite dimensional Fp-subspace V of the field K, Lemma 4.17 describes all the

roots of unity λn such that λn V ⊆ V .

Lemma 4.17 Let V be a nonzero finite dimensional Fp-subspace of the field K, Fpe be its

multiplier field.

1. Suppose that λn is a primitive n’th root of unity. Then λn V ⊆ V iff n|pe − 1.

2. |F×
pe | = 1 iff (p, e) = (2, 1) iff λn V ⊆ V (where λn is a primitive n’th root of unity)

implies λn = 1.

Proof 1. λn V ⊆ V iff λn ∈ F×
pe iff n||F×

pe | iff n|pe − 1.

2. Statement 2 follows from statement 1. �

Classification of subgroups G of AutK (K [x]) which are maximal satisfying the prop-

erty G ∩ Sh(K ) = ShV .

Corollary 4.18 Let V be a nonzero finite dimensional Fp-subspace of the field K, Fpe be

its multiplier field and λpe−1 be a primitive pe − 1’st root of unity. Then the finite groups

GV ,ν := ShV ⋊ 〈σλpe−1,(1−λpe−1)ν〉, where ν ∈ K/V , are the maximal subgroups G of the

group AutK (K [x]) that satisfy the property that G ∩ Sh(K ) = ShV .
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Proof Recall that for all elements λ ∈ K × and μ, v ∈ K , σλ,μσ1,vσ
−1
λ,μ = σ1,λ−1v . Hence the

groups GV ,ν are well defined and every subgroup H of AutK (K [x]) such that H ∩Sh(K ) =
ShV is a finite group.

Given a finite subgroup G ′ of AutK (K [x]) such that G ′∩Sh(K ) = ShV . By Theorem 4.4,

G ′ = ShV ⋊ 〈σλn ,(1−λn)ν〉 for some ν ∈ K and a primitive n’th root of unity λn such that

n|pe − 1, by Lemma 4.17.(1), and so G ′ ⊆ GV ,ν . Since the groups {GV ,ν}ν∈K are distinct,

the corollary follows (GV ,ν = GV ,ν′ iff σλ,(1−λ)ν′ = σ i
λ,(1−λ)ν

σ1,v for some natural number

i such that 1 ≤ i < p and gcd(i, p) = 1 and an element v ∈ V where λ = λpe−1 iff

ν′ = ν + (1 − λi )−1v since σ i
λ,(1−λ)ν

σ1,v = σλi ,(1−λi )(ν+(1−λi )−1v) iff ν′ ≡ ν mod V since

Fp(λ)V = Fpe V = V ). ⊓⊔

Criterion for G̃ f �= {e} and G f �= {e}.

Lemma 4.19 Suppose that K is an algebraically closed field, f (x) ∈ K [x] is monic non-

scalar polynomial that has at least two distinct roots, G̃ f = ShV �= {e} and G f =
〈σλn ,(1−λn)ν〉 �= {e} where V is a nonzero Fp(λn)-subspace of the field K and λn is primitive

n’th root of unity. Then:

1. λn ∈ Fpe where Fpe is the multiplier field of the Fp-subspace V of K, or, equivalently,

n|pe − 1.

2. The group G f = ShV ⋊ G f is a subgroup of ShV ⋊ 〈σλ,(1−λ)ν〉 where λ is a cyclic

generator of the group F×
pe , i.e. λ = λpe−1 is primitive pe − 1’st root of unity.

Proof 1. Since λn V ⊆ V , λn ∈ Fpe and the lemma follows from Corollary 4.18. ⊓⊔

Definition 4.20 Let f (x) = xd +ad−1xd−1 +· · ·+a1x +a0 ∈ K [x] be a monic polynomial

of degree d ≥ 1 where ai ∈ K are the coefficients of the polynomial f (x). Then the natural

number

gcd( f (x)) := gcd{i ≥ 1 | ai �= 0}

is called the exponent of f (x).

Clearly, the exponent of f (x) is the largest natural number m ≥ 0 such that f (x) = g(xm)

for some polynomial g(x) ∈ K [x].

Definition 4.21 For a non-scalar polynomial f ∈ K [x], we have the unique product

gcd( f ) = ps gcdp( f ) where s ≥ 0, gcdp( f ) ∈ N and p ∤ gcdp( f ). (27)

Proposition 4.22 Suppose that f (x) = f i
V (x − ν) for some nonzero finite dimensional Fp-

subspace V of K, ν ∈ K and a natural number i ≥ 1 (i.e. Rd( f ) = ν + V and each root of

f (x) has multiplicity i). Let Fpe be the multiplier field of V, F×
pe = 〈λn〉 where n = pe − 1.

Then

G f =
{

ShV ⋊ 〈σλn ,(1−λn)ν〉 �= ShV if (p, e) �= (2, 1),

ShV if (p, e) = (2, 1).

Proof Since |Rd( f )| = |ν + V | = |V | ≥ 2, the group G f = G̃ f ⋊ G f is a finite group.

Clearly, ShV ⊆ G̃ f . In fact, ShV = G̃ f since Rd( f ) = ν + V .

Suppose that (p, e) �= (2, 1). Recall that n = pe − 1 > 1 and F×
pe = 〈λn〉, the multiplier

field of V . In particular, λn V ⊆ V . Therefore, G f = 〈σλn ,(1−λn)ν〉, by Lemma 4.17.(1).

