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Achieving a comprehensive understanding of animal intelligence demands
an integrative approach that acknowledges the interplay between an
organism’s brain, body and environment. Insects, despite their limited
computational resources, demonstrate remarkable abilities in navigation.
Existing computational models often fall short in faithfully replicating the
morphology of real insects and their interactions with the environment,
hindering validation and practical application in robotics. To address
these gaps, we present I2Bot, a novel simulation tool based on the
morphological characteristics of real insects. This tool empowers robotic
models with dynamic sensory capabilities, realistic modelling of insect
morphology, physical dynamics and sensory capacity. By integrating gait
controllers and computational models into I2Bot, we have implemented
classical embodied navigation behaviours and revealed some fundamental
navigation principles. By open-sourcing I2Bot, we aim to accelerate
the understanding of insect intelligence and foster advances in the
development of autonomous robotic systems.

1. Introduction
Unravelling the underlying mechanisms that give rise to animal’s intelligent
behaviours represents a formidable challenge, one that demands an inte-
grative approach that transcends conventional boundaries. Central to this
endeavour is the recognition of the dynamic interplay between an organ-
ism’s brain, body and environment [1,2]—a concept central to the biorobotics
approach [3–5]. By bridging the gap between biology and robotics, biorobotics
offers a unique opportunity to gain insights into the mechanisms underlying
intelligent behaviour [3,6] while simultaneously inspiring the development of
more advanced robotic systems [7–9].

Insect navigation stands as a remarkable example of intelligent behav-
iour, offering a fertile ground for exploration [10]. The intelligence evi-
denced by insect navigators [11,12] includes both adaptive behaviours
that change dynamically as the environment/stimuli changes [13–15] and
cognitive behaviours involving complex decision-making and information
integration [16–18]. Despite possessing compact neural architectures with
limited computational resources, insects demonstrate an astonishing capacity
to navigate complex environments [19,20], integrating multi-sensory inputs
[16,21], learning from experience [22] and executing adaptive decision-making
processes [23–26]. This ability to solve intricate problems with constrained
computational power has sparked profound curiosity and a desire to under-
stand the principles that govern these behaviours, with applications possible in
AI and robotics [12].
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Computational models play an important role in revealing the neural circuits underlying insect navigation [27–29], and
some of these models have been verified using mobile robots [28,30,31]. However, these robots could not fully recapitulate
the real insects’ body due to differences in morphology. Simulations offer significant advantages over real-world robots when
studying complex systems, such as the ability to conduct controlled experiments flexibly, modify parameters easily and rapidly
iterate through multiple scenarios [32]. Although neuromechanical simulation tools for Drosophila have recently been developed
[33–35], there remains a lack of tailored, realistic simulation tools for the systematic and comprehensive validation of insect
navigation models, particularly for desert ants, that account for physical constraints.

To address these limitations, by leveraging the user-friendly and open-sourced software—Webots [36] (a widely used robot
simulation tool in academia [37–40])—we developed a simulation tool that incorporates the morphological characteristics
of desert ants, endowing our navigating agent with dynamic vision, olfactory, tactile and mechanosensory capabilities (see
figure 1). Leveraging this framework, we have implemented simple forward kinematics (FK) and inverse kinematics (IK) gait
controllers, enabling the realization of anatomically constrained computation models for path integration (PI). Additionally, our
simulation tool facilitates the integration of vision and olfactory senses, allowing us to explore the sensory-motor closed loop
inherent in insect navigation. Through systematic testing, we have uncovered evidence of how body–environment interactions
can simplify the design of control models (see table 1). Compared with other related simulation tools, the proposed open-source
tool offers advantages in multi-modal sensory capacity, flexibility in constructing three-dimensional (3D) worlds, support for
multiple programming languages, lower learning costs and a user-friendly interface (see §4 for more detailed discussion).

By open-sourcing our simulation tool, we aim to provide a valuable resource for the research community, accelerating our
collective understanding of insect intelligence. Furthermore, we believe that our work holds significant implications for the
development of insect-inspired autonomous robots, offering insights that could pave the way for more adaptive and efficient
robotic systems [7,8].

2. Results
Example simulated agent/animal and environments are depicted in figure 1, illustrating the intricate interactions between
brain, body and environment. The neural models can be integrated into the Controller component of the Webots’ Robot. The
morphology and spatial configurations of individual organs and limbs are reconstructed based on measurements obtained from
real desert ants (refer to §3.1 for detailed information). The environments are assembled using Webots’ built-in modules (refer to
§3.2 for detailed information).

