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A B S T R A C T

Predicting the mechanical properties of powder mixtures without extensive experimentation is important for 
model driven design in solid dosage form manufacture. Here, a new binary interaction-based model is proposed 
for predicting the compressibility and compactability of directly compressed pharmaceutical powder mixtures 
based on the mixture composition. The model is validated using blends of MCC, lactose and paracetamol or 
ibuprofen. Both compressibility and compactability profiles are predicted well for a variety of blend composi-
tions of ternary mixtures for the two formulations. The model performs well over a wide range of compositions 
for both blends and better than either an ideal mixing model or a ternary interaction model. A design of ex-
periments which reduces the amount of API required for fitting the model parameters for a new formulation is 
proposed to reduce amount of API required. The design requires only three blends containing API. The model 
gives similar performance to the well-known Reynolds et al. model (2017) when trained using the same data sets. 
The binary interaction model approach is generalizable to other powder mixture properties. The model presented 
in this work is limited to curve-fitting of empirical compaction models for mixtures of common pharmaceutical 
powders and is not intended to provide guidance on the practical operating space (or design space) limits.

1. Introduction

Compaction is used within the pharmaceutical industry to create 
tablets, which are the most common solid oral dosage forms. Under-
standing and predicting the compaction behaviour of these powder 
mixtures is critical to aid in product quality. For example, tablets must 
be strong enough to retain their form during downstream processing. 
Direct Compression is a popular continuous manufacturing approach 
and since the compaction step is one of few critical stages in this process, 
understanding compaction behaviour of directly compressed powder 
mixtures is critical. However, predicting this behaviour is difficult to due 
to diverse blend properties and complex interactions between constit-
uent powders (Busignies et al., 2006).

The compaction behaviour of a powder mixture is typically described 
by compressibility, compactability and tabletability (Tye et al., 2005). 

Compressibility refers to how the porosity (or solid fraction) of the 
powder changes under applied pressure. Compactability is the variation 
of the tensile strength of the compact for different porosities. The tab-
letability describes how the tensile strength varies with applied 
compaction pressure and can be seen as the combination of compress-
ibility and compactability (see Fig. 1). Predicting tabletability of po-
tential formulations can potentially reduce costs associated with 
extensive experimentation.

Several models have been used previously for predicting compaction 
behaviour for powder mixtures. However, the biggest challenge is pre-
dicting behaviours for mixtures where the formulation properties are 
not known. Generally, the formulation properties must be measured as 
an input to some of these models, which requires significant experi-
mentation for process optimisation. Mixture rules can be used to predict 
compaction behaviour of a mixture based on the formulation properties 
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from single component properties, allowing changes in compressibility 
and compactability to be investigated in silico, thus reducing costs 
(Reynolds et al., 2017). This is known as Model Driven Design (MDD) 
and can be used to aid early-stage formulation design for tablets. 
Without reliable mixture models for compressibility and compaction 
properties, any model based optimisation of formulation for compaction 
is impossible. Being able to use model-based approaches has the po-
tential to significantly reduce development time and material used 
during scale up, as well as reduce the number of failed batches. Mixing 
rules have also been applied to solid mixtures in other industries. For 
example, Silva and Miranda (2003) used mixing rules to accurately 
predict some of the powder mixture properties, such true density and 
specific surface area, for catalyst applications.

Compressibility models such as the Kawakita (Kawakita and Lüdde, 
1971), Heckel (Heckel, 1961) and Gurnham (Zhao et al., 2006) equa-
tions can capture the compressibility relationship for a given mixture 
well. The Kawakita equation is described by the following: 
P
C =

1
ab+

P
a (1) 

where P is applied pressure, C is the degree of volume reduction; a 
and b are fitting parameters. The Kawakita equation is more generally 
applied to soft powders in vertical vibrating or tapping compaction 
(Wang et al., 2021). The Heckel equation assumes the compaction is 
analogous to a first-order reaction and relates the relative density to the 
applied pressure (Heckel, 1961), as given by: 

ln
( 1

1 − γT

)
= KP+ ln

( 1
1 − γI

)
(2) 

where γT is the relative density of the powder after compaction, γI is 
relative density before compaction and K is a constant that is material- 
dependent. Denny (2002) presented detailed comparisons between the 
Kawakita and Heckel models, which concluded that neither model 
predicts compressibility behaviour well over a wide range of applied 
pressures and a wide range of materials. Both models are only consid-
ered valid for relatively low ranges of applied pressures.

The Gurnham equation (Eq. (3) was proposed by Zhao et al. (2006)
as an alternative to the Kawakita and Heckel equations to accurately 
predict the compressibility of pharmaceutical mixtures. Zhao et al. 
(2006) proposed and validated using the Gurnham equation, which was 
well known in chemical engineering but had not been studied for 
pharmaceutical powder mixtures prior to this work. The results 
demonstrated predicting compressibility more accurately over wider 
pressure ranges than the Kawakita or Heckel equations.

The Gurnham equation is given by the following: 

ε(P) = −
1
K ln

( P
P0

)
(3) 

For modelling compactability, the Ryshkewitch-Duckworth equation 
(Wu et al., 2005) has been extensively applied due to its simplicity 
(Etzler et al., 2011, Wang et al., 2021). It is described by the following: 
σ = σ0e−kbε (4) 

where σ is the tensile strength of the compacted powder, σ0 is the 
tensile strength at zero porosity and kb is the bonding number. The main 
alternative to the Ryshkewitch-Duckworth model is the model proposed 
by Kuentz et al. (1999), which relates tensile strength to the solid frac-
tion before and after compaction, as given by: 
σ = k(γ − γc)

2.7 (5) 
where γ and γc are the solid fraction before and after compaction 

respectively, and k is a model parameter. This model was developed 
based on percolation theory and mainly is applied to powders with 
relatively low densities. A comparison between Ryshkewitch- 
Duckworth and Kuentz models by Wang et al. (2021) showed that the 
Ryshkewitch-Duckworth model produced better tensile strength pre-
dictions for ternary mixtures. A more in-depth review of compressibility 
and compactability models was carried out by Wang et al. (2021).

These compressibility and compactability models are good when the 
formulation properties are known. However, a change in the formula-
tion, whether a different active pharmaceutical ingredient (API)/ 
excipient is used or the composition of the same ingredients changes, the 
relationship between porosity and applied pressure is likely to change. 
This means that the parameters in these models will likely need updating 
and this will often require further experimentation. Ideally, compaction 
behaviour of mixtures could be predicted with minimal experimentation 
based on the properties of the single components of the mixture, i.e., the 
model can predict compaction properties of a new formulation with the 
same set of parameters by incorporating mass or volume fractions into 
the model.