The case (p, e) = (2, 1) is obvious, see Lemma 4.17.(2). ⊓⊔
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Lemma 4.23 Suppose that Fr(K ) = K (where Fr(a) = a p , the Frobenius endomorphism).

Then G f pn (K ) = G f (K ) for all polynomials f ∈ K [x] and all natural numbers n ≥ 1.

Proof (i) G f pn (K ) ⊇ G f (K ): If σ ∈ G f (K ) then σ( f ) = λ f for some λ ∈ K , and so

σ( f pn
) = λpn

f pn
. This means that σ ∈ G f pn (K ).

(ii) G f pn (K ) ⊆ G f (K ): If τ ∈ G f pn (K ) then τ( f pn
) = μ f pn

for some μ ∈ K , and so

(τ ( f ) − μ
1

pn f )pn = 0, i.e. τ( f ) = μ
1

pn f . This means that τ ∈ G f (K ). ⊓⊔

Let f (x) =
∑

ai x i ∈ K [x] be a monic non-scalar polynomial and gcd( f ) = ps gcdp( f ).

Suppose that K = K . Then there is a unique monic non-scalar polynomial f1(x) ∈ K [x]
such that

f (x) = f
ps

1 (x). (28)

Clearly, gcd( f1) = gcdp( f ), deg( f ) = ps deg( f1) and f ′
1 �= 0 (the derivative of f1).

Theorem 4.24 is a criterion for the group G f = G̃ f ⋊ G f to have nontrivial subgroups

G̃ f and G f , it also gives an explicit description of the group G f .

Theorem 4.24 Suppose that the field K is an algebraically closed field and f (x) ∈ K [x] is

a monic polynomial that has at least two distinct roots, gcd( f ) = ps gcdp( f ) and f (x) =
f

ps

1 (x) for a unique monic non-scalar polynomial f1(x) ∈ K [x], see Eq. 28. Suppose that

V �= 0 is a finite dimensional Fp-subspace of K and Fpe is the multiplier field of V . Then

the following statements are equivalent:

1. G̃ f = ShV �= {e} and G f = 〈σλn ,(1−λn)ν〉 �= {e}.
2. There is a primitive n’th root of unity λn �= 1 (in particular, n ≥ 2) such that λn V ⊆ V ,

and an element ν ∈ K such that either f (x) = f i
V (x −ν) for some natural number i ≥ 1

and n = pe − 1 (in this case, (p, e) �= (2, 1), G̃ f = ShV and G f = 〈σλpe−1,(1−λpe−1)ν〉
where F×

pe = 〈λpe−1〉) or otherwise f (x) = f i
V (x − ν)g( f n

V (x − ν)) for some natural

number i ≥ 0 and a monic nonn-scalar polynomial g(x) ∈ K [x] such that g(0) �= 0,

and the following two conditions hold:

(a) n ≥ 2 and gcd(
pe−1

n
, gcdp(g)) = 1, and

(b) R( f ) + Fp(λn)(λ − λ′) � R( f ) for all distinct roots λ and λ′ of the polynomial f

such that λ − λ′ /∈ V .

Suppose that statement 1 holds. Then:

• the natural number i and the polynomial g(x) in statement 2 are unique,

• the element ν is unique up to adding an arbitrary element of V (i.e. ν can be replaced

by ν + v for any element v ∈ V ),

• the equality f (x) = f i
V (x −ν)g( f n

V (x −ν)) is unique (since fV (x −ν−v) = fV (x −ν)

for all v ∈ V ). Furthermore, σλn ,(1−λn)ν( f ) = λi
n f , and f ∈ K [x]G f iff n|i .

• In the second case, i.e. f (x) = f i
V (x − ν)g( f n

V (x − ν)),

n = gcd(pe − 1, gcdp(h)

where h(x) ∈ K [x] is a unique polynomial such that f (x) = f i
V (x − ν)h( fV (x − ν))

(i.e. h(x) = g(xn)), and either ν is a root of f (x) (i.e. i ≥ 1) or otherwise (i.e. i = 0) ν

is a root of f ′
1(x) (the derivative of f1(x)).
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Proof (1 ⇒ 2) Suppose that statement 1 holds. By Theorem 4.12, G̃ f = ShV and G f =
〈σλn ,(1−λn)ν〉 for a nonzero Fp-subspace V of K, a primitive n’th root of unity λn �= 1 (in

particular, n ≥ 2) such that λn V ⊆ V and an element ν ∈ K . Then, by Theorem 4.8.(3),

either f (x) = f i
V (x − ν) for some natural number i ≥ 1 or otherwise

f (x) = f i
V (x − ν)g( f n

V (x − ν))

for some natural number i ≥ 0, n ≥ 2, and a monic non-scalar polynomial g(x) ∈ K [x]
such that g(0) �= 0.

In the first case, by Proposition 4.22, G̃ f = ShV �= {e} and G f = 〈σλpe−1,(1−λpe−1)ν〉 �=
{e}.

Now let us consider the second case. By Lemma 4.17, n|pe −1 (since λn ∈ Fpe ). Suppose

that l := gcd(
pe−1

n
, gcdp(g)) > 1. Then σλln ,(1−λln)ν ∈ G f = 〈σλn ,(1−λn)ν〉 where λln is a

primitive ln’th root of unity, a contradiction (since the order of the element σλln ,(1−λln)ν is

ln > n = |G f |). Therefore, the statement (a) holds.

