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ARTICLE OPEN

GnIH secreted by green light exposure, regulates bone mass

through the activation of Gpr147
Yu You 1,2, Konglin Huo1,2, Liang He2, Tongyue Wang2, Lei Zhao2, Rong Li2, Xiaoqing Cheng1, Xuebin Ma1,2, Zhiying Yue3,

Stefan Siwko4, Ning Wang5,6, Lujian Liao1✉, Mingyao Liu 1✉ and Jian Luo 2✉

Reproductive hormones associated with the hypothalamic-pituitary-gonadal (HPG) axis are closely linked to bone homeostasis. In

this study, we demonstrate that Gonadotropin inhibitory hormone (GnIH, one of the key reproductive hormones upstream of the

HPG axis) plays an indispensable role in regulating bone homeostasis and maintaining bone mass. We find that deficiency of GnIH

or its receptor Gpr147 leads to a significant reduction in bone mineral density (BMD) in mice primarily by enhancement of

osteoclast activation in vivo and in vitro. Mechanistically, GnIH/Gpr147 inhibits osteoclastogenesis by the PI3K/AKT, MAPK, NF-κB

and Nfatc1 signaling pathways. Furthermore, GnIH treatment was able to alleviate bone loss in aging, ovariectomy (OVX) or LPS-

induced mice. Moreover, the therapy using green light promotes the release of GnIH and rescues OVX-induced bone loss. In

humans, serum GnIH increases and bone resorption markers decrease after green light exposure. Therefore, our study elucidates

that GnIH plays an important role in maintaining bone homeostasis via modulating osteoclast differentiation and demonstrates the

potential of GnIH therapy or green light therapy in preventing osteoporosis.

Bone Research           (2025) 13:13 ; https://doi.org/10.1038/s41413-024-00389-7

INTRODUCTION
The homeostasis of bone mass is maintained through a dynamic
balance between bone formation and bone resorption.1–3 Disruption
of either process can result in an imbalance of bone homeostasis,
ultimately leading to pathological conditions such as osteoporosis.4–7

Hormones associated with the HPG axis include GnIH, kisspeptin,
Gonadotropin-releasing hormone (GnRH), Follicle-stimulating hor-
mone (FSH), Luteinizing hormone (LH), estrogen, and testosterone.8,9

Evidence suggests that, besides estrogens and androgens, upstream
reproductive hormones associated with the HPG axis also play a
crucial role in regulating bone homeostasis,8,10,11 including FSH and
LH,12 GnRH,8,13 kisspeptin,14,15 and upstream key reproductive
hormones can directly affect bone tissue. However, treatments
targeting these hormones either have minimal or no direct effects on
osteoblasts and osteoclast,8 or lead to severe side effects loss.16–21

Therefore, it is imperative to investigate the regulatory roles of other
upstream reproductive hormones in maintaining bone homeostasis
and explore their therapeutical potentials of preventing and treating
orthopedic diseases.8

GnIH is a novel neuropeptide of hypothalamic origin,22–25 and it
is a key upstream reproductive hormone involved in the regulation
of the HPG axis and acts to inhibit reproduction.26–29 Accumulating
evidence suggests that GnIH acts on GnRH neurons by binding G
protein-coupled receptor 147 (GPR147) and regulates the function
of GnRH release and synthesis.30–34 The use of GnRH agonists in
clinical practice has shown to reduce bone mass and increase the

risk of fractures. In contrast, the use of GnRH antagonists can
significantly decrease the incidence of musculoskeletal events.35

These observations suggest that GnIH may play a protective role in
bone. However, the molecular events underlying GnIH regulation
of bone homeostasis is unclear. Intriguingly, multiple studies have
revealed that green light enhances the synthesis and release of
GnIH in poultry animals.36,37 Green light therapy has demonstrated
analgesic effects in both human and murine subjects,38 however, it
is unknown whether green light therapy provide benefits for other
diseases including osteoporosis.
In this study, we provide evidence showing that GnIH

participates in regulating bone homeostasis and maintaining
bone mass by suppressing the osteoclast differentiation, and that
green light therapy promotes the release of GnIH and prevents
bone loss by blocking osteoclast genesis in osteoporosis mouse
model, as well as downregulates serum levels of bone resorption
markers in human subjects. Therefore, our study suggests that
green light therapy can promote GnIH release, which may provide
a new strategy for preventing and treating osteoporosis.