Frenning et al. (2009) proposed a volume-additive model based on 
the Kawakita equation for predicting compressibility, where the Kawa-
kita parameters of the mixture (effective parameters) are derived from 
the volumes and parameters of a single component. The authors vali-
dated the approach for binary mixtures. Mazel et al. (2011) proposed an 
improvement to the Frenning model (Frenning et al., 2009) that did not 
use effective Kawakita parameters. Instead, the authors used the 
Kawakita parameters of the pure products and applied this to binary 
mixtures of L-alanine and microcrystalline cellulose (MCC), where good 
prediction of the compressibility was observed. Busignies et al. (2012)
used a very similar approach, however, instead the model was a function 
of density so that it was more independent of geometry. This approach 
was also not limited to binary mixtures and was successfully applied to 
predict the porosity of 4 different mixtures using 4 commonly used 
pharmaceutical excipients, however, prediction error was significantly 
higher at lower applied compaction pressures.

Reynolds et al. (2017) took a slightly modified form of the Gurnham 
equation, as a basis of a method for predicting compressibility of multi- 
component pharmaceutical powder mixtures and used a volume addi-
tive approach to predict the porosity of the mixture based on the 
Gurnham equation parameters of the single components in the mixture 
and their volumetric compositions. The main assumption in this model is 
the “consideration of the volumetric occupancy of each powder under an 
applied compaction pressure and the respective contribution it then 
makes to the mixture properties” (Reynolds et al., 2017). As the mixture 
is compressed there is difference in the relative volumetric proportions 

Fig. 1. Overview of the link between compressibility, compactability and tabletability for describing compaction behaviour.
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of each constituent. The approach led to accurate predictions of 
compressibility for binary and ternary mixtures of pharmaceutical 
excipients.

Wu et al. (2006) proposed a model based on the Ryshkewitch- 
Duckworth equation to predict the tensile strength of multi- 
component pharmaceutical mixtures as a function of porosity (com-
pactability). Various mixtures of excipients of up to four components 
were used to assess the model’s performance, which showed good pre-
dictions against the experimental data. However, tensile strength was 
overestimated at a solid fraction of less than 0.55, which has been 
observed in other work using Ryshkewitch-Duckworth as well. Never-
theless, it was observed that pharmaceutical tablets typically have a 
solid fraction in the range of 0.7–0.9 where the model predicted well, 
and so the Ryshkewitch-Duckworth is likely still practically appropriate 
for compactability modelling for pharmaceutical tabletting. Reynolds 
et al. (2017) built on this work, and the work by Etzler et al. (2011), by 
incorporating the volumetric contribution of each component in the 
mixture, with the tensile strength of the individual components, to 
predict the tensile strength of the mixture. Binary and ternary mixtures 
of three commonly used pharmaceutical excipients were characterised 
and used to validate the model. These results demonstrated the ability to 
predict the compactability of these mixtures very well, with only the 
characterisation of the individual excipients necessary to calibrate the 
model.

Jolliffe et al. (2022) presented an approach involving the extrapo-
lation of binary tablet data for challenging materials where compaction 
of these pure components is not possible. Then various mixing rules 
were used for comparison, similar to many of the previously discussed 
methods, to predict compressibility and compactability of the mixtures. 
This approach serves as an extension to approaches, such as Reynolds 
et al. (2017), in circumstances where one of the pure components cannot 
be compressed. However, the approach has limitations, such as the use 
of only binary mixtures and that the extrapolation accuracy decreases at 
high drug loadings and for certain API.

Recently, Aroniada et al. (2023) developed a model based on mixing 
rules for ternary blends for predicting various flow properties of a 
mixture based on binary interactions between the components.

Wang et al. (2021) presented a comprehensive assessment of the 
most popular compressibility models for continuous pharmaceutical 
tabletting and recommended the Reynolds et al. (2017) model due to its 
accurate porosity predictions with only 2 parameters.

Despite good predictive capability shown in these previous studies, 
the Reynolds et al. (2017) model only considers the volumetric contri-
butions of each component in a linear combination. However, Busignies 
et al. (2006) observed nonlinear interactions when studying multiple 
binary mixtures of excipients. Therefore, considering nonlinear in-
teractions could lead to a more robust model. Additionally, the Reynolds 
et al. (2017) model was only validated on a single ternary mixture that 
only included excipients and so further validation on more ternary 
mixtures that also include APIs is required.

This study aims to expand on previous studies (Reynolds et al., 2017, 
Wu et al., 2006) to develop models to predict both the porosity and 
tensile strength of pharmaceutical mixtures by including higher order 
interactions in the mixture models as well a comparison with the orig-
inal Reynolds et al. (2017) model to further validate this model. Addi-
tionally, a design of experiments, which reduces the amount of API 
required for fitting the model parameters for a new formulation, is 
proposed for model calibration with new formulations. By predicting the 
compressibility and compactability of the mixtures using minimal 
experimental data, the tabletability of the formulation can be assessed to 
aid formulation and process design.

2. Material and methods

2.1. Modelling theory

When considering the compressibility and compactability of directly 
compressed powder mixtures, mixture rules are typically incorporated 
into these equations. Reynolds et al. (2017) used a volume additive 
model which calculated the mixture porosity by considering the volu-
metric proportions of the porosity of each component within the 
mixture. The same principal was applied to the tensile strength model.

The Reynolds et al. (2017) compressibility mixture model is given by 
the following two equations: 
εmix(P) =

∑

i
δiεi(P) (6) 

where εmix is the porosity of the compacted mixture, εi(P) is the 
porosity of component i that can be calculated by the Gurnham equation 
(Equation (3), and δi is the variable volumetric composition of compo-
nent i which can be described as: 

δi =
xi
/(

(1 − εi(P))ρtrue,i
)

∑ xi
/(

(1 − εi(P))ρtrue,i
) (7) 

where xi is the mass fraction of component i in the mixture and ρtrue,i 
is the true density of particles of component i. For this compressibility 
model, the parameters that require fitting are K and P0 from Equation (3)
for each pure component.

The Reynolds et al. (2017) compactability mixture model is given by 
the following: 
ln(σmix) =

∑

i
δiln(σi) (8) 

where σi given by the Ryshkewitch-Duckworth equation (Equation 
(4). For this compactability model, the parameters that require fitting 
are σ0 and kb from Equation (4) for each pure component.