In this section, we will first introduce the sensory-motor system and the fundamental locomotion capabilities of a simulated desert
ant. Following this, as summarized in table 1, we will present several case studies demonstrating the utilization of the proposed tool to
implement classical control scenarios in a sensory-motor loop fashion. These simulations provide compelling examples of how I2Bot
can offer new insights into understanding insect intelligence through the dynamic interaction between brain, body and environment.
In the future, we hope for the tool to be extended to include additional sensory modalities, brain models and body structures of
other insects (see §4.2). Note that force sensing (e.g. mechanosensory, tactile) is not utilized in the current implementation of vision-
and olfactory-based behaviours. However, the sensory repertoire can be easily extended to incorporate force sensing data from the
antennae and legs in specific scenarios, as these capabilities are already available (see figure 1).

2.1. Sensors and motors

Insects rely on multi-modal sensory information to perceive their environment and make decisions [45]. Among these modali-
ties, vision, olfaction and tactile cues are considered crucial for insect navigation. A valuable tool should facilitate easy access
to these sensory signals. To address this, the ant robot in I2Bot has been equipped with visual, olfactory and force sensors. As
depicted in figure 1, two distinct vision sensors—binocular and panoramic—have been incorporated to serve different purposes
in visual processing. Similarly, the proposed tool enables simulation of olfactory signals with various spatio-temporal patterns,
such as stable odour trails for simulating trail following and dynamic odour plumes for investigating navigation in turbulent
olfactory environments. Tactile and mechanosensory input is simulated through force sensors located at the tip of each leg, the
tip of each antenna and torque sensors located in each leg joint (five per leg), at three locations in each antenna, and two in the
neck and abdomen joints. Finally, wind sensing is simulated by two sensors positioned at the tip of the antennae, see figure 1 for
overview.

The locomotion capabilities of insects have long intrigued researchers and have served as inspiration for the design of
six-legged robots [4,8]. To replicate the authentic locomotion of insects, we have defined five degrees of freedom (d.f.) for each
leg (i.e. front left, FL; middle left, ML; hind left, HL; front right, FR; middle right, MR; hind right, HR). The joints are designated
based on the anatomy of body and leg segments. For instance, the joint ThCz refers to the joint connecting the thorax and
coxa, rotating along the z-axis. To streamline body movement, the head and abdomen each possess two d.f., allowing rotation
along the y- and z-axes. Recent studies have emphasized the pivotal role of active olfactory sensing [44,46,47] in shaping the
navigational behaviours of insects and its application in robotics [48]. Therefore, each antenna of I2Bot is equipped with three
d.f. to enable agile movement of the antenna.
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2.2. Basic locomotion

Locomotion is the basis of complex manoeuvres that have been observed in insects, thus it is crucial for navigation behaviours.
To simplify the locomotion control, we have adapted concepts from robotics and implemented a simple gait control algorithm
based on forward and inverse kinematics (FK and IK). Unlike higher level locomotion controllers [49,50] wherein the gait is
assumed fixed or emergent, this approach concerns the movement of each joint (i.e. directly sets the angle of each joint) for
a given leg movement pattern (i.e. a gait); a kind of lower level method without considering the muscles’ contraction and
relaxation [51]. Specifically, the FK method directly assigns the joint angle which determines the position of the leg tip, while the
IK computes each joint angle given the spatial position of the end tip of each leg (for more details see §2.3). That is to say, in FK
we design the joint angles, while in IK we design the spatial movement of the leg tip (i.e. design the spatial location of the tip
of each leg at every time step), and the corresponding joint angles at every time step are computed through trigonometry-based
methods. Note that in the current implementation, we only use three d.f. of each leg (keeping angles of the ThCx and the TiTa
joint constant), which is simpler and more usual for hexapod robots. However, users could in practice apply all the five d.f.
to replicate more biologically realistic locomotion control. In summary, the locomotion models currently included are based on
robot control strategies and could be efficiently upgraded to match models from the biological literature (e.g. [49,52]) since the
joint torque feedback are already accessible.
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Figure 1. I2Bot overview. The tools aim to integrate simulation of brain, body and environment, encompassing the sensory-motor loop. Colour-coded arrows indicate
the positions of corresponding sensors, while joints are identified by their rotation axes. Note data here are for illustrative purposes, with specific examples shown in
subsequent figures. Picture of the reconstructed insect brain is obtained from the InsectBrainDB [41].