RESULTS
GnIH/Gpr147 signaling regulates bone mass
To explore whether the novel reproductive hormone GnIH plays a
role in regulating bone homeostasis, we created GnIH knockout mice
(GnIH−/− mice). We first confirmed the knockout efficiency of GnIH
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and observed that the deletion of GnIH does not affect the body
weight or size of the mice (Fig. S1A, B). Then, bone mass of femurs in
2-month-old mice was measured using micro-CT. Our results
revealed significant decreases of BMD, trabecular bone volume/total
volume (BV/TV), external surface of the trabeculae/total sample
volume (BS/TV), trabecular number (Tb.N), and trabecular thickness
(Tb.Th), but an increase of trabecular separation (Tb.Sp) in GnIH−/−

compared to wild-type (WT) mice (Fig. 1a, b; Fig. S1C–E). Similar
results were obtained from Von Kossa staining of lumbar vertebrae
(Fig. 1c, d). To investigate whether GnIH exerts its regulatory function
in osteoporosis by binding to its receptor Gpr147, we analyzed the
bone density and trabecular bone parameters in femur and lumbar
vertebrae from Gpr147 knockout mice (Gpr147−/− mice). The results
were similar to GnIH−/− mice (Fig. 1e–h; Fig. S1F–J; Fig. S2A–D).
Collectively, these data reveal that GnIH/Gpr147 signaling has plays a
crucial role in regulating bone mass.

Deletion of GnIH or Gpr147 accelerates bone loss through
enhancing osteoclast number and activity, but has little effect on
osteoblast number and activity
To explore the cause of the decline in bone mass of GnIH−/− or
Gpr147−/−mice, we first examined osteoclasts. The activity of
osteoclast was significantly enhanced in femurs of GnIH−/− mice
as shown by TRAP staining and TRAP immunofluorescence
staining, with the number of osteoclasts (N.Oc)/bone perimeter

(N.Oc/N.Oc/B.Pm), osteoclast surface/bone surface (Oc.S/BS) and
the eroded surface/bone surface (ES/BS) all increased compared to
WT mice (Fig. 2a, b; Fig. S3A, B). Similar results were found in the
skulls of GnIH−/−mice (Fig. 2c, d). Deletion of the receptor Gpr147
similarly enhanced osteoclast activity and eroded bone surface
in vivo (Fig. 2e–h; Fig. S3C, D). To further examine whether GnIH
directly regulated osteoclast differentiation, we evaluated the
differentiation of BMMs towards osteoclasts after GnIH treatment.
Remarkably, we observed a dose-dependent inhibition of
osteoclast differentiation upon GnIH stimulation
(Fig. 2i, j). Moreover, our research has shown that GnIH serves as
a robust inhibitor of human osteoclast differentiation (Fig. 2k, l).
However, GnIH exerted minimal impact on the proliferation and
migration of BMMs (Fig. S4A–C). Similarly, knockout of Gpr147
significantly promotes osteoclast differentiation and maturation
(Fig. 2m, n), but has little effect on migration and proliferation of
BMMs (Fig. S4D–F). Furthermore, Gpr147−/−osteoclasts express
high levels of osteoclastogenic gene transcripts when compared
with control osteoclast (Fig. S4G). Moreover, osteoclasts lacking
Gpr147 were no longer able to inhibit osteoclast differentiation by
GnIH (Fig. S4H, I). Together, all these results confirm that knocking
out GnIH can enhance osteoclast number, differentiation and
activity through Gpr147.
We next explored whether knocking out of GnIH or Gpr147

affected bone formation and osteoblast. Our data showed that the
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Fig. 1 Depletion of GnIH or Gpr147 decreases bone mass and leads to osteoporosis in mice. a Representative micro-CT images of femur (top;
scale bars: 1 mm) and trabecular bone of the (bottom; scale bars: 500 μm) from 2-month-old male WT and GnIH−/− male mice. b Quantitation
of femur trabecular bone parameters from WT and GnIH−/− male mice. n= 6 each group. (***P < 0.001). c, d The von Kossa staining images of
lumbar sections from 2-month-old WT and GnIH−/− male mice, and trabecular bone parameters were quantified. Scale bars: 500 μm, n= 6
each group. (*P < 0.05, ***P < 0.001). e Representative micro-CT images of femur (top; scale bars: 1 mm) and trabecular bone (bottom; scale
bars: 500 μm) from 2-month-old male WT and Gpr147−/− mice. f Quantitation of femur trabecular bone parameters from WT and Gpr147−/−

mice. n= 6 each group. (***P < 0.001). g, h The von Kossa staining images of lumbar sections from 2-month-old WT and Gpr147−/− male mice,
and trabecular bone parameters were quantified. Scale bars: 500 μm. n= 6 each group. (*P < 0.05, **P < 0.01, ***P < 0.001)
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bone formation rate (BFR/BS), the Mineral Apposition Rate (MAR),
the number of osteoblasts (N.Ob)/bone perimete (N.Ob/B.Pm),
surface area of osteoblasts/bone surface (Ob.S/BS) and the osteoid
surface/bone surfac (OS/BS) all have little effect on bone formation
and osteoblast in lumbar vertebrae by calcein double labeling
assay and Goldner’s staining in GnIH and Gpr147 knockout mice
(Fig. S5A–H).
All these results substantiate that the osteoporosis resulting

from the knockout of GnIH and Gpr147 is primarily attributed to
the activation of osteoclasts and promotion of bone resorption.