Wu et al. (2005) proposed a similar mixture model using volumetric 
proportions for predicting tensile strength with the Ryshkewitch- 
Duckworth equation. However, instead of an additive model for the 
porosity of each component (as in (Reynolds et al., 2017)), the mixing 
rule was for the volumetric contributions of each constant within the 
model, i.e. the bonding number, kb, for the mixture was equal to the sum 
of the bonding numbers of each constituent powder multiplied by the 
volume fractions of each constituent powder. Further improvements to 
these mixture models could be made by considering higher order 
interactions.

Considering a ternary powder mixture; after compaction, the 
porosity of the mixture can be described by altering Equation (3) to give 
the following: 

εmix(P) = −
1

Kmix
ln
( P

P0,mix

)
(9) 

where εmix is the porosity of the compacted mixture, Kmix is the 
compressibility constant of the mixture and P0,mix is the pressured 
needed to produce a compact of zero porosity for the mixture.

We then assume that the two constants in Equation (9) can be 
described with a binary interaction model of the constants relating to 
each of the constituent powders, as detailed by the following equations: 
Kmix = KAyA +KByB +KCyC +KAByAyB +KACyAyC +KBCyByC (10) 

ln(P0,mix
)
= ln(P0,A)yA + ln(P0,B)yB + ln(P0,C)yC + ln(P0,AB)yAyB
+ ln(P0,AC

)yAyC + ln(P0,BC
)yByC

(11) 

where Ki is the compressibility constant for component i, yi is the 
volume fraction of component i, Kij is the compressibility constant for a 
binary mixture of components i and j, P0,i is the P0 for component i and 
P0,ij is the P0 for a binary mixture of components i and j.
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The mixture parameters are weighted by volume fractions which are 
determined from the pure component mass fractions and pure compo-
nent true densities (Eq. (12). 

yi =
xi

ρtrue,i∑
i

xi
ρtrue,i

(12) 

The binary interactions are considered in this proposed model. 
However, an ideal mixing model (no binary interaction terms) and a 
ternary interaction mixture model were also tested for comparison. The 
ideal interaction is given below in Equations (13) and (14), and the 
ternary interactions in Equations (15) and (16). 
Kmix = KAyA +KByB +KCyC (13) 

ln(P0,mix
)
= ln(P0,A)yA + ln(P0,B

)yB + ln(P0,C
)yC (14) 

Kmix = KAyA +KByB +KCyC +KAByAyB +KACyAyC +KBCyByC +KABCyAyByC
(15) 

ln(P0,mix
)
= ln(P0,A)yA + ln(P0,B)yB + ln(P0,C)yC + ln(P0,AB)yAyB
+ ln(P0,AC)yAyC + ln(P0,BC

)yByC + ln(P0,ABC
)yAyByC

(16) 

An identical approach can be taken for creating the compactability 
mixture model, except starting from the Ryshkewitch-Duckworth 
equation. The tensile strength of a ternary mixture as a function of 
porosity can be described by the following equation: 
σmix(ε) = σ0,mixe−kb,mixε (17) 

where σmix is the tensile strength of the powder mixture, σ0,mix is the 
tensile strength at zero porosity for the mixture and kb,mix is the bonding 
number of the mixture.

As with the compressibility model, the two constants of the mixture 
can be described by binary interaction mixture models: 
σ0,mix = σ0,AyA + σ0,ByB + σ0,CyC + σ0,AByAyB + σ0,ACyAyC + σ0,BCyByC (18) 

kb,mix = kb,AyA + kb,ByB + kb,CyC + kb,AByAyB + kb,ACyAyC + kb,BCyByC (19) 
where σ0,i is the tensile strength at zero porosity for pure component 

i, σ0,ij is the tensile strength at zero porosity for a binary mixture of 
components i and j, kb,i is the bonding number for pure component i and 
kb,ij is the bonding number for a binary mixture of components i and j. As 
with the compressibility model, ideal mixture and ternary interaction 
mixture models are tested for comparison, as given by the following 
equations: 
σ0,mix = σ0,AyA + σ0,ByB + σ0,CyC (20) 

kb,mix = kb,AyA + kb,ByB + kb,CyC (21) 

σ0,mix = σ0,AyA + σ0,ByB + σ0,CyC + σ0,AByAyB + σ0,ACyAyC + σ0,BCyByC
+ σ0,ABCyAyByC

(22) 

kb,mix = kb,AyA + kb,ByB + kb,CyC + kb,AByAyB + kb,ACyAyC + kb,BCyByC
+ kb,ABCyAyByC

(23) 

The fitting of the constants in equations (10) and (11), and (18) and 
(19), is done using experimental data for various single, binary and 
ternary mixtures of powders.

2.2. Model evaluation methodology

To evaluate whether the modified Gurnham equation (Equation (3)
was able to capture the compressibility relationship well for the exper-
imental data generated in this study, Equation (3) was fitted to each 
blend, for both formulations. The adjusted R2 and RMSE were calculated 
to assess the fit for each blend. Adjusted R2 is used because it is adjusted 

for models with different parameters and so allows for comparison be-
tween models of different numbers of parameters. Adjusted R2 is 
calculated by the following: 

R2
adj = 1−

(1 − R2)(n − 1)
n − p − 1 (24) 

where n is the number of samples and p is the number of features/ 
input variables. The R2 is given by: 

R2 = 1−

∑n
i=1(yi − ŷi)

2
∑n

i=1(yi − y)2 (25) 

where y is the actual value of the response, ŷ is the predicted 
response and y is the mean of the actual response. The RMSE is calcu-
lated as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2
√

(26) 

The same process of fitting was repeated with the Ryshkewitch- 
Duckworth equation (Equation (4) for the compactability profiles. 
From the fitted compressibility and compactability profiles, the K, P0, kb 
and σ0 parameters for each blend can be extracted.

To apply the proposed mixing model, first the six parameters in 
Equation (10) and the six parameters in Equation (11) are fitted to a set 
of training data. Instead of fitting all 12 parameters on the full porosity 
data for each blend within the training data set in 1 step, it makes more 
sense to fit the Equation (10) parameters to the K values for those blends, 
which are determined by fitting the modified Gurnham equation to 
those training data blends. Then the same is done for the P0 and the 
parameters in equation (11). This essentially leads to a 3-stage fitting 
procedure, as illustrated in Fig. 2. The parameter estimation was carried 
out in MATLAB using the fitlm function with default conditions.

An identical procedure is applied for the parameter estimation of the 
proposed compactability model.