Suppose that the condition (b) does not holds, i.e. there are two distinct roots λ and λ′ of

the polynomial f (x) such that v′ := λ−λ′ /∈ V and R( f )+Fp(λn)(λ−λ′) ⊆ R( f ). Then

V ′ := V + Fp(λn)v′

is a Fp(λn)-submodule of K that properly contains the Fp(λn)-module V . Then ShV ′ ⊆ ShV ,

a contradiction.

(2 ⇒ 1) In the first case, i.e. f (x) = f i
V (x − ν), the implication follows from

Proposition 4.22. In the second case, i.e. f (x) = f i
V (x − ν)g( f n

V (x − ν)),

G f ⊇ 〈σλn ,(1−λn)ν〉 �= {e} and G̃ f ⊇ {σ1,μ | μ ∈ V } �= {e}.

The conditions (a) and (b) imply that the inclusions above are equalities, see the proof of

the implication (1 ⇒ 2).

Suppose that statement 1 holds. Then statement 2 holds and vice versa. So, we have the

equality

f (x) = f i
V (x − ν)g( f n

V (x − ν))

in statement 2 (the case g = 1 corresponds to the first case). The polynomial fV (x − ν) is

G̃ f -invariant, i.e. for all elements v ∈ V , fV (x −ν) = σ1,−v( fV (x −ν)) = fV (x −(ν +v)).

Therefore, for all elements v ∈ V ,

f (x) = f i
V (x − (ν + v))g( f n

V (x − (ν + v))),

i.e. the element ν can be replaced by the element ν + v for any element v ∈ V . This is

the only freedom for the choice of the element ν. Indeed, G f = {σ j

λn ,(1−λn)ν
σ1,v | 0 ≤ j ≤

n − 1, v ∈ V }. Since

σ
j

λn ,(1−λn)ν
σ1,v = σ

λ
j
n ,(1−λ

j
n)ν

σ1,v = σ
λ

j
n ,(1−λ

j
n)(ν+(1−λ

j
n)−1v)

for 1 ≤ j ≤ n − 1,

it follows that the only freedom in choosing the generator σλn ,(1−λn)ν in Theorem 4.8 is an

element of the type

σ
λ

j
n ,(1−λ

j
n)(ν+(1−λ

j
n)−1v)

where j is a natural number such that 1 ≤ j ≤ n − 1, gcd( j, n) = 1 and v is an arbitrary

element of V . Now, by Theorem 4.8, ν is a unique (up to addition) element of V , and the

elements i and g(x) are unique.
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Clearly, σλn ,(1−λn)ν( f )=λi
n f (Theorem 4.8.(1)), and so f ∈ K [x]G f iff n|i (Theorem 4.8.

(2,3)).

Suppose that g(x) �= 1. Clearly, ν is a root of f (x) iff i ≥ 1. Suppose that ν is not a root

of f (x), i.e. i = 0 and f (x) = g( f n
V (x − ν)). Recall that f (x) = f

ps

1 (x) and G f = G f1 ,

by Lemma 4.23. Then ν is not a root of f1(x), i.e. f1(x) = g1( f n
V (x − ν)) for a unique

polynomial g1(x) ∈ K [x] such that g = g
ps

1 . Hence, ν is a root of the polynomial f1(x)

since

0 �= f ′
1(x) = n f n−1

V (x − ν) f ′
V (x − ν)g′

1( f n
V (x − ν)),

n ≥ 2 and fV (0) = 0.

In the second case, i.e. f (x) = f i
V (x − ν)g( f n

V (x − ν)), n = gcd(pe − 1, gcdp(h), by

the statement (a). ⊓⊔

Definition 4.25 The unique presentation of the polynomial f (x),

f (x) = f i
V (x − ν) or f (x) = f i

V (x − ν)g( f n
V (x − ν)),

in Theorem 4.24.(2) is called the eigenform or the eigenpresentation of the polynomial f (x).

The scalars ν + V and the natural number i ≥ 0 are called the eigenroots of f (x) and their

multiplicity, respectively. The natural number n ≥ 2 and the monic polynomial g(x) are

called the eigenorder and the eigenfactor of f (x). In the second case, the eigenroots may not

be roots of the polynomial f (x). They are iff i �= 0.

Corollary 4.26 Suppose that the field K is an algebraically closed field and f (x) ∈ K [x] is

a monic polynomial that has at least two distinct roots, gcd( f ) = ps gcdp( f ) and f (x) =
f

ps

1 (x) for a unique monic non-scalar polynomial f1(x) ∈ K [x]. Suppose that the polynomial

f satisfies the assumption of Theorem 4.24, and f1(x) = f
j

V (x − ν) or f1(x) = f
j

V (x −
ν)g1( f n

V (x − ν)), is the eigenform of the polynomial f1(x). Then f (x) = f
ps j

V (x − ν) or

f (x) = f
ps j

V (x − ν)g
ps

1 ( f n
V (x − ν)), is the eigenform of the polynomial f1(x).

Proof The statement follows from the facts that f (x) = f
ps

1 (x), G f = G f1 (Lemma 4.23)

and the uniqueness of the eigenform (Theorem 4.24). ⊓⊔

Criterion for G̃ f = {e} and G f �= {e}. Theorem 4.27 is a criterion for the group

G f = G̃ f ⋊ G f to be equal to G f �= {e}.