GnIH derived from bone tissue can regulate osteoclastogenesis
Our data reveals a high expression of GnIH in bone tissue (Fig. S6A).
To investigate which type of bone cells GnIH originates from, we
randomly selected BMM as a control group, our RT-qPCR analysis in all
bone cells showed that GnIH has strong expression in osteoclast and
osteoblast, while it has limited expression in BMM, BMSC and
chondrocyte (Fig. 3a). To examine whether the bone-tissue-derived
GnIH regulates osteoclast differentiation, we analyzed osteoclastic
differentiation using WT and GnIH−/− BMM. Our results showed that
knockout of GnIH−/− largely enhanced osteoclastic differentiation and
formation (Fig. 3b, c), as demonstrated by the differentiation markers
Trap, Ctsk, Nfatc1 (Fig. 3d). However, here was no difference between
WT and GnIH−/− BMMs in the level of cell proliferation and migration
(Fig. S6B–D), suggesting that, besides hypothalamus, osteoclast
derived GnIH could regulate osteoclast differentiation.
To further evaluate the function of GnIH in osteoclasts, taking

consideration of age and age-induced bone phenotype, we
analyzed the GnIH expression of osteoclasts derived from WT mice
at different ages (2 months and 18 months) and its correlation
with BMD of these mice. Our results showed that expression of
GnIH in mouse osteoclasts is positively correlated with BMD
(P= 0.002, R2= 0.773 1, n= 12) (Fig. 3e). We also observed that
GnIH expression level were inversely correlated with osteoclast
differentiation and TRAP expression level (Fig. 3f, g). We further
examined whether the osteoblast-derived GnIH have regulatory
effect on osteoclastogenesis by osteoblast-osteoclast co-culture
experiment. Strikingly, the results showed that loss of GnIH in
osteoblasts promoted osteoclast differentiation (Fig. 3h, i).
In addition, we found that the relative expression of Rankl at the

mRNA level was increased, while the OPG expression was
decreased, resulting in an enhanced ratio of Rankl to OPG in
GnIH−/− and Gpr147−/−osteoblasts (Fig. S6E, F). To investigate
whether the loss of Gpr147 in osteoblasts has an effect on
osteoclast differentiation, we further performed a Gpr147−/−

osteoblast - WT osteoclast co-culture experiment. The results
showed that knockout of Gpr147 in osteoblasts promoted the
differentiation of BMMs into osteoclasts (Fig. S6G, H). Together,
these results indicate that osteoblast or osteoclast secreted GnIH
to affect osteoclast formation.

GnIH/Gpr147 regulates osteoclast differentiation through the
PI3K/AKT, MAPK, NF-κB and Nfatc1 signaling pathways
To investigate how GnIH/Gpr147 affects osteoclastogenesis, we
performed RNA sequencing analysis on osteoclast precursors
(BMM cells after two-day differentiation) from Gpr147-deficient
and WT mice. Not surprisingly, the pathway associated with
osteoclast differentiation was enriched and ranked first in Gpr147-
deficient osteoclast precursors (Fig. 4a). Moreover, KEGG analysis
revealed that deletion of Gpr147 led to significant alterations in
the phosphatidylinositol 3-kinase (PI3K)-AKT pathway in osteoclast
precursor cell (Fig. 4b). To validate that GnIH induced osteoclast
differentiation via PI3K-AKT signaling, we examined the phosphor-
ylation levels of PI3K and AKT at various time points (0, 0.5, and
1 h) in GnIH-stimulated osteoclast precursors. We found that
phosphorylation of PI3K and AKT were inhibited in a time-
dependent manner after GnIH stimulation (Fig. 4c, d). Further-
more, we employed the inhibitors of PI3K/AKT signaling during

osteoclast differentiation. Our data showed that Gpr147 knockout
dramatically induced osteoclast differentiation, while the two
inhibitors of the PI3K/AKT signaling pathway (Omipalisib and 3-
MA) significantly suppressed Gpr147 knockout-induced osteoclast
differentiation (Fig. 4e, f; Fig. S7A, B). Because Nfatc1 nuclear
translocation is the downstream events of PI3K/AKT signaling
during osteoclast differentiation,39–42 we next examined whether
GnIH or the PI3K/AKT signaling inhibitors have regulatory effects
on Nfatc1 nuclear translocation. The results showed that GnIH
significantly suppressed the nuclear translocation of Nfatc1 (Fig.
S7C, D), whilst the two PI3K/AKT signaling inhibitors can reduce
Nfatc1 nuclear translocation after knockout of Gpr147 (Fig. 4g; Fig.
S7E–G). Together, our result indicated that GnIH/Gpr147 regulates
osteoclast function through the PI3K/AKT signaling.
There is abundant evidence supporting that MAPK, NF-κB and

Nfatc1 signaling pathways are crucial in regulating osteoclast
differentiation. To investigate whether Gpr147 also regulates
osteoclast differentiation via MAPK, NF-κB and Nfatc1 signaling
pathways, we conducted additional analyses. A time-dependent
inhibition of phosphorylation on critical proteins such as p65, IκB, p38,
JNK, and ERK follows GnIH stimulation, coinciding with a decreased
expression of Nfatc1 (Fig. 4h, i). Thus, our data provides compelling
evidence showing that GnIH/Gpr147 regulates osteoclast function
through the PI3K/AKT, MAPK, NF-κB and Nfatc1 signaling pathways.