Firstly, for initial evaluation of the proposed models, the parameters 
are estimated using all available blends as the training data. Addition-
ally, to evaluate the use of binary interactions in the mixture models, the 
parameter fitting procedure was repeated using an ideal mixture model 
(Eqns. (13), (14), (20) and (21)). The models were then also evaluated 
with the addition of a ternary interaction term (Eqns. (15), (16), (22) 
and (23)).

Secondly, a design of experiments was proposed to recommend a 
reduced set of blends as the training data for model calibration for future 
formulations. This experimental design tested different sets of blends as 
training data and evaluated the resulting average RMSE. The different 
sets of training data were developed to minimise API usage and use as 
many of the binary excipient-excipient blends as possible. If simply the 
API is swapped in the formulation, then only experiments using the 
ternary blends would need to be performed because the binary excipient 

Fig. 2. Overview of the parameter fitting procedure for the compress-
ibility model.
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blends had been performed previously and the data could be stored for 
future use for model calibration.

After the training data set to reduce API usage was selected, the 
remaining blends were used for model validation. This proposed 
experimental design was developed on the paracetamol formulation and 
validated on the ibuprofen formulation.

2.3. Experimental methods

Two formulations were used in this study for model calibration and 
validation, both incorporating four commonly used excipients within 
the pharmaceutical industry: lactose monohydrate (Lactose SuperTab 
21AN), microcrystalline cellulose (MCC) (Avicel PH102), Ac-Di-Sol 
(disintegrant) and magnesium stearate (lubricant). The first formula-
tion, denoted as formulation 1, had the addition of Micronized Para-
cetamol (Mallinckrodt Pharmaceuticals, USA) as the active 
pharmaceutical ingredient (API); the second formulation, denoted as 
formulation 2, added Ibuprofen 50 (BASF, USA) as the API.

To understand the effect of different compositions on compaction, 
the mass fraction of API, lactose and MCC was varied within a ternary 
phase diagram to create different blends, with Ac-Di-Sol and magnesium 

stearate kept at a constant amount, of 3 % and 1 % w/w respectively, 
throughout. For formulation 1; 7 ternary blends; 6 binary blends 
including paracetamol, 1 single paracetamol blend, and 5 binary blends 
of lactose and MCC are used. These 19 blends are illustrated on a ternary 
phase diagram in Fig. 3, calculated on an Ac-Di-Sol/Magnesium Stearate 
free basis, and described in Table 1 for exact mass fractions. For 
formulation 2; 10 ternary blends were created, with a single ibuprofen 
blend. In addition, the binary lactose/MCC blends from formulation 1 
were used in model development for formulation 2. More ternary blends 
were used in formulation 2 to provide additional data for validation of 
the modelling approach, as typically ternary blends with API are of in-
terest. Fig. 4 illustrates these ibuprofen blends on a ternary phase dia-
gram, including exact mass fractions in Table 2. The mass fractions for 

Fig. 3. Mass percentages of the paracetamol, MCC and lactose that were varied 
to create 19 blends for formulation 1 (Table 1).

Table 1 
Mass percentages of the mixtures for formulation 1 (paracetamol).

Blend Paracetamol 
(%)

MCC 
(%)

Lactose 
(%)

Ac-di- 
sol (%)

Magnesium 
Stearate (%)

1 96 0 0 3 1
2 40 56 0 3 1
3 40 0 56 3 1
4 40 41 15 3 1
8 5 91 0 3 1
9 15 81 0 3 1
10 5 0 91 3 1
11 15 0 81 3 1
12 22 41 33 3 1
13 5 23 68 3 1
14 23 25 48 3 1
15 5 76 15 3 1
16 40 10 46 3 1
17 22 59 15 3 1

Fig. 4. Mass percentages of the ibuprofen, MCC and lactose that were varied to 
create 11 blends for formulation 2 (Table 2).

Table 2 
Mass percentages of the mixtures for formulation 2 (ibuprofen).

Blend Ibuprofen 
(%)

MCC 
(%)

Lactose 
(%)

Ac-di-sol 
(%)

Magnesium 
Stearate (%)

1 96 0 0 3 1
2 22.78 58.22 15.00 3 1
3 22.23 41.18 32.59 3 1
4 5.00 76.00 15.00 3 1
5 40.00 41.00 15.00 3 1
6 5.00 59.03 31.97 3 1
7 16.00 10.00 70.00 3 1
8 40.00 10.00 46.00 3 1
9 22.45 23.09 50.46 3 1
10 38.37 26.39 31.24 3 1
11 5.00 35.52 55.48 3 1

Table 3 
Mass percentages of excipient blends.

Blend API 
(%)

MCC 
(%)

Lactose 
(%)

Ac-di-sol 
(%)

Magnesium Stearate 
(%)

12 0 96 0 3 1
13 0 0 96 3 1
14 0 48 48 3 1
18 0 24 72 3 1
19 0 72 24 3 1
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the excipient only blends are displayed in Table 3.
A 3 L bin mixer (Sinoped, China) was used to prepare the different 

mixtures for both formulations. For each mixture, the API (paracetamol/ 
ibuprofen), lactose, MCC and Ac-Di-Sol were pre-mixed in the bin mixer 
with 65 % filling ratio and 20 rpm rotational speed for 20 min. The 
required amount of magnesium stearate is then added to the bin mixer 
and the mixture is lubricated with a 40 % headspace, at 20 rpm, for 8 
min and 40 s.

For each blend, tablets were manufactured via direct compression 
using a Phoenix Compaction Simulator (Phoenix, Rubery Owen, Telford, 
England). The compaction simulator was fitted with 10 mm flat faced 
punch and die. Punch surface and die were lubricated using magnesium 
stearate (Mallinckrodt Pharmaceuticals, USA) suspended in methanol. 

The methanol was allowed to evaporate before use. 300 mg fill weight 
was used for all materials, using manual filling. The powder was com-
pressed to 10 different compression heights, using a single ended V 
shape profile with a punch speed of 30 mm/s. For each tablet compact 
successful ejected, digital callipers (CD-6″C Digital Calliper, Mitutoyo, 
UK) were used to measure height and diameter, followed by measuring a 
diametrical breaking force, using a Hollands C50 tablet hardness tester 
(Hollands C50, Engineering Solutions, Nottingham, UK).

The compaction pressure was calculated from the average of the 
upper and lower compression forces, divided by the punch tip cross- 
sectional area. The porosity of the tablet was calculated from the 
following: 

Fig. 5. Experimental compressibility curves with fits from the modified Gurnham equation for paracetamol formulations blends 2 to 4, and excipient blends 5 to 7.