Theorem 4.27 Suppose that the field K is an algebraically closed field, f (x) ∈ K [x] is a

monic polynomial that has at least two distinct roots, gcd( f ) = ps gcdp( f ) and f (x) =
f

ps

1 (x) for a unique monic non-scalar polynomial f1(x) ∈ K [x], see Eq. 28. Then the

following statements are equivalent:

1. G̃ f = {e} and G f = 〈σλn ,(1−λn)ν〉 �= {e} where λn is a primitive n’th root of unity and

ν ∈ K .

2. f (x) = (x − ν)i g((x − ν)n) for some natural number i ≥ 0 and a monic non-scalar

polynomial g(x) ∈ K [x] such that g(0) �= 0,

(a) n ≥ 2, p ∤ n and gcdp(g(x)) = 1, and

(b) R( f ) + Fp(λ − λ′) � R( f ) for all distinct roots λ and λ′ of the polynomial f .

Suppose that statement 1 holds. Then:
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• The presentation f (x) = (x − ν)i g((x − ν)n) is unique, i.e. the triple (ν, i, g(x)) is

unique.

• Either ν is a root of f (x) (i.e. i ≥ 1) or otherwise (i.e. i = 0) ν is a root of f ′
1(x) (the

derivative of f1(x)).

• If ν is a root of f (x) then n = gcdp(x−i f (x + ν)).

• If ν is not a root of f (x) then n = gcdp( f (x + ν)).

• σλn ,(1−λn)ν( f ) = λi
n f , and f ∈ K [x]G f iff n|i .

Proof By Proposition 4.15.(3), G̃ f = {e} iff the condition (b) holds.

(1 ⇒ 2) Suppose that statement 1 holds. Then, by Theorem 4.9.(2,3),

f (x) = (x − ν)i g((x − ν)n)

for some natural number i ≥ 0 and a monic non-scalar polynomial g(x) ∈ K [x] such that

g(0) �= 0 (since |Rd( f )| ≥ 2). Clearly, n ≥ 2 and p ∤ n.

Suppose that l := gcdp(g(x)) > 1. Then σλln ,(1−λln)ν ∈ G f = 〈σλn ,(1−λn)ν〉 where λln is

a primitive ln’th root of unity, a contradiction (since the order of the element σλln ,(1−λln)ν is

ln > n = |G f |). Therefore, the statement (a) holds.

(2 ⇒ 1) By the statement (b), G̃ f = {e}. Since f (x) = (x − ν)i g((x − ν)n) for some

natural number i ≥ 0, n ≥ 2, p ∤ n and a monic non-scalar polynomial g(x) ∈ K [x] such

that g(0) �= 0,

G f ⊇ 〈σλn ,(1−λn)ν〉 �= {e}.
The condition (a) implies that the inclusion above is the equality, see the proof of the

implication (1 ⇒ 2).

Suppose that statement 1 holds. Then statement 2 holds and vice versa. So, we have

the equality f (x) = (x − ν)i g((x − ν)n) as in statement 2. To prove uniqueness of this

presentation it suffices to show that the element ν is unique. The set of cyclic generators for

the group G f = G f = 〈σλn ,(1−λn)ν〉 is equal to {σ j

λn ,(1−λn)ν
| 1 ≤ j ≤ n−1, gcd( j, n) = 1}.

Since σ
j

λn ,(1−λn)ν
= σ

λ
j
n ,(1−λ

j
n)ν

, the element ν is unique.

Clearly, ν is a root of f (x) iff i ≥ 1. Suppose that ν is not a root of f (x), i.e. i = 0 and

f (x) = g((x − ν)n), then f1(x) = h((x − ν)n) for a unique monic non-scalar polynomial

h(x) := g
1
ps (x) ∈ K [x] (since p ∤ n). Hence, ν is a root of the polynomial f1(x) since

0 �= f ′
1(x) = n(x − ν)n−1h′((x − ν)n)

and n ≥ 2.

If ν is a root of f (x) then n = gcdp(x−i f (x + ν)) (since f (x + ν) = x i g(xn)). If ν is

not a root of f (x) then n = gcdp( f (x + ν)) (since f (x + ν) = g(xn)).

Clearly, σλn ,(1−λn)ν( f ) = λi
n f , and so f ∈ K [x]G f iff n|i . ⊓⊔

Definition 4.28 The unique presentation of the polynomial f (x),

f (x) = (x − ν)i g((x − ν)n),

in Theorem 4.27.(2) is called the eigenform or the eigenpresentation of the polynomial

f (x). The scalar ν and the natural number i ≥ 0 are called the eigenroot of f (x) and its

multiplicity, respectively. The natural number n ≥ 2 and the monic polynomial g(x) are

called the eigenorder and the eigenfactor of f (x). In general, the eigenroot may not be a root

of the polynomial f (x). It is iff i �= 1.

Criterion for G̃ f �= {e} and G f = {e}.
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Lemma 4.29 Let g(x) ∈ K [x] be a monic non-scalar polynomial such that g′ �= 0 (the

derivative of g), and V be an Fp-subspace of K and Fpe be its multiplier field (for V = 0,

fV (x) = x). Then:

1. g( fV (x))′ �= 0.