Table 1. Summary of the presented case studies with I2Bot. Bold text highlights the new insights and contributions.

sensor motor environment

path integration velocity + direction six legs plain terrain

bio-plausible neural output and simple gait control facilitate homing [28,31]

visual beacons binocular/monocular vision six legs plain terrain and 3D trees

embodied sensory input effects the performance of controller [1,2]

visual compass panoramic vision six legs plain terrain and 3D trees

How internal representation of direction could control body orientation [42,43]

odour trail following odour concentration (stable) six legs + two antenna optic-simulated odour trail

embodied sensors simplify the design of the controller [44]

odour plume tracking odour concentration (fluctuated) + wind direction six legs virtual wind and odour puffs

first implementation of the embodied plume tracking [13]
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As depicted in figure 2a,b, IK-based gait control exhibits greater stability but demands more computational resources.
To assess the motion control’s performance, we evaluated its ability to navigate uneven terrain and climb walls. Figure 2c
illustrates the comparison of walking on floors with varying degrees of unevenness. Here, we observed faster changes in the
z-position of the body with negligible differences in joint torques, indicating the six-legged robot’s inherent capacity to navigate
uneven terrain embedded in its physical dynamics. In climbing vertical walls, insects utilize adhesion which we simulated by
dynamically applying force to the leg’s ground contact points. Figure 2d presents the climbing performance with varying levels
of force applied to the ground support points. Interestingly, larger force does not necessarily translate to better wall-climbing
performance. This may be due to the competition between the force required to lift the leg and the force needed to maintain
contact with the wall. Different gait types are demonstrated in figure 2g,h, with the tripod gait achieving the fastest body
movement speed, while the wave tripod is the slowest. It is worth noting that other gait controllers such as central pattern
generator (CPG) and feedback models [4,49,53,54] could also be integrated. Here, we present the simple FK-based gait controller
to showcase the proposed tool’s feasibility.

2.3. Path integration: incorporating locomotion with a bio-constrained neural model

Path integration (PI) stands as a cornerstone of the insect navigation toolkit [55]. Foragers adeptly track the distance and
direction to their nest by integrating the series of directions and distances travelled into a home vector [19,56]. Guided by
this vector, pointing towards the start position (typically the nest), desert ants can return accurately to their nest even after
traversing hundreds of metres (figure 3a). Recent neuroethological investigations have unveiled the central complex (CX) within
the insect brain as pivotal for the computational processes involved in path integration. The CX not only hosts a ring attractor
network encoding the animal’s heading direction [57,58] but also receives optic flow information as a velocity encoding [28,59].

To demonstrate the ease of incorporating biologically constrained neural models with locomotion controllers using I2Bot, we
implemented the popular insect path integration model proposed by Stone et al. [28]. We utilized its output as tuning factors
for the previously described FK gait controller. Specifically, the neural activation of the left and right PFL/CPU1 neurons from
the insect steering circuit modifies the hip swing (speed) and rotation (direction) of the gait (figure 3b,c). This marks the first
instance of testing this popular neural model in a hexapod robot with physical constraints and ant-like morphology. Notably,
the simulated ant can perform curved walking, unlike a recent biorobotics study [31] where the robot could only rotate on
the spot. Several simulations were conducted, and we found that this bio-constrained model performed effectively (see figure
3d,e), suggesting a robust and efficient solution for robot path integration. Figure 3f,g illustrates the dynamic neural activation
of the encoded home vector and the agent’s velocity during foraging and homing. This exemplifies how neural computation and
encoding, coupled with a simple locomotion controller, can generate robust navigation behaviours.

2.4. Vision-guided manoeuvres

Vision serves as one of the primary means for animals to perceive their environment, and insects rely on visual cues for
navigation in various ways [60,61]. In this section, we present scenarios involving monocular, binocular and widely used
panoramic vision to demonstrate vision-motor control in the simulated ant robot.