Fig. 6. Experimental compressibility curves with fits from the modified Gurnham equation for ibuprofen formulations blends 2 to 7.
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ε = 1−
m

ρ πD2
4 t (27) 

where m is the weight of the tablet, ρ is the true density of the powder 
mixture, D is the major diameter of the tablet, and t is the tablet 
thickness. The true density of the powders was measured using a 
helium gas displacement pycnometer (AccuPyc II 1340, Micro-
meritics) with a 1 cm3 cup.
The tensile strength of the compact, σ, is calculated from the tablet 
geometry and diametrical breaking force through the following 
equation:

σ =
2F
πDt (28) 

where F is the breaking force (i.e., the hardness).
Blend 1 had issues compacting well due to lamination, for both 

formulations, and so this blend was not used for the modelling.

3. Results and discussion

3.1. Compressibility model evaluation

For the paracetamol and ibuprofen formulations, the experimental 

data and the fit with the Gurnham equation, for the first 6 blends, along 
with the R2adj and %RMSE (root mean squared error) values, are shown in 
Figs. 5 and 6 respectively. Details of the formulations in the blends 
labelled in these figures are shown in Tables 1 and 2. Only blends 2–7 are 
displayed in these figures, with the remaining blends are omitted to 
prevent cluttered figures. However, the remaining blends produced very 
similar fits.

From these compressibility fits and the associated metrics (above 
0.95 R2 and below 0.013 RMSE, approximately), for both formulations, 
the modified Gurnham equation captures the relationship between 
porosity and applied pressure very well for each blend. This validates the 
selection of this model form on which to base the interaction-based 
mixture model.

To initially assess whether the proposed interaction mixture model 
for the parameters within the Gurnham equation is acceptable, the fitted 
parameters, K and P0, for each blend are plotted with respect to the mass 
fraction of the 3 main constituent powders in the mixtures, as illustrated 
in Figs. 7 and 8. These plots suggest trends in the K and P0 values 
associated with the composition of the blend. The relationship is 
nonlinear indicating including the binary interactions in the mixture 
model is likely necessary to be able to predict the Gurnham parameters 
as a function of the ternary blend composition.

Fig. 7. Variation of modified Gurnham equation parameters with blend 
composition for the paracetamol formulation: (a) K, (b) P0.

Fig. 8. Variation of modified Gurnham equation parameters with blend 
composition for the ibuprofen formulation: (a) K, (b) P0.
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3.1.1. Parameter estimation using all data
To assess the performance of the proposed model form, all the 

available blends were used for training data to estimate the model pa-
rameters. All 3 mixture rules were assessed and the average RMSE across 
all blends for each of these mixture rules is displayed in Table 4 for both 
the paracetamol and ibuprofen formulations.

For the paracetamol formulation, the average RMSE across the 
training data was 0.012 and the average R2adj was 0.95 for the proposed 
binary interaction mixture model. As indicated in the previous section, 
RMSE<0.013 indicates a very good fit and therefore this indicates 
acceptable performance for the binary model on average. Comparing the 
different mixing rules, there is a 33 % improvement in average RMSE 
going from ideal to binary mixture rules. Since the model complexity is 
changing from the increase in parameters, it is important to also observe 
the change in average R2adj, which account for changes in the number of 
parameters as discussed previously. Going from ideal to binary rules, the 
average R2adj improves from 0.89 to 0.95, which is still a significant 
improvement. However, only an 8 % improvement in average RMSE 
comes from the addition of the ternary interaction term, with a negli-
gible 0.4 % change in average R2adj (0.953 to 0.957). For the ibuprofen 
formulation, the differences in average RMSE are almost identical, with 
an even greater improvement from ideal to binary mixture rules, and so 
the same conclusions can be made. Based on these results, the binary 

interaction rules were chosen within the model because it provided 
significant improvements over the ideal mixture rule, but the ternary 
interaction rule gave negligible improvements when adjusting for the 
additional model complexity (R2adj).

Figs. 9 and 10 show examples of these predictions for the paraceta-
mol and ibuprofen blends respectively. The blends in these plots are 
selected to demonstrate the range of compressibility as well as the ex-
tremes in accuracy. Table 5 shows the fitted parameters and the asso-
ciated 95 % confidence intervals for both formulations. The confidence 
intervals are reasonable and do not contain zero, further demonstrating 
that the binary interaction parameters are significant.

3.1.2. Experimental design to reduce API usage for model development
To determine the experiments for model training with reduced API 

usage, different sets of training data were evaluated and the one which 
minimised the trade-off between number of experiments using API and 
model performance was selected as the design of experiments. All five 
excipient binary blends were used, noting that these data can be 
collected once and then used for any API formulation. Training sets 
using additional 2 to 6 ternary blends containing API were then tested 
(see Table 6). Table 5 shows the average RMSE for all training data sets. 
There is a significant decrease in RMSE occurs moving from 2 to 3 API 
blends in training data. This is expected because 3 blends with API 
should be required as minimum to properly fit the 3 parameters KA, KAB, 
KAC (or P0A, P0AB, P0AC from the other model). However, there is no 
substantial decrease in average RMSE with increasing from 3 to 6 API 
blends. Therefore, the proposed experimental design to reduce API 
usage is to perform only 3 experiments using blends at 25 % and 40 % 
API, plus the 5 available excipient-excipient blends, to give the most 
robust, minimum experimental design for model calibration. Note that 
doing experiments with pure API is not recommended, as the pure API 
may not effectively compress. The current design with three formula-
tions uses only 1.25 times more API than a single 100 % API experiment. 
Similar results were seen for the ibuprofen formulation. Given this 
recommendation, a minimum amount of material can be used in the 
characterisation process to allow for the formulation and process de-
cisions to be made at a very early stage of development.

The training data set for this experimental design is shown 

Table 4 
Compressibility model performance (average RMSE and R2adj across all blends) 
against mixing rule for the parameters for both paracetamol and ibuprofen 
formulations (For concision, X indicates any one of the parameters that in-
corporates a mixture model).