2. For each ν ∈ K , g( fV (x)) = f
i(ν)
V (x − ν)gν( fV (x − ν)) for a unique natural number

i(ν) ≥ 0 and a unique monic polynomial gν(x) ∈ K [x] such that gν(0) �= 0; i(ν) �= 0

iff ν is a root of the polynomial g( fV (x)). If n = gcd(pe − 1, gcdp(gν(x))) ≥ 2 then

e �= σλn ,(1−λn)ν ∈ Gg( fV (x))(K ) where λn ∈ K is a primitive n’th root of unity. If, in

addition, λn ∈ K then e �= σλn ,(1−λn)ν ∈ Gg( fV (x))(K ).

3. Suppose that ν is not a root of the polynomial g( fV (x)), i.e. i(ν) = 0 and g( fV (x)) =
gν( fV (x − ν)), and gcdp(gν(x)) �= 1 then ν is a root of the derivative g( fV (x))′ of the

polynomial g( fV (x)).

Proof 1. g( fV (x))′ = g′( fV (x)) f ′
V (x) �= 0, by Proposition 4.7.(2d).

2. g( fV (x)) = g( fV (x −ν +ν)) = g( fV (x −ν)+ fV (ν)) = f
i(ν)
V (x −ν)gν( fV (x −ν))

for a unique natural number i(ν) ≥ 0 and a unique monic polynomial gν(x) ∈ K [x] such

that gν(0) �= 0. Since fV (0) = 0 and gν(0) �= 0, we see that i(ν) �= 0 iff ν is a root of the

polynomial g( fV (x)).

If n ≥ 2 then e �= σλn ,(1−λn)ν ∈ Gg( fV (x))(K ), by Theorem 4.8.(1). If, in addition, λn ∈ K

then e �= σλn ,(1−λn)ν ∈ Gg( fV (x))(K ).

3. Suppose that ν is not a root of the polynomial g( fV (x)) and m = gcdp(gν(x)) �= 1,

i.e. g( fV (x)) = gν( fV (x − ν)) = hν( f m
V (x − ν)) for some monic non-scalar polynomial

hν(x) ∈ K [x]. Then

g( fV (x))′ = hν( f m
V (x − ν))′ = m f m−1

V (x − ν) f ′
V (x − ν)h′

ν( f m
V (x − ν)),

and so ν is a root of the polynomial g( fV (x))′. ⊓⊔

Given monic non-scalar polynomials f (x), h(x) ∈ K [x]. If f (x) = g(h(x)) for some

polynomial g(x) ∈ K [x] then the polynomial g(x) is unique and necessarily monic. (Proof.

If f (x) = g(h(x)) then the polynomial g(x) is monic, deg( f ) = deg(g) deg(h), K [h] ∋
f1 := f − hdeg(g) and deg( f1) < deg( f ). Now, the induction on deg( f ) completes the

proof).

Theorem 4.30 is a criterion for the group G f = G̃ f ⋊ G f to be equal to G̃ f �= {e}.

Theorem 4.30 Suppose that the field K is an algebraically closed field, f (x) ∈ K [x] is a

monic non-scalar polynomial that has at least two distinct roots, gcd( f ) = ps gcdp( f )

and f (x) = f
ps

1 (x) for a unique monic non-scalar polynomial f1(x) ∈ K [x]. Suppose that

V �= 0 is a finite dimensional Fp-subspace of K and Fpe is the multiplier field of V . Then

the following statements are equivalent:

1. G̃ f = ShV �= {e} and G f = {e}.
2. f1(x) = g( fV (x)) for a (unique) monic polynomial g(x) ∈ K [x] such that

(a) either |Rd(g)| = 1 and (p, e) = (2, 1) or otherwise |Rd(g)| ≥ 2 and gcd(pe −
1, gcdp(gν(x))) = 1 for all roots ν ∈ Rd( f1(x)) ∪ Rd( f1(x)′) where gν is as in

Lemma 4.29.(2) (i.e. f1(x) = f
i(ν)
V (x − ν)gν( fV (x − ν))), and

(b) R( f1)+Fp(λ−λ′) � R( f1) for all distinct roots λ and λ′ of the polynomial f1 such

that λ − λ′ /∈ V (⇔ R( f ) + Fp(λ − λ′) � R( f ) for all distinct roots λ and λ′ of the

polynomial f such that λ − λ′ /∈ V ).

123

2416



Isomorphism Problems and Groups of...

Suppose that statement 1 holds. Then f , f1 ∈ K [x]G f = K [x]G f1 .

Remark By Lemma 4.23, G f = G
f

ps

1

= G f1 . This explains why statement 2 is given via

properties of the polynomial f1 rather than f .

Proof By Proposition 4.7 and Proposition 4.15.(1), G̃ f = G̃ f1 = ShV (�= {e}) iff f1(x) =
g( fV (x)) for a (unique) monic non-scalar polynomial g(x) ∈ K [x] such that the condition

2(b) holds.

Suppose that |Rd(g)| = 1, i.e. Rd(g) = {ρ} and let i(ρ) be the multiplicity of the root ρ.

Fix an element ν′ ∈ K = K such that fV (ν′) = ρ. Then f1(x) = ( fV (x) − fV (ν′))i(ρ) =
f

i(ρ)
V (x − ν′), by Proposition 4.7.(2b). By Proposition 4.22, G f1 = G̃ f1 = ShV iff (p, e) =

(2, 1).