2.4.1. Monocular and binocular visual beacons

Research has indicated that insects instinctively use visual landmarks as beacons [62,63]. To showcase the feasibility of using
visual images as input with our proposed tool, we implemented a simple visual beacon algorithm (see figure 4a,b) based
on the biologically plausible steering circuit used in neural models of the insect brain [28,29,59]. To compare the effects of
different types of visual input on motor output, we employed monocular (i.e. solely left or right image) and binocular images
as inputs to the visual beacon model. The results are illustrated in figure 4d, where the simulated ant with binocular image
inputs outperforms the others in terms of task completion time. Eye occlusion resulted in ipsilateral motor bias, where agents
with the left eye occluded (receiving only right eye information) approached the landmark with left-biased trajectories (red
curves in figure 4c). This illustrates how embodied sensory input influences navigation performance guided by the same neural
controller, providing partial insights into the advantages of binocular vision.

2.4.2. Panoramic visual compass

In addition to binocular vision, insects are believed to use panoramic views when navigating [64–66]. Computational models
also leverage panoramic images to extract useful information for solving visual navigation tasks, particularly in the frequency
domain [29,67,68]. Here, we demonstrate how processing panoramic views in the frequency domain can aid the agent in
sensing direction, known as the visual compass [66,69]. The methods used to process the panoramic view here are the same
as those in [29,68], which could also serve as the foundation for insect visual route following behaviour (see figure 5a). The
initially extracted phase encoding in the frequency domain is stored as the desired heading direction. When the simulated
three-dimensional world is manually rotated, the received panoramic image and the phase encoding rotate accordingly. The
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difference between the stored phase and the current phase is output to the steering circuit, enabling the agent to turn and
continuously maintain its initial heading. To test the performance of the visual compass-based head tracking, we rotated the
three-dimensional world in two modes: incremental rotation and jump rotation (sudden and fast). As shown in figure 5c and
electronic supplementary material, videos S8–S9, the simulated ant efficiently tracked its stored initial heading in both rotation
modes, consistently orienting towards the red ball in the three-dimensional visual world.

2.5. Olfactory-guided manoeuvres

Olfaction represents another crucial sensory domain guiding a diverse array of navigational behaviours [13,70–72]. Different
olfactory landscapes lead to varied navigation behaviours [73]. To showcase how the proposed platform facilitates olfactory
navigation simulation under environments with different spatio-temporal features, we implemented odour trail following
behaviour under a spatially stable distribution [74] and odour plume tracking behaviours in a turbulent olfactory environment
[13].

2.5.1. Odour trail following using active sensing

Odour trail following [44] observed in carpenter ants (Camponotus pennsylvanicus) was realized to demonstrate how embodi-
ment benefits the design of control strategies. We compared the trail following performance of agents with and without moving
their antennae during odour tracking by measuring the time taken to navigate from the same start point to the end of the
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pheromone trail (finish time as shown in figure 6d). Intriguingly, we found that agents with moving antennae significantly
outperformed those with fixed antennae (figure 6c,d) when tracking spatially wider trails, although their performance on trails
with normal width was similar. This suggests that dynamic antennae movement enhances the adaptability of control strategies
to handle a wide range of environmental conditions, as demonstrated in [44]. This finding underscores how embodiment
facilitates the design of effective control systems [2].

In addition, I2Bot simplifies body modification. For example, electronic supplementary material, video S12, demonstrates
a preliminary test where ant robots with varied antenna lengths, but identical control algorithms, exhibited different perform-
ances in odour trail following. This together with the results presented in the visual beacon simulations (figure 4) further
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photo of the ant is adapted from https://www.karincadunyasi.com/forum/konu/cataglyphis-nodus.63. (b) The neural model of path integration adapted from [28].
The output of the model is linked to the FK gait controller. (c) Insect brain regions within the central complex related to PI computation. (d) Trajectories of simulated
ants conducting foraging trips and homing using the proposed PI model. (e) Snapshots of two typical experiments. Trajectories are drawn using the Pen function
within Webots. (f) Neural activation of PI memory neurons (CPU4 or FPN neurons) during foraging and homing, with sampled points marked by grey dotted lines.
Corresponding activation profiles are placed above. (g) Velocity in the x- and y-axis (top) and speed (bottom) during navigation. Dark solid lines indicate the inputs fed
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highlights the impact of body morphology and physical dynamics on the development of control algorithms and neural
circuitry. It underscores that intelligence develops through the intricate interaction between body, brain and environment [1].