Mixing 
Rule

Paracetamol 
RMSE/R2

adj

Ibuprofen 
RMSE/ 
R2
adj

Ideal Xmix =
∑

iyiXi 0.018/0.89 0.020/ 
0.86

Binary Xmix =
∑

iyiXi +
∑

ijyiyjXij 0.012/0.95 0.012/ 
0.94

Ternary Xmix =
∑

iyiXi +
∑

ijyiyjXij +

yiyjykXijk

0.011/0.96 0.011/ 
0.95

Fig. 9. Measured and predicted compressibility for blends 9, 10 and 14 using the proposed binary mixture model for the paracetamol formulation (model trained 
using all data).
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graphically in Fig. 11. Given this training data set, the region of feasi-
bility is limited to the edges of formulation spaced illustrated in Fig. 11. 
Due to the empirical nature of the model, it should not be extrapolated to 
formulations outside of this space (above 40 % API for example).

The model parameters with 95 % confidence intervals fitted using 
the reduced training set are shown in Table 7 and can be compared to the 
parameters where the full data set is used for fitting (Table 5). The 
confidence intervals for KA and P0,A would be lower if the single API 
blends compaction experiments were successful. This would also likely 

lead to improved performance of the model. All the binary interaction 
parameters have confidence intervals that do not contain zero, which 
indicates that these interaction predictor variables have an effect on the 
porosity.

Figs. 12 and 13 show parity plots for training and validation data sets 
for Kmix and P0,mix for paracetamol and ibuprofen formulations respec-
tively. Broadly speaking, the reduced training set model predicts similar 
mixture model parameters to those using the full data set for training. 
Experimental values of Kmix and P0,mix are predicted well except for the 
two binary paracetamol/lactose blends showing the highest values of 
Kmix and P0,mix.

3.2. Compactability model evaluation

An assessment of the fit of Equation (4) to the experimental data was 

Fig. 10. Measured and predicted compressibility for blends 9, 10 and 14 using the proposed binary mixture model for the ibuprofen formulation (model trained 
using all data).

Table 5 
Fitted parameters for Eq. (10) and Eq. (11) and their 95% confidence intervals 
for both formulations for the compressibility model.

Formulation KA (¡) KB (¡) KC (¡) KAB 
(¡)

KAC 
(¡)

KBC (¡)

Paracetamol 10.7 ±
3.5

6.3 ±
1.5

12.8 ±
1.4

−4.6 ±
4.3

13.1 ±
10.5

−14.3 
± 6.1

Ibuprofen 13.0 ±
4.5

6.3 ±
1.4

12.8 ±
1.4

−6.1 ±
3.1

11.4 ±
3.4

−14.3 
± 6.1

P0,A 
(MPa)

P0,B 
(MPa)

P0,C 
(MPa)

P0,AB 
(MPa)

P0,AC 
(MPa)

P0,BC 
(MPa)

Paracetamol 1801 
± 851

321.1 
± 115

1098 
± 693

0.1 ±
0.2

1.0 ±
1.3

0.2 ±
0.2

Ibuprofen 52.6 ±
121

321.1 
± 115

1098 
± 693

23.3 ±
19.3

56.4 ±
34.1

0.2 ±
0.1

Table 6 
Average RMSE across training blends for number of additional experiments 
using API (in addition to 5 excipient-excipient binary blends).

Number of blends in training data 
using API

API blends used 
(from Table 1)

Average RMSE 
training

2 4, 12 0.0086
3 4, 12, 16 0.0069
4 4, 12, 15, 16 0.0065
5 4, 12, 15, 16, 17 0.0067
6 4, 12, 13, 15, 16, 

17,
0.0064

Fig. 11. Ternary phase diagram illustrating the blends for model training for 
the reduced experimental design.
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carried out in the same way as the fitting of Equation (3) for the 
compressibility data. Fig. 14 and Fig. 15 show the experimental com-
pactability curves for the paracetamol formulation and ibuprofen 
formulation respectively, with fits from the Ryshkewitch-Duckworth 
equation (Equation (4), including R2adj and RMSE values for each 
blend. As with the compressibility model structure evaluation, only 
blends 2–7 are displayed, with the remaining blends are omitted to 
prevent cluttered figures. However, the remaining blends produced 
similar fits. These performance metrics (very high R2adj (above 0.95 and 
low RMSE (below 0.15)) and visual inspection of the fits indicate that 
the form of Ryshkewitch-Duckworth equation is, as expected, a very 
good fit for the experimental data and so is a good basis for the proposed 

interaction-based model for predicting tensile strength based on the 
blend composition as well as porosity.

3.2.1. Parameter estimation using all data
As with the compressibility model, initially all the data was used for 

training to fully assess the capability of the proposed model. All 3 
mixture rules were assessed and the average RMSE across all blends for 
each of these mixture rules is displayed in Table 8 for both the para-
cetamol and ibuprofen formulations. Similar conclusions can be drawn 
to those for the compressibility model. There is notable improved per-
formance when going from the ideal to binary interaction model but 
negligible improvement by including a ternary interaction term. 

Table 7 
Fitted parameters for Eq. (10) and Eq. (11) and their 95% confidence intervals for both formulations for the compressibility model using reduced training data set.

Formulation KA(¡) KB(¡) KC(¡) KAB(¡) KAC(¡) KBC(¡)
Paracetamol 12.4 ± 13.6 5.9 ± 2.4 12.6 ± 2.4 −6.7 ± 2.2 6.6 ± 1.9 −10.9 ± 8.9
Ibuprofen 20.2 ± 19.2 5.9 ± 2.4 12.6 ± 2.4 –22.7 ± 6.2 3.1 ± 1.2 −10.9 ± 8.9

P0,A(MPa) P0,B(MPa) P0,C(MPa) P0,AB(MPa) P0,AC (MPa) P0,BC(MPa)
Paracetamol 672 ± 508 289 ± 26.1 1070 ± 89.9 0.5 ± 0.2 9.6 ± 3.7 0.11 ± 0.1
Ibuprofen 771 ± 625 289 ± 26.1 1070 ± 89.9 0.2 ± 0.1 1.2 ± 0.7 0.11 ± 0.1

Fig. 12. Parity plot of model predictions from the reduced training set with those fitted from the full data set for the paracetamol formulation (a) Kmix; (b) P0,mix.

Fig. 13. Parity plot of model predictions from the reduced training set with those fitted from the full data set for the ibuprofen formulation (a) Kmix; (b) P0,mix.
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Therefore, the binary interaction model is chosen for further study. 
Figs. 16 and 17 show examples of these predictions using the binary 
interaction model for the paracetamol and ibuprofen respectively. The 
blends in these plots were selected to demonstrate the range of 
compressibility as well as the extremes in accuracy. These two plots 
demonstrate some measure of the confidence in the model when it is 
trained on the full data set. Table 9 shows the fitted parameters and the 
associated 95 % confidence intervals for both formulations. The confi-
dence intervals are reasonable and do not contain zero, further 
demonstrating that the binary interaction parameters are significant.