GnIH inhibits bone loss induced by aging, OVX and LPS
To further validate whether GnIH has therapeutic effect on
osteoporosis, we utilized three distinct mouse models to mimic
aging-, postmenopause-, inflammation- induced osteoporosis to
validate this function. First, we treated aging mouse with GnIH
(0.1 mg/kg/day). GnIH treatment resulted in increased bone mass
and BMD in 18-month-old mice (Fig. 5a, b, Fig. S8A), as well as in
significantly inhibited osteoclast number and activity (Fig. 5c, d).
Importantly, GnIH treatment had no evidence of toxicity or
adverse effects in heart, liver, spleen, lung, and kidney tissues
compared to the control group (Fig. S8B). It has been shown that
IL-1β is upregulated in the production of chronic inflammatory
factors during aging.43 Therefore, we evaluated whether GnIH
affects IL-1β-induced osteoclast differentiation and formation
in vitro. GnIH treatment suppressed osteoclast activity in an IL-
1β inflammatory environment (Fig. S8C, D).
Next, we evaluated GnIH effect in OVX osteoporosis mouse

model. After one month of daily intraperitoneal injection of GnIH,
osteoclast activity was remarkably inhibited and bone loss was
rescued in OVX mice (Fig. 5e–h; Fig. S8E, F). Surprisingly, the value
of BMD and BV/TV in GnIH treatment group were almost close to
the Sham operation group, suggesting that the GnIH could exert
strong therapeutic effect on osteoporosis.
Last, using the LPS induced inflammatory bone loss mouse

model, we evaluated the effect of GnIH on LPS-induced bone loss.
Consistently, bone mass significantly increased while osteoclasts
were inhibited after GnIH treatment (Fig. 5i–l; Fig. S9A–C).
Furthermore, GnIH treatment suppressed LPS-induced osteoclast
differentiation ex vitro (Fig. S9D, E), and the serum inflammatory
factor TNF-α and IL-1β were mildly decreased, whereas the level of
IL-6 remains unchanged (Fig. S9F). These results suggested that in
LPS-induced mice, GnIH treatment both affects inflammatory factor
levels and slightly improves the inflammatory milieu, while also
strongly inhibiting osteoclast activity. This dual action contributes to
the preservation of bone mass and halting bone loss.
Taken together, these findings provide compelling evidence that

GnIH treatment effectively enhances bone mass and inhibited
osteoclast activity in aging, OVX, and LPS-induced bone loss models.

Green light promotes GnIH release and alleviates bone loss in
OVX-induced osteoporosis mice
Green light can promote GnIH expression and synthesis in
hypothalamus in poultry animals,36,37 and green light therapy has

GnIH/Gpr147 bone mass

Y You et al.

4

Bone Research           (2025) 13:13 



demonstrated analgesic effects in both human and mice.38 There-
fore, we hypothesized that green light exposure can promote GnIH
release and prevent bone loss. To verify the therapeutic effect of
green light, we exposed OVX mice to green light for 8 h (8:00 am-
16:00 pm) per day for 60 days (Fig. 6a). We evaluated the
hypothalamic GnIH transcription level in mice, and the results

showed that exposure to green light promoted the transcriptional
expression of hypothalamic GnIH (Fig. 6b). Consequently, serum
GnIH levels were also increased after green light exposure (Fig. 6b).
Furthermore, bone mass were significant increased and osteoclast
number and activity were decreased in OVX mice when exposed to
green light compared to OVX control group (Fig. 6c–f; Fig. S10A).
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These results indicate that exposure to green light stimulated the
release of GnIH and effectively mitigated bone loss in OVX mice. We
conducted further evaluation of the changes in bone mass following
green light therapy in GnIH−/− and Gpr147−/− mice, and the data
showed that green light treatment can only partially improve the
bone parameters of GnIH−/− and Gpr147−/− mice (Fig. S11A–E),
which may be related to the regulation of melatonin-GnIH pathway
by green light.36,37

To examine the prospective utility of green light therapy as a
novel clinical approach for treating osteoporosis, we conducted a
study involving five healthy adult participants. Each participant
underwent a one week of daily green light phototherapy sessions,
lasting 2 h per day (Fig. 6g). We evaluated the serum GnIH levels,
bone resorption markers and bone formation marker of subjects
before and after green light therapy. The results revealed a
significant elevation in serum GnIH levels following green light
therapy (Fig. 6h). While the serum levels of TRACP and CTX
(tartrate acid phosphatase, type I collagen carboxy-terminal
peptide, bone resorption markers) were observed to be down-
regulated (Fig. 6i, j), and the level of OCN (osteocalcin, bone
formation markers) did not change significantly after green light
therapy (Fig. 6k). Furthermore, healthy adult participants exposed
to regular light showed no significant changes in serum GnIH,
OCN, TRACP and CTX (Fig. S12A–D). Our human study was
consistent with our animal study and demonstrates the potential
of green light therapy in suppressing osteoporosis.