In addition, I2Bot simplifies body modification. For example, electronic supplementary material, video S12 demonstrates
a preliminary test where ant robots with varied antenna lengths, but identical control algorithms, exhibited different
performances in odour trail following. This together with the results presented in the visual beacon simulations (figure
4) further highlights the impact of body morphology and physical dynamics on the development of control algorithms
and neural circuitry. It underscores that intelligence develops through the intricate interaction between body, brain and
environment [1].

2.5.2. Odour plume tracking

To investigate sensory-motor control in turbulent odour environments, we developed a simplified control strategy inspired by
behaviours observed in walking flies [13]. While this behaviour has been extensively modelled in previous studies [17,75], we
adapted a conceptual model to validate the proposed tool’s capacity to implement dynamic olfactory navigation behaviours.
As illustrated in figure 6e, once the odour is sensed (i.e. the perceived odour concentration exceeds the threshold), the agent
orients upwind (aligning with the wind direction detected via the virtual mechanosensory signal). In the absence of odour,
the agent performs random rotations in place, simulating scanning/searching manoeuvres. Despite discontinuous olfactory
and mechanosensory cues in this turbulent environment, agents successfully navigate to the odour source using this simple
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strategy (see figure 6g and electronic supplementary material, video S13). As the first attempt to implement dynamic odour
plume tracking in a simulated robot with realistic ant morphology and physical constraints, this case study may provide useful
foundational work for future investigations into embodied olfactory-motor control.

3. Material and methods
I2Bot is built in the popular open-source robot simulator Webots [36]. The controllers of the demos presented in this paper were
programmed in Python 3.9 (compatible for newer version) with packages such as numpy, cv2, ikpy, etc. Note that aside from
Python, Webots supports multiple programming languages like Java, C/C++ and Matlab scripts. All the source code related to
this project is open-sourced at Github (https://github.com/XuelongSun/I2Bot) under the MIT license.

3.1. Robot design

The morphology of a Cataglyphis fortis desert ant was estimated from images provided in [76] (see electronic supplementary
material, figure S1). To simulate the ant body in three dimensions, we use Webots embedded geometries sphere, cone and capsule
to model the body parts as that in [39]. As shown in electronic supplementary material, figure S1, the length of the hind leg is
larger, making it distinctive as the characteristics of desert ants’ leg morphology. Note that the size of the ant is scaled 100 times
larger for the ease of the physics simulation within Webots.

Binocular visual sensors are placed at the position of eyes while the abstracted panoramic visual sensor is placed at the top
of the ant robot’s head to obtain a more ideal field of view. Olfactory sensors are mounted on the end of the antennae to mimic
that of animals [47] and make it easy for robotics studies [48]. Eight tactile sensors are mounted on the tip of each leg and each
antenna, which can detect three-dimensional contact force. Each joint (40 in total) has a torque sensor that could be dynamically
accessed during locomotion (see figure 1). This torque feedback could be very useful in designing bio-plausible locomotion
controllers like that in [49,52].

3.2. Environment construction

For visual environments, all visible objects, such as basic geometric shapes and trees used in the presented cases, are available
in Webots. Vision is constructed using the camera model embedded in Webots. Additionally, simulated visual environments
from previous studies on insect navigation can be easily imported into the Webots three-dimensional environment via the Mesh
shape or Cadshape node. See electronic supplementary material, figure S2, for examples of visual scenes used in [27,29,68,77].
This feature allows researchers to directly obtain visual stimuli from the desired world without needing to configure a camera
model, facilitating the comparison of different visual navigation models that share the same visual input.
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For olfactory environments, there are two types of simulation: (i) for the odour trail, it is optically simulated as the specific
texture of the floor. This texture can be drawn manually and thus allows great flexibility. (ii) For the odour plume, it is
simulated by the filament-based model [78] and its Python implementation called pompy. This model mimics both short- and
long-timescale features of odour plume evolving in a turbulent flow and has been widely used in olfactory-related studies
involving insect navigation [70,79] and robot odour source localization [80].

3.3. Models

3.3.1. Forward kinematics

To simplify the gait control, we keep the ThCx and TiTa joint angles constant and denote the angles of the left three joints—
ThCz, CTr and FTi to be α, β and γ, respectively. These values are determined by the hip swing (Sl with unit rad), lift swing (Sℎ
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with unit rad) and the moving direction (−1 for backwards and 1 for forwards). To realize yaw control of the robot body, we
introduced rotation configuration denoted as θ. Table 2 lists the formulae to calculate the base range of the ThCx joint R.