3.2.2. Experimental design to reduce API usage for model development
The procedure for training the compactability model was identical to 

the compressibility model in the previous section, with the exception 
that the parameters in Equations (18) and (19) are being fit instead. The 
parameters were fitted on the same training data and the model vali-
dated on the same validation data as the compressibility model (Fig. 11).

Table 10 shows the model performance metrics on the validation 
data for the paracetamol formulation. As with the compressibility 
model, most of the validation blends have very good fits, with R2 above 
0.93–0.95 and %RMSE below 5 %, however, 3 of the blends have much 

Fig. 14. Experimental compactability curves with fits from the Ryshkewitch-Duckworth equation (Eq. (4) for paracetamol formulation blends 2 to 4, and excipient 
blends 5 to 7.

Fig. 15. Experimental compactability curves with fits from the Ryshkewitch-Duckworth equation (Eq. (4) for ibuprofen formulation blends 2 to 7.
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poorer predictions (blends 3, 9,13). For example, paracetamol blend 9 
(15 % API, 81 % MCC) does exhibit relatively poor validation perfor-
mance and so could indicate it is a formulation outside of the feasible 
region. However, in this case, paracetamol blend 8 has very good vali-
dation performance and is very similar in formulation to blend 9. 
Therefore, this indicates that the poor validation performance of blend 9 
relates to experimental error or poorly fitted model parameters.

For the ibuprofen formulation (Table 11), the model performance is 
slightly better than the same formulation for the compressibility model 
and for the paracetamol formulation for this compactability model, with 
the majority of R2 above 0.94 and %RMSE below 5 %. The model does 
not predict as well on blend 2. However, for the remaining blends the fit 
is very good. The prediction plots for all the blends for both formulations 
are in the supporting information.

Figs. 18 and 19 show parity plots for training, validation, and com-
bined data sets for kb,mix and σ0,mix for paracetamol and ibuprofen for-
mulations respectively. Generally, as with the compressibility model, 
the reduced training set model predicts similar mixture model param-
eters to those using the full data set for training. Again, as with the 
compressibility model, experimental values of kb,mix and σ0,mix are pre-
dicted well except for the two binary paracetamol/lactose blends 
showing the highest values of kb,mix and σ0,mix.

The fitted parameters and the 95 % confidence intervals for the 

compactability model is detailed in Table 12. Several of the parameters 
have large confidence intervals, however, they could be improved if the 
pure API blend (component A) compacted successfully. Issues with 
compacting single component APIs are common, so perhaps attempting 
a high, but not 100 % mass fraction, which would give successful 
compaction data, would be better ensuring better parameter fitting. 
Some of these confidence intervals include 0 and so indicate that those 
components/interactions of components do not influence the output 
response greatly. However, this can be due to a lack of data points with 
high mass fraction of component A, which will affect the component A 
parameters and the interaction parameters including component A. The 
confidence in the B and C parameters and BC interaction parameters are 
better and indicate there is interaction between these components that 
affect the tensile strength.

3.3. Comparison with Reynolds et al. (2017) model

The proposed interaction-based mixture models are compared with 
the compressibility and compactability models proposed by Reynolds 
et al. (2017) so that the significance of this model can be evaluated. The 
Reynolds models have been shown to be some of the best available in the 
literature through an assessment of the most popular models by Wang 
et al. (2021).

The Reynolds model parameters are fitted on the same training op-
timum data (Table 6) as the interaction-based model in the previous 
sections and validated on the same validation data set. The predictions 
for every blend for both formulation comparing the interaction-based 
model with the Reynolds model are displayed in the supporting infor-
mation. For the paracetamol formulation, the compressibility models 
give largely similar results. The average validation RMSE for the 
interaction-based compressibility model on the paracetamol formula-
tion is 0.0176, which is 9.7 % better than the Reynolds model (0.0193). 
For the ibuprofen formulation, the average validation RMSE for 
interaction-based compressibility model is 0.0216, which is 27.8 % 
worse than the Reynolds model (0.0156).

A paired t-test was carried out with a hypothesis that the mean 
validation RMSE between the two models is different, and a null hy-
pothesis that the mean of the difference between the validation RMSE 

Table 8 
Compactability model performance (average RMSE and R2adj across all blends) 
against mixing rule for the parameters for the paracetamol and ibuprofen for-
mulations (For concision, X indicates any one of the parameters that in-
corporates a mixture model).

Mixing 
Rule

Paracetamol 
Average RMSE/ 
R2adj

Ibuprofen 
Average 
RMSE/ R2adj

Ideal Xmix =
∑

iyiXi 0.282/0.84 0.198/0.86
Binary Xmix =

∑
iyiXi +∑

ijyiyjXij

0.229/0.87 0.159/0.90

Ternary Xmix =
∑

iyiXi +∑
ijyiyjXij + yiyjykXijk

0.220/0.88 0.162/0.90

Fig. 16. Measured and predicted compressibility for blends 9, 10 and 14 using the proposed binary mixture model for the paracetamol formulation (model trained 
using all data).
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values for both models is equal to zero. The p-values, and whether the 
null hypothesis was rejected or not, for these t-tests are described in 
Table 13. Although the null hypothesis was rejected for the ibuprofen 
formulation, for the paracetamol formulation and both formulations 
combined, the null hypothesis was not rejected. Therefore, overall, it 
cannot be said that there is a statistically significant difference between 
the generalisation performance of the two compressibility models.

For the compactability models, the same analysis was carried out. 
For the paracetamol formulation, the average validation RMSE of the 
interaction-based compactability model was 0.246 MPa, which is 19.2 % 
higher than the Reynolds model (0.203 MPa). For the ibuprofen 
formulation, the average validation RMSE of the interaction-based 
model was 0.213 MPa, which is 46.5 % lower than the Reynolds 
model (0.312 MPa). The associated paired t-tests results are shown in 
Table 14. None of the null hypothesis are rejected and so the difference 
between the interaction-based and Reynolds compactability models is 
not statistically significant with a 5 % significance level.

On the basis of these data, both the binary interaction model and the 
Reynolds model are suitable as mixing models to predict parameters for 
compressibility and compaction models for processing formulations. 
The Reynolds model has less parameters and so is simpler. The binary 
interaction model is more general in approach, analogous to thermo-
dynamic mixing models and can be used for other bulk powder prop-
erties, such as flow properties (Aroniada et al., 2023). Furthermore, both 
models should be assessed further with a wider range of formulations of 
varied materials.