DISCUSSION
The regulatory mechanism that interlinks reproductive hormones
and bone homeostasis continues to be an area of ambiguity. For
the first time, our study presents groundbreaking evidence
demonstrating the involvement of GnIH, a crucial upstream
reproductive hormone, in the regulation of bone mass. Our
finding revealed that GnIH significantly enhance the function of
osteoclasts in vivo and in vitro by inhibiting the receptor Gpr147.
In addition, we discovered that both osteoblasts and osteoclasts
possess the capability to secrete GnIH, and demonstrated its
importance in GnIH/Gpr147 regulation of bone homeostasis.
Mechanistically, we demonstrated that GnIH/Gpr147 affects
osteoclast differentiation by regulating the PI3K/AKT, MAPK, NF-
κB and Nfatc1 signaling pathways. Finally, we found that green
light exposure can promote GnIH release and can avoid OVX mice
bone loss, and green light therapy significantly downregulated
serum levels of bone resorption markers in humans, providing a
novel approach for the treatment of osteoporosis disease (Fig. 6l).
Our study further demonstrates that the mechanism of green

light therapy in rescuing bone loss in OVX mice probably lies in
reducing osteoclast activity through regulating GnIH release,
which originates from the hypothalamus and bone tissue.
Traditionally, ultraviolet light and infrared light plays a crucial
role in bone mass regulation.44–46 However, it is important to note
that prolonged ultraviolet therapy can cause skin aging and
increase the risk of genetic mutations.47 Similarly, while far-
infrared light may have potential benefits, excessive exposure can
damage the skin and eyes.48 In comparison, green light is
generally considered safer and less harmful to the skin and eyes.49

In addition, while green light laser therapy has been shown to
promote the differentiation and proliferation of mesenchymal
stem cells into osteoblasts, relevant studies have only been
conducted at the cellular level, which does not necessarily imply
efficacy in vivo. Significantly, our study provides evidence that
green light therapy can effectively modulate the levels of bone
resorption markers in human serum. This discovery introduces a
novel and practical approach that holds promise for the clinical
treatment of osteoporosis. However, more detailed investigations
into how green light enhances the release of GnIH are needed in
the future.

GnRH agonist therapy is commonly utilized in the treatment of
certain cancers and individuals with precocious puberty.8,50 However,
data suggest a potential risk of reduced bone mass following GnRH
therapy. As reported, GnIH plays a regulatory role in the synthesis
and secretion of GnRH, acting as an inhibitor of GnRH secretion.13 It
has been reported that GnIH neurons regulate not only GnRH but
also Kisspetin, which is also believed to be a key reproductive
hormone upstream of GnRH.9,32 Our study has revealed a significant
regulatory effect of GnIH on bone mass. Furthermore, our findings
may provide an explanation for the association between excessive
activation of GnRH and low bone mass. Inadequate synthesis of GnIH
may potentially contribute to the increased risk of low bone mass
associated with GnRH agonist therapy.
The level of GnIH expression has been linked to abnormal

adolescent development and reproductive dysfunction.9 The loss
of GnIH expression is believed to be a contributing factor to the
onset of precocious puberty.34 It is also believed that GnIH
antagonists could be developed into drugs for reproductive
dysfunction, and whether fertility drugs developed for GnIH/
Gpr147 increase the risk of osteoporosis needs to be studied and
noted.33,51 In our study, we conducted long-term green light
therapy on OVX mice, exposing them to up to 8 h per day. It is
worth noting that mice are nocturnal animals,52 and such
prolonged exposure to green light therapy may potentially impact
their biological rhythms.53 Therefore, the appropriate duration and
intensity of green light illumination in clinical translational therapy
require further investigation and discussion. Additionally, the
response time to green light therapy may vary among different
populations and should be explored further.54

In total, our data strongly indicates the role of the key upstream
reproductive hormone, GnIH, in regulating bone homeostasis. This
study not only advances our understanding of this mechanism but
also provides a novel idea and potential method for clinical
treatment and prevention of osteoporosis.