Suppose that |Rd(g)| ≥ 2. By Lemma 4.29.(2),

f1(x) = g( fV (x)) = f
i(ν)
V (x − ν)gν( fV (x − ν))

for a unique monic non-scalar polynomial gν(x) ∈ K [x] such that gν(0) �= 0 where i(ν) ≥ 0

is the multiplicity of the root ν (if gν(x) = 1 then f1(x) = g( fV (x)) = f
i(ν)
V (x − ν) =

( fV (x) − fV (ν))i(ν), and so |Rd(g)| = 1, a contradiction).

By Theorem 4.8 and Lemma 4.29.(2), G f1 = {e} iff gcd(pe − 1, gcdp(gν(x))) = 1

for all ν ∈ K iff gcd(pe − 1, gcdp(gν(x))) = 1 for all ν ∈ Rd( f1(x)) ∪ Rd( f1(x)′),
Lemma 4.29.(2,3).

Clearly, f , f1 ∈ K [x]G f = K [x]G f1 (Proposition 4.7 and Lemma 4.23). ⊓⊔

Definition 4.31 The unique presentation f (x) = g ps
( fV (x)) in Theorem 4.30 (where

gcd( f ) = ps gcdp( f )) is called the eigenform or eigenpresentation of the polynomial f (x)

and the polynomial g(x) is called the eigenfactor of f (x).

Criterion for G f = {e}. Given a monic non-scalar polynomial g(x) ∈ K [x] with g′(x) �=
0. By Lemma 4.29.(2) (where V = 0), for each ν ∈ K ,

g(x) = (x − ν)i(ν)gν(x − ν) (29)

for a natural number i(ν) ≥ 0 and a unique monic polynomial gν(x) ∈ K [x] such that

gν(0) �= 0. Clearly, i(ν) �= 0 iff ν is a root of the polynomial g(x).

Theorem 4.32 is a criterion for G f = {e}.

Theorem 4.32 Suppose that the field K is an algebraically closed field, f (x) ∈ K [x] is a

monic polynomial that has at least two distinct roots, gcd( f ) = ps gcdp( f ) and f (x) =
g ps

(x) for a unique monic non-scalar polynomial g(x) ∈ K [x], see Eq. 28. The following

statements are equivalent:

1. G f = {e}.
2. (a) For each root ν of the polynomial g(x), gcdp(gν(x)) = 1 where the polynomial gν(x)

is defined in Eq. 29,

(b) for each root ν′ of the derivative g′(x) of the polynomial g(x) such that g(ν′) �= 0,

gcdp(gν(x)) = 1, and

(c) R(g) + Fp(λ − λ′) � R(g) for all distinct roots λ and λ′ of the polynomial g (⇔
R( f ) + Fp(λ − λ′) � R( f ) for all distinct roots λ and λ′ of the polynomial f ).

Proof Notice that G f = Gg ps = Gg . The condition (c) is equivalent to the condition that

G̃g = {e} (Proposition 4.15.(3)). It remains to show that provided G̃g = {e} the condition
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Gg = {e} is equivalent to the conditions (a) and (b). Equivalently, G̃g = {e} and Gg �= {e}
iff one of the conditions (a) or (b) does not hold and the condition (c) holds. This follows

from Theorem 4.27. Indeed, by Theorem 4.27, G̃g = {e} and Gg �= {e} iff the condition (c)

holds and g(x) = (x −ν)i gν(x −ν) for a unique ν ∈ K , a natural number i ≥ 0 and a monic

non-scalar polynomial gν(x) such that gν(0) �= 0 (since |Rd( f )| ≥ 2) and gcdp(gν(x)) ≥ 2.

We have two options either ν is a root of the polynomial g(x) or not. If ν is not a root of

the polynomial g(x), i.e. i = 0, then g(x) = gν(x − ν), and so ν is a root of g′(x) since

gcdp(gν(x)) ≥ 2. Now, it follows that statements 1 and 2 are equivalent. ⊓⊔

Theorem 4.33 describes the group G f (K ) in terms of the group G f (K ).

Theorem 4.33 Suppose that the field K is not necessarily algebraically closed and

f (x) ∈ K [x] is a monic polynomial that has at least two distinct roots in K . Recall

that (Theorems 4.12 and 4.4) the group G f (K ) = G̃ f (K ) ⋊ G f (K ) where G f (K ) :=
〈σλn ,(1−λn)ν〉 and G̃ f (K ) := {σ1,μ | μ ∈ V }, λn ∈ K is a primitive n’th root of unity provided

G f (K ) �= {e}, ν ∈ K , V is a finite dimensional Fp(λn)-subspace of K , and Fp(λn) = Fpm

for some m ≥ 1 (Lemma 4.3). Then

G f (K ) = G̃ f (K ) ⋊ G f (K ) = AutK (K [x]) ∩ G f (K ), G̃ f (K ) = ShV

where V := K ∩ V and if G f (K ) �= {e} then G f (K ) = 〈σλi
n ,(1−λi

n)ν+v〉 where i = min{i ′ =
1, . . . , n − 1 | i ′|n, λi ′

n ∈ K , (1 − λi ′
n )ν ∈ V + K } and v ∈ V is any (fixed) element such that

(1 − λi
n)ν + v ∈ K .