4. Conclusions

A new binary interaction mixture model is used to predict the 
compressibility, via the modified Gurnham equation, and compact-
ability, via the Ryshkewitch-Duckworth equation, of pharmaceutical 

Fig. 17. Measured and predicted compressibility for blends 9, 10 and 14 using the proposed binary mixture model for the ibuprofen formulation (model trained 
using all data).

Table 9 
Fitted parameters for Eq. (10) and Eq. (11) and their 95% confidence intervals 
for both formulations for the compactability model.

Formulation σ0,A 
(MPa)

σ0,B 
(MPa)

σ0,C 
(MPa)

σ0,AB 
(MPa)

σ0,AC 
(MPa)

σ0,BC 
(MPa)

Paracetamol 3.8 ±
2.5

4.7 ±
0.9

5.0 ±
0.8

−8.4 ±
5.5

−1.2 
± 0.5

−7.4 ±
6.2

Ibuprofen −1.0 
± -0.8

2.6 ±
0.4

3.1 ±
0.4

4.4 ±
3.5

3.3 ±
2.8

−1.3 ±
0.7

kb,A kb,B kb,C kb,AB kb,AC kb,BC
Paracetamol 22.3 ±

15.2
11.7 ±
4.3

29.0 ±
3.4

−24.8 
± -13.5

29.2 ±
16.1

−38.2 
± -20.5

Ibuprofen −1.1 
± 0.9

6.5 ±
2.1

17.8 ±
2.2

27.9 ±
21.0

18.8 ±
12.5

−8.2 ±
6.3

Table 10 
R2adj, RMSE and %RMSE performance metrics on unseen validation blends for the 
compactability model, for the paracetamol formulation.

Blend Validation R2adj Validation RMSE Validation %RMSE
2 0.95 0.17 3.31
3 0.35 0.23 4.63
8 0.99 0.14 2.74
9 0.64 0.61 12.01
10 0.96 0.13 2.68
11 0.93 0.11 2.27
13 0.53 0.56 10.97
14 0.96 0.16 3.10
15 0.96 0.24 4.81
17 0.99 0.10 2.16

Table 11 
R2adj, RMSE and %RMSE performance metrics on unseen validation blends for the 
compactability model, for the ibuprofen formulation.

Blend Validation R2adj Validation RMSE Validation %RMSE
2 0.57 0.47 12.77
4 0.79 0.16 4.49
6 0.96 0.15 3.93
7 0.88 0.23 6.25
9 0.94 0.18 4.84
10 0.94 0.16 4.24
11 0.94 0.15 4.12
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powder mixtures. Two different ternary formulations of commonly used 
pharmaceutical powders were compacted to generate experimental data 
to train and validate the model. Both the Gurnham equation for 
compressibility and the Ryshkewitch-Duckworth equation for com-
pactability capture the compressibility and compactability relationships 

well for all data sets and so are a good basis for the proposed interaction- 
based mixture model. The binary interaction mixing model performed 
well when trained with the full data set and was better than either the 
ideal mixing model, or a model including ternary interactions.

A robust, minimal design of experiments has been recommended to 

Fig. 18. Parity plot of model predictions from the reduced training set with those fitted from the full data set for the paracetamol formulation (a) kb,mix; (b) σ0,mix.

Fig. 19. Parity plot of model predictions from the reduced training set with those fitted from the full data set for the ibuprofen formulation (a) kb,mix; (b) σ0,mix.

Table 12 
Fitted parameters for Eq. (18) and Eq. (19). and their 95% confidence intervals 
for both formulations for the compactability model fitted on the optimised 
training data set.

Formulation σ0,A 
(MPa)

σ0,B 
(MPa)

σ0,C 
(MPa)

σ0,AB 
(MPa)

σ0,AC 
(MPa)

σ0,BC 
(MPa)

Paracetamol 1.9 ±
1.5

4.3 ±
0.4

5.0 ±
0.5

−1.2 ±
0.9

−3.1 ±
2.5

−4.0 
± 3.2

Ibuprofen −6.0 ±
4.5

2.6 ±
0.2

3.2 ±
0.3

13.5 ±
7.2

11.2 ±
7.7

−1.5 
± 1.2

kb,A kb,B kb,C kb,AB kb,AC kb,BC
Paracetamol 26.2 ±

20.5
10.3 ±
6.0

28.8 ±
5.7

−28.9 
± 19.4

−2.6 ±
1.8

–23.2 
± 8.9

Ibuprofen –23.1 
± 18.2

6.2 ±
3.6

18.1 ±
15.1

67.9 ±
25.1

54.9 ±
31.0

−8.8 
± 7.9

Table 13 
Paired t-test results to compare whether the difference between validation RMSE 
values for the interaction-based and Reynolds compressibility models are sta-
tistically significant.

Formulation Binary 
Interaction 
Av. RMSE 
(range) 

Reynolds 
Av. RMSE 
(range) 

p- 
value

Reject Null 
Hypothesis at 
95 %

Paracetamol 0.0176 
(0.006–0.047)

0.0193 
(0.006–0.037)

0.148 No

Ibuprofen 0.0216 
(0.010–0.029)

0.0156 
(0.008–0.028)

0.013 Yes

Combined 0.0193 
(0.006–0.047)

0.0170 
(0.006–0.037)

0.909 No
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reduce API usage to calibrate the proposed mixture model for a new 
formulation, using only 3 experiments containing API, at 25 % and 40 % 
API. To enable effective model-based optimisation for formulation de-
cisions to be made at a very early stage of development, using the 
minimum amount of material for characterisation to calibrate the model 
for a new formulation is critical. There are no existing guidelines for 
choosing the minimum number of experiments to develop the mixing 
rules nor any validation. Therefore, the results and recommendations of 
this paper are significant.

The model demonstrated a strong capability of predicting the 
compressibility and compactability of a wide range of ternary mixture 
compositions, for two different formulations. This model gave similar 
performance to the Reynolds et al. (2017) model for both compress-
ibility and compactability when trained using the same data sets. The 
binary interaction model is general in approach and should be suitable 
for predicting model parameters for other important powder mixture 
properties.

Considering the application of both approaches in potential work-
flows; the Reynolds model could be used early on in formulation design 
as fewer experiments are required and the model is simpler, but as the 
formulation is narrowed, the proposed interaction model can be used to 
refine the prediction of the formulation space using more experiments 
for fitting, when the API availability is likely higher at a later stage in 
development.
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