MATERIALS AND METHODS
Mouse model
All experimental processes comply with East China Normal University
(ECNU) animal ethics (ethical approval number m20230206). ECNU
Animal Center provides 8–12 week old or 18 months old WT C57BL/6J
mice. It was established that all mice were maintained over a period
of 12 h under a complete dark-light cycle (with a white illumination
level of 200 lux) as well as a constant temperature and humidity level
(20–26 °C), unless otherwise indicated.
GnIH−/− mice and Gpr147−/− mice were generated by Cyagen

using the CRISPR/Cas9 system in the C57BL/6N mouse strain. To
create a GnIH knockout mouse, Exons 1 to 3 were targeted,
encompassing a 567 bp coding sequence within the region.
Specifically, gRNA1 (GATATTCTATACACGCTAGCTGG) targets exon
1, and gRNA2 (CTTCTCCAGACCTAGTGAACAGG) targets exon 3. For
the creation of a Gpr147 knockout mouse, Exons 2 to 3 were
targeted, covering a 415 bp coding sequence. Notably, gRNA3
(AGCCCAAGCACTTTCGAAGGTGG) targets exon 2, while gRNA4
(CATGCAGACGGAGTAAAGCCAGG) targets exon 3.
Genotype identification of mice was performed using the

following primer sequences: GnIH−/−-F: CATTTGCCAAATTAGACCCT-
TAGGG, GnIH−/−-R: AAATGCAACCCAGGGTTGATGTC, GnIH−/−-He/
Wt-F: AGCCCGACTTCAAGAGGCTAC; Gpr147−/−-F: GTGGACAGTAA-
TAAGTGGGCTTAGGGT, Gpr147−/−-R: AGCTAAACAACAGTCTCCTG-
CATG, Gpr147−/−-He/Wt-F: GTAATTCTGGGACTGGCACGC.

Cell culture and osteoclast differentiation
Refer to our previous research reports,6,55,56 bone marrow
macrophages (BMMs) were obtained from the femurs and tibias
of 8-week-old WT, GnIH−/− or Gpr147−/− mouse. They were then
cultured in α-MEM medium (Gibco) with the addition of 10 ng/mL
M-CSF (R&D), 10% FBS (Gibco), and 1% penicillin-streptomycin
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(HyClone). For osteoclast differentiation assay, BMMs were plated
in 96-well plates at a density of 1 × 104 cells per well.
Subsequently, they were stimulated with 50 ng/mL of RANKL
(R&D) and 10 ng/mL of M-CSF (R&D). After 5–7 days, The TRAP
staining kit (Sigma-Aldrich) was used to identify TRAP+ osteoclasts
(five or more nuclei) from osteoclasts fixed in 4% Paraformalde-
hyde (PFA). For LPS-induced osteoclast differentiation assay,
BMMs were plated in 96-well plates at a density of 1 × 104 cells
per well. The cells were incubated with 50 ng/mL of RANKL (R&D),
10 ng/mL of M-CSF (R&D), 50 ng/mL of LPS (Beyotime) and
10 μmol/L GnIH for 5 days. After fixed in 4% PFA, the cells were
stained for TRAP assay.57–59

Osteoblast-Osteoclast co-culture
Isolated preosteoblastic cells from the calvaria of 3–5-day-old
neonatal mice. Co-culturing was carried out in 96-well plates with
BMMs (1 × 104 cells per well) and preosteoblastic cells (1.5 ×103

cells per well) in α-MEM (Gibco) (10% FBS), 100 ng/mL 1 alpha, 25-
dihydropyrene (HyClone), 1% penicillin-streptomycin. One week
later, TRAP staining was performed, and the number of osteoclasts
exhibiting 5 or more nuclei and positive for TRAP staining was
quantified.

CCK-8 assay
After seeding 96-wells with a combination of 100 μL α-MEM and
20 ng/mL M-CSF-containing BMMs (1.2 ×104 cells per well) for two
days, then supplemented with CCK-8 solution (10 μL per well) for
90min and read the absorbance at 450 nm.

Cell migration assay
For BMM migration, GnIH at dosages of 0, 0.01, 0.1, 1, 10 μmol/L
was added in the lower chamber while BMMs were seeded in the
upper chamber (1 × 105 cells per well) of transwell inserts. After
one day, the migrated BMMs were fixed in 4% PFA for 0.5 h, then
used water wash 4 times and stained them for 2 h with 0.1%
crystal violet. In total, four fields of view were photographed per
insert and then quantified using Media Cybernetics’ Image-Pro
Plus 6.0 (Media Cybernetics).

Treatment with GnIH peptide in vivo
OVX-induced and LPS-induced (LPS was injected intraperitoneally
at a dose of 5 mg/kg body weight on day 0 and day 4) bone loss
mouse models were used as previously described.5,6,60 Mouse
GnIH peptide with the sequence Phe-Pro-Ser-Leu-Pro-Gln-Arg-
Phe-NH2 was intraperitoneally injected daily,61 at the dosage of
0.1 mg/kg in 200 μL PBS.62,63 OVX mice and aging mice were
treated with GnIH for one month, LPS-induced mice were treated
with GnIH for seven days. GnIH peptide was synthesized by
Shanghai Bootech BioScience & Technology.