Proof It is obvious that G f (K ) = AutK (K [x]) ∩ G f (K ). By Theorem 4.4, G f (K ) =
G̃ f (K ) ⋊ G f (K ). It is obvious that G̃ f (K ) = ShV where V := K ∩ V . By Theorem 4.4,

G f (K ) = 〈σλn′ ,(1−λn′ )ν′〉 where λn′ ∈ K is a primitive n′’th root of unity and ν′ ∈ K

provided G f (K ) �= {e}. Notice that

σλn′ ,(1−λn′ )ν′ = σ i
λn ,(1−λn)νσ1,v = σλi

n ,(1−λi
n)νσ1,v = σλi

n ,(1−λi
n)ν+v

for unique elements i and v ∈ V such that 0 ≤ i ≤ n − 1. So, the elements i can be chosen

such that

i = min{i ′ = 1, . . . , n − 1 | i ′|n, λi ′
n ∈ K , (1 − λi ′

n )ν + v ∈ K for some element v ∈ V }
= min{i ′ = 1, . . . , n − 1 | i ′|n, λi ′

n ∈ K , (1 − λi ′
n )ν ∈ V + K }

and v ∈ V is any (fixed) element such that (1 − λi
n)ν + v ∈ K . ⊓⊔

Proposition 4.34 gives criteria for the groups G̃ f (K ), G f (K ) and G f (K ) to be {e}.

Proposition 4.34 Suppose that the field K is not necessarily algebraically closed and

f (x) ∈ K [x] is a monic polynomial that has at least two distinct roots in K . Recall

that (Theorems 4.12 and 4.4) the group G f (K ) = G̃ f (K ) ⋊ G f (K ) where G f (K ) :=
〈σλn ,(1−λn)ν〉 and G̃ f (K ) := {σ1,μ | μ ∈ V }, λn ∈ K is a primitive n’th root of unity provided

G f (K ) �= {e}, ν ∈ K , V is a finite dimensional Fp(λn)-subspace of K , and Fp(λn) = Fpm

for some m ≥ 1 (Lemma 4.3). Then:

1. G̃ f (K ) = {e} iff V ∩ K = 0.

2. G f (K ) = {e} iff G f (K ) = {e} or otherwise G f (K ) := 〈σλn ,(1−λn)ν〉 and there is no a

natural number i ′ such that 1 ≤ i ′ ≤ n−1 such that i ′|n, λi ′
n ∈ K and (1−λi ′

n )ν ∈ V +K .
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3. G f (K ) = {e} iff G f (K ) = {e} or otherwise V ∩ K = 0, G f (K ) := 〈σλn ,(1−λn)ν〉
and there is no a natural number i ′ such that 1 ≤ i ′ ≤ n − 1, i ′|n, λi ′

n ∈ K and

(1 − λi ′
n )ν ∈ V + K .

Proof Statements 1 and 2 follow at once from Theorem 4.33. Then statement 3 follows from

statements 1 and 2. ⊓⊔

Every subgroup of AutK (K [x]) is of type G f . Theorem 4.35 shows that all subgroups

of AutK (K [x]) are eigengroups of polynomials.

Theorem 4.35 Let K be an arbitrary field of characteristic p > 0. Then for each subgroup

H of AutK (K [x]) there is a monic polynomial fH such that G fH
= H:

1. For H = {e}, fH = x(x + 1)2.

2. For H = 〈σλn ,(1−λn)ν〉 where λn ∈ K is a primitive n’th root of unity and ν ∈ K ,

fH = (x − ν)n − 1.

3. For H = ShV where V is a nonzero Fp-subspace of K ,

(a) if K = Fpn then fH (x) = fV (x − ν) − ρ where ρ is any element of Fpn that does

not belong to the image of the map fV (x − ν) : Fpn → Fpn , x �→ fV (x − ν) (the

map fV (x − ν) is not a surjection since the set ν + V is mapped to 0).

(b) If |K | = ∞ then fH (x) = fV (x) f 2
V (x − ν) where ν ∈ K\V .

4. For H = ShV ⋊ 〈σλn ,(1−λn)ν〉 where V is a nonzero Fp-subspace of K , Fpe is its

multiplier field, and λn is primitive n’th root of unity such that λn V ⊆ V , fH (x) ={
fV (x − ν) if n = pe − 1,

f n
V (x − ν) + 1 if n < pe − 1.

5. For H = Tν(K ) = {σλ,(1−λ)ν | λ ∈ K ×}, fH = x − ν.

6. For H = AutK (K [x]), fH =
{

1 if |K | = ∞,

x pn − x if K = Fpn .

Proof 1. If σ ∈ G fH
then the maximal ideals (x) and (x + 1) of K [x] are σ -stable, hence

σ = e.

2. Clearly, G fH
⊇ H .

(i) G̃ fH
= {e}: The polynomial fH has n distinct roots, namely, {ν+λi

n | i = 0, 1, . . . , n−
1}, and p ∤ n. Suppose that G̃ fH

= ShV �= {e} for some nonzero Fp-subspace V of K .

Then p||V |. Since V + R( f ) ⊆ R( f ), we must have |V |||R( f )|, i.e. |V ||n, and so p|n, a

contradiction.