As different gait types share the same mechanisms, here we just describe how to use FK to generate a tripod gait, other gait
could be generated with alternative leg coordination sequences. For the first half phase of a leg during the swing stage, the
angles of the three joints are calculated by

(3.1)

αsw1(k) = −R + α0 + R
Sn
k

βsw1(k) = β0 + Sℎ
Sn
k

γsw1(k) = γ0 + Sℎ
Sn
k

, k = 0, 1, . . . . , Sn,

where α0, β0, γ0 is the initial angle of ThCx, CTr and FTi joint, respectively. Sn is the total time steps to lift the leg to its highest
position determined by the lift swing Sℎ. Similarly, in the next half phase, the angles are calculated by

(3.2)

αsw2(k) = α0 + R
Sn
k

βsw2(k) = β0 + Sℎ − Sℎ
Sn
k

γsw2(k) = γ0 + Sℎ − Sℎ
Sn
k

, k = 0, 1, . . . . , Sn .

In this phase, the leg is moved to the frontmost position (α reaches its highest value) and contacts the ground again (β and γ are
set to its initial value).

For the stance phase, β(k) and γ(k) are kept constant (as the leg does not lift) while α(k) is reversed (moves from the front of
the body to its back),

(3.3)

αst(k) = α0 + R − R
Sn
k

βst(k) = β0

γst(k) = γ0

, k = 0, 1, . . . . , Sn, Sn + 1, . . . , 2Sn .

For a tripod gait, the angle of ThCx joint of FR, ML and HL leg should be αsw1 -> αsw2 ->αst while that of the other three legs (i.e.
FL, MR and HR) should be αst -> αsw1 -> αsw2. The angles of CTr (β) and FTi (γ) joint follow the same rule.

3.3.2. Inverse kinematics

Unlike the FK wherein the joint angles are computed directly given the leg movement parameters (i.e. hip swing Sl, lift swing Sℎ,
etc.), when applying IK, we first calculate the positions of the leg tip at a certain time step k in swing and stance state, and then
utilize the IK (with Python package ikpy) to compute the joint angles. The legs of the ant robot were defined by URDF files and
can be read by the ikpy package. Specifically, the step length and step height is denoted as L and H, respectively, then for leg in
the swing stage, the joint angles should be

(3.4)[αsw(k), βsw(k), γsw(k)] = ik(Homo([0, 0, θ − θ
Sn
k], [L/2 − L

Sn
k, 0, − H

Sn
k])) k = 0, 1, . . . . , Sn,

where Homo(rotation, translation) calculates the homogeneous matrix given the rotation and translation input and ik() denotes
the IK function which receives the homogeneous matrix of the leg tip as parameters and returns the calculated joint angles.
(This function is provided as an API in the ikpy package, and the specific calculations are not detailed here, as they follow
standard IK processes.) θ is the rotation configuration. For the stance leg,

(3.5)[αst(k), βst(k), γst(k)] = ik(Homo([0, 0, θ
Sn
k], [ − L/2 + L

Sn
k, 0, 0])) k = 0, 1, . . . . , Sn .

Thus, to generate a tripod gait, the angle of the ThCx joint of FR, ML and HL leg should be αsw ->αst while that of the other three
legs (i.e. FL, MR and HR) should be αst -> αsw. The angles of the CTr (β) and the FTi (γ) joints follow the same rule.

3.3.3. Path integration

Path integration requires heading direction and velocity information; this is provided by the Webots Supervisor in the current
implementation. One can use other modalities like vision (e.g. optic flow) to obtain this. The model of path integration is
adapted from [28,29]; the output of the summed CPU1 (PFN) neurons are fed into the FK-based gait controller as follows:

(3.6)θ(t) = kPI[ ∑
i = 0

7
CCPU1
i (t) − ∑

i = 8

15
CCPU1
i (t)],

where CCPU1
i (t) is the membrane potential of the ith CPU1 neuron at time t. Similar with that in [28], the difference between the

summed activation of left and right CPU1 neurons modifies the rotation configuration of the gait control (see table 2 for specific
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calculation) and thus guides the robot’s turning decision via the motor scale kPI. To tune the walking speed, step length Sl is
computed by

(3.7)Sl(t) = Sl0(t) + Sl
f(t) × (1 − min[ |θ(t) | , 1]),

where the basis step length Sl0 = 5∘ and the scale factor Sl
f = 20∘ are held constant. Thus, the step length is confined in the range of

[5∘, 25∘]. These parameters are selected empirically based on the ant robot’s performance in the designed simulation. For running
multiple trials (results presented in figure 3d), we set the start location to be fixed at [0,0] while the initial heading varies in
range [0,2π].