Green light exposure
The green LED light source (Shanghai wence) was fixed on the top
of a special customized cabinet. OVX mice were subjected to
green LED light exposure within a custom-designed cabinet, while
being provided unrestricted access to food and water. Green light
(520–525 nm, 400 Lux) therapy exposure for 8 h (8:00 am-16:00
pm) daily for 60 consecutive days38,64 was applied to treated mice.
Following daily green light therapy, the mice were subsequently
returned to their standard animal housing facility.
A total of five healthy adult males between the ages of 20 and

40, who do not have any visual impairment or eye diseases, have
not taken any hormonal or osteoporosis medications within the
past three months, and do not have a history of chronic diseases or
other medical conditions, were selected for this study. For human
green light or regular light exposure experiment, the subjects were
initially exposed to regular light for 7 days as control, followed by
green light for another 7 days after a two-week rest period. LED
green light source emitting wavelengths between 520–525 nm or

regular light (6000 K LED light) were utilized. The experiment took
place in their designated room from 9:00 am to 11:00 am daily. The
LED green light or regular light source was positioned at a distance
of 1-2m from the subjects’ eyes, and the light intensity ranged
from 400 to 1 000 lux. To ensure individual comfort, subjects had
the flexibility to adjust the distance between the light source and
their eyes within the specified range. During the experiment
sessions, subjects were specifically instructed to remain awake and
maintain a normal blink rate without directly staring at the light
source. When exposed to green light or regular light, each subject
wore a hospital gown made of the same material. They were
encouraged to engage in activities that did not require additional
sources of light including conversation and listening to music,
while watching television or using screen devices, were forbidden.
Subjects were collected for peripheral venous blood sampling
before the experment and after one week of green light or regular
light therapy. The experiment underwent thorough review and
was approved by the Medical Ethics Committee of Yangzhi
Rehabilitation Hospital (Approval No. YZ 2023-070).

Human peripheral blood mononuclear cells differentiation
Obtaining blood from healthy adult individuals. After ficoll
centrifugation, human PBMCs were selected and were plated in
96-well plates at a density of 1.5 ×104 cells per well. Subsequently,
they were stimulated with 60 ng/mL of RANKL (R&D) and 20 ng/mL
of M-CSF (R&D), while treated with the 10 μmol/L human GnIH with
the sequence Val-Pro-Asn-Leu-Pro-Gln-Arg-Phe-NH2. After 7 days,
The TRAP staining kit (Sigma-Aldrich) was used to identify TRAP+

osteoclasts (five or more nuclei) from osteoclasts fixed in 4%
Paraformaldehyde (PFA). Human GnIH peptide was synthesized by
Shanghai Bootech BioScience & Technology.

Western blotting analysis
Following the treatment of cells with GnIH (10 μmol/L), proceed to
lyse the cells using RIPA buffer in order to extract proteins. The
protein concentration can then be quantified using the BCA assay
(Thermo). Electrophoresis and transfer to nitrocellulose filter
membranes (Beyotime) were followed by 3 h of treatment with
5% bovine serum albumin (Beyotime), and incubated with specific
antibodies: GAPDH antibody (CST), p-PI3K (Tyr467/199) antibody
(Abmart), p-AKT (Ser473) antibody (Abmart), p-p65 (Ser536) anti-
body (Abmart), p-IκB (Ser32/Ser36) antibody (Abmart), p-p38
(Thr180) antibody (Abmart), p-JNK (Tyr185) antibody (Abmart),
p-ERK (Thr202/Tyr204) antibody (Abmart), p65 antibody (Abmart),
IκB antibody (Abmart), p38 antibody (Abmart), JNK antibody
(Abmart), ERK antibody (Abmart), AKT antibody (CST), PI3K antibody
(CST), Nfatc1 antibody (SANTA CRUZ). A secondary antibody (Licor)
was added to the membranes after overnight incubation at 4 °C.
Images were captured using the Odyssey Infrared Imaging System.
Image-Pro Plus 6.0 software was used to quantify the bands. First, all
readings were normalized to the corresponding band of GAPDH.
Next, to calculate the fold changes, p-AKT was normalized to AKT
samples, p-PI3K was normalized to PI3K samples, p-p65 was
normalized to p65 samples, p-IκB was normalized to IκB samples,
p-p38 was normalized to p38 samples, p-JNK was normalized to JNK
samples and p-ERK was normalized to ERK samples.