(ii) G fH
= H : Let σ = σλn ,(1−λn)ν . By the statement (i), G fH

= G fH
= 〈σ ′〉 where

σ = σλm ,(1−λm )ν′ for some primitive m’th root of unity λm and ν′ ∈ K . Since H ⊆ G fH
, we

must have ν′ = ν and n|m (since (x − ν′) is the only 〈σ ′〉-invariant maximal ideal of K [x],
(x − ν) is the only 〈σ 〉-invariant maximal ideal of K [x] and 〈σ 〉 ⊆ 〈σ ′〉).

The polynomial fH is an eigenvector for the automorphism σ ′ with (necessarily) eigen-

value λn
m since n = deg( fH ). Now,

λn
m fH = λn

m((x − ν)n − 1) = σ ′( fH ) = λn
m(x − ν)n − 1.

Therefore, λn
m = 1, and so 〈σ 〉 = 〈σ ′〉. This means that G fH

= H , and the statement (ii)

follows from the statement (i).

3(a). Clearly, G fH
⊇ H = ShV .
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(i) G̃ fH
= H : The statement follows at once from the fact that the polynomial fH has |V |

distinct roots in K (if G̃ fH
= ShV ′ for some Fp-subspace V ′ of K that properly contains V

then the polynomial fH contains at least |V ′| distinct roots in K , a contradiction).

(ii) G fH
= {e}: Suppose that G fH

�= {e}. Then G fH
= 〈σ 〉 where σ = σλn ,(1−λn)ν′ ,

1 �= λn ∈ K is a primitive n’th root of unity such that λn V ⊆ V and ν′ ∈ K . Notice that

σ( fH ) = λ
|V |
n fH and

fH (x) = fV (x−ν′−(ν−ν′))−ρ = fV (x−ν′)− fV (ν−ν′)−ρ = fV (x−ν′)+ fV (ν′−ν)−ρ.

By Theorem 4.8.(1), σ( fV (x − ν′)) = λn fV (x − ν′). Let a = fV (ν′ − ν) − ρ. Now,

λ|V |
n ( fV (x − ν′) + a) = λ|V |

n fH = σ( fH ) = σ( fV (x − ν′) + a) = λn fV (x − ν′) + a.

Hence, λ
|V |
n = λn �= 1 and (λn − 1)a = 0, i.e. a = 0. The last equality implies that

ρ ∈ im fV (x − ν), a contradiction, and the statement (ii) follows.

(b). Clearly, G fH
⊇ H = ShV .

(i) G̃ fH
= H : The statement follows at once from the fact that R( f ) = V

∐
(ν + V )2

where the upper index ‘2′ means that the multiplicity of each root in ν + V is 2.

(ii) G fH
= {e}: Suppose that e �= σ ∈ G fH

. Then σ ∈ G fV (x) ∩ G fV (x−ν). Notice that

G fV (x−ν) = 〈σλn ,(1−λn)ν〉 for some primitive n’th root of unity λn such that Fp(λn)V ⊆ V .

Then there is a natural number i such that σ = σ i
λn ,(1−λn)ν

= σλi
n ,(1−λi

n)ν ∈ G fV (x). In

particular, V ∋ σ−1 ∗ (0) = (1 − λi
n)ν, and so ν ∈ (1 − λi

n)−1V = V , a contradiction

(1 − λi
n �= 0 since σ �= e).

4. Statement 4 follows from Theorem 4.24.

5 and 6. Statements 5 and 6 are obvious.

⊓⊔

Algorithm of finding the eigengroup G f (K ) and the eigenform of f . The algorithm

consists of finitely many steps and is based on Prpoposition 4.10, Theorems 4.24, 4.27, 4.30

and 4.32. We assume that K = K .

Step 1. If |Rd( f )| = 1 then apply Proposition 4.10 to find G f .

From this moment on we assume that |Rd( f )| ≥ 2.

Step 2. Use Theorem 4.32 to check whether G f = {e} or G f �= {e}.
From this moment on we assume that G f �= {e}.
Step 3. By Proposition 4.15.(1), the group G̃ f = ShV can be found.

Step 4. Suppose that G̃ f = {e}. Then necessarily G f �= {e}, and using Theorem 4.27

the group G f is found. In more detail, we know that G f = 〈σλn ,(1−λn)ν〉 and that f (x) =
(x − ν)i g((x − ν)n) for a unique ν ∈ Rd( f ) ∪ Rd( f ′

1) and n ≥ 2 such that if ν is a root of

f (x) then n = gcdp(x−i f (x + ν)), and if ν is not a root of f (x) then n = gcdp( f (x + ν)).

From this moment on we assume that G̃ f = ShV �= {e}, the Fp-subspace V of the field

K is non-zero. Let Fpe be the multiplier field of V . It can be easily found since the multiplier

field Fpe is the largest among finite fields Fpm such that Fpm V ⊆ V and m ≤ dimFp
(V ).

Step 5. Now, we check whether the conditions of Theorem 4.30 hold or not. If they do

then G f = {e}.
If they do not then necessarily G f �= {e} and hence the conditions of Theorem 4.24 hold.

Using Theorem 4.24 the group G f and the eigenform of f are found in finitely many steps.

⊓⊔
Algorithm of finding the eigengroup G f (K ) where K �= K .

Step 1. Using the algorithm above the group G f (K ) is found.

Step 2. The group G f (K ) is found by using Theorem 4.33. ⊓⊔
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