Immunofluorescence staining
For paraffin sections, after treatment with gradient of dehydration
and 20mg/mL proteinase K for 20 min, paraffin sections were
fixed in 2% BSA and 0.1% Triton X-100 buffers for 1 h, they were
incubated overnight at 4 °C with first antibody Trap (Novus), then
with secondary antibody for 1 h, followed by DAPI staining for
nuclei (Sigma).65

RNA and RT-qPCR
RNA and cDNA were extracted separately using Trizol (Invitrogen,
USA) and 2× Hifair® II. SuperMix (Yeasen, China). Subsequently, the
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quantitative real-time PCR (RT-qPCR) reaction was performed
using the Hieff® qPCR SYBR® Green Master Mix (YEASEN).
Hypothalamic tissue was isolated from the brains of mice treated
with green light, and the bone tissue was derived from the femur
of the mouse after stripping the muscle tissue. The tissues were
snap-frozen using liquid nitrogen and subsequently pulverized.
BMMs and BMSC were isolated from 8-week-old WT mice.
Osteoblasts and chondrocytes were differentiated from BMSCs,
while osteoclasts were differentiated from BMMs.
The PCR primer sequences are as follows: Nfatc1-F: CCCGTCA-

CATTCTGGTCCAT, Nfatc1-R: CAAGTAACCGTGTAGCTGCACAA; Ctsk-
F: ATGTGGGTGTTCAAGTTTCTGC, Ctsk-R: CCACAAGATTCTGGG-
GACTC; Trap-F: CAGCTCCCTAGAAGA TGGATTCAT, Trap-R: GTCAG-
GAGTGGGAGCCATATG; Actin-F: GTACGCCAACACAGTGCTG, Actin-
R: CGTCATACTCCTGCTTGCTG; GnIH-F: CAAGACACCCGCTGATTTGC,
GnIH-R: TTCGCTTTCCACCAGGACTC; Gpr147-F: CCGAGTCTGAACGA-
GAGTGA, Gpr147-R: CGGTTCTTAAGCACGATGAA;

RNA-sequencing analysis
BMMs were isolated from 8-week-old WT and Gpr147−/− mouse
and then stimulated with RANKL (50 ng/mL) and M-CSF (10 ng/mL)
for 48 h. Cells were lysed using Trozil and sent to Shanghai Origin-
gene Biological Company for RNA extraction, sequencing and
analysis. Genes exhibiting a false discovery rate (FDR) < 0.05 were
classified as differentially expressed.

Micro-CT
Femurs of mice were fixed in 4% PFA for 48 h and washed with
water 4 times, then transferred into 75% alcohol for preservation.
Skyscan-1272 micro-CT (Bruker micro-CT, Belgium) was used to
examine the bone micro-architecture related parameters includ-
ing bone mineral density (BMD), bone volume density (BV/TV),
bone area density (BS/TV), trabecular number (Tb.N) and
trabecular thickness (Tb.Th). The following software was used:
Skyscan NRecon software (Bruker), CT Analyser software (Bruker),
CT Voxsoftware (Bruker), and scanning parameters and analysis
methods were as previously described.6,7

TRAP staining
After treatment with a dehydration gradient, the paraffin sections
were treated with 0.1% Triton X-100 for 30 min and washed with
PBS 2 times, and then stained with TRAP staining kit (Sigma-
Aldrich) at 37 °C for 1 h. The OsteoMeasure Analysis System
(Osteometrics) was used to analyze the number, surface area and
eroded surface area of osteoclast. For calvarias TRAP staining,
calvarias were isolated and fixed in 4% PFA for 24 h, then treated
wtih 0.1% Triton X-100 for 1 h and washed with PBS 5 times. After
stained with TRAP staining kit at 37 °C for 4 h, the positive area
were determined using the Image-Pro Plus 6.0 software.

Calcein labeling
WT, GnIH−/− and Gpr147−/− mice were injected with calcein
(30mg/kg) on postnatal day 55 and postnatal day 65, and
euthanized on postnatal day 72. Vertebrae were fixed in 4% PFA
for 24 h, processed through an alcohol dehydration gradient, then
embedded with methyl methacrylate. 5 µm sections were cut for
calcein double labeling analysis and Goldner’s staining. For
Goldner’s staining, the sections were stained with hematoxylin,
Ponceau Acid, Orange G and light green solution. The OsteoMea-
sure Analysis System (Osteometrics) were used to measure bone
formation rate per bone surface, mineral apposition rate, osteoblast
number, osteoblast surface area, and osteoids per bone surface.

Elisa assay
Analysis of GnIH levels in mouse serum by using the KL-GnIH-Mu
kit (Kanglang). Analysis of TNF-α, IL-1β, IL-6 levels in mouse serum
by using the ELISA Kit (Jingmei). Analysis of GnIH, TRACP, CTX,
OCN levels in human serum by using the ELISA Kit (Jingmei).

Statistical analysis
All data are reported as means ± SD. GraphPad Prism 8.0 was
employed to evaluate significant differences in the data. One-way
ANOVA followed by Tukey’s t tests or two-way ANOVA followed by
Tukey’s t tests was used for multiple comparisons. When
comparing only two groups, paired or unpaired Student’s t test
was used as appropriate. Statistical significance was P < 0.05.
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