3.3.4. Vision

Vision is provided through the embedded camera sensor in Webots. For panoramic view simulating, the projection mode of
the camera is set to spherical while for monocular and binocular it is set to be planar. The parameters of the camera such as
resolution, field of view and focal length can be customized in Webots easily through the scene tree.

— Visual beaconing. The resolution of the left and right eye camera is 74 × 19 (i.e. the image width Wvb = 74 and the image
height Hvb = 19) with the horizontal and vertical field of view to be 2 rad and 0.5 rad, respectively. The motor command
is calculated by the ‘copy-and-shift’ mechanism proposed in [17,29]. The input image will be first binaries with a given
threshold (empirically selected in the range [10, 25] given that the brightness of the image is in the range [0,255]). Then the
value of sℎiftvb is computed by

(3.8)sℎiftvb = ⌈ |6δ/Wvb | ⌉,

where δ is the difference between the horizontal image centre and the centre of the landmark area,

(3.9)

δ =

Wvb
Left − Pl

Left Left monocular

Wvb
Rigℎt − Pl

Rigℎt Right monocular

(Wvb
Left − Pl

Left) + (Wvb
Rigℎt − Pl

Rigℎt)
2 Binocular

,

where Pl is the averaged horizontal position of the dark landmark in the left and right retina (i.e. image pixel coordinates).
The desired heading is then calculated through the copy-and-shift mechanism wherein the current heading is copied and
shifted by sℎift amount. Then the turning value θ(t) is calculated by the steering circuit [17,28] as that in equation (3.6) but
with a different motor scale of visual beacons kvb. Then, the ThCx joint range R (table 2) and the hip swing Sl(t) equation
(3.7) of the FK gait controller are calculated to affect the locomotion.
In the multi-trial simulations, the ant robot consistently starts from the same point but with varying initial headings.
Specifically, agents using the left eye view sample uniformly from the range [0, π/2], while those using the right eye view
sample from [π/2, π]. For binocular agents, initial headings are sampled from [π/4, 3π/4].

— Visual compass. The resolution of the artificial panoramic vision is 72 × 72. The direction of the view is extracted by
the phase information of the Zernike moment [29,68] coefficient (with order n = 7 and repetition m = 1, Φ7,1(t)). This
Zernike phase is compared with the initially stored phase (Φ7,1(0)) and then the difference determines the sign of turning
parameter θ(t) and the hip swing,

(3.10)
θ(t) = sign(Φ7, 1(t) − Φ7, 1(0))
Sl(t) = | (Φ7, 1(t) − Φ7, 1(0))/5 | .

Table 2. The calculation of ThCx joint range R for yaw-control of FK gait.

left legs (FL, ML and HL) right legs (FR, MR and HR)

θ ≥ 0 Sld(2θ − 1) Sld

θ < 0 Sld(2θ + 1) −Sld

Table 3. Odour trail following. The threshold Td = 5 and To = 900 are set empirically according to the lookup table of the DistanceSensor used. Kd = 400 is a
constant scale factor.

sensory state odour sensed no odour

Od < Td Od ≤ Td Ol < To and Or < To

θ (degree) 0 Od/kd −1 or 1 (random)

Sl (degree) 8 4 3
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3.3.5. Olfactory

— Odour trail following. As described above, the odour trail is simulated by the texture of the floor, thus the concentration
is detected by the DistanceSensor (note that the field type should be set to be ‘infra-red’) whose value is modified
by a reflection factor depending on the colour, roughness and occlusion properties of the object. The detected odour
concentration of the odour (returned value of the DistanceSensor) from the left and right antenna at time t are denoted
as Ol(t) and Or(t), the difference between the left and right sensed odour concentration is denoted as Od(t) = Ol(t) − Or(t).
Table 3 shows how the sensed odour concentration determines the locomotion control (i.e. determines the hip swing and
rotation of the FK gait control). For multiple trial experiments, all the agents started from the same position [5,0] with
identical initial heading (π).

— Odour plume tracking. In this simulation, the agent not only detects the odour concentration (Ol and Or) but also the
wind direction (Wl = [wx

l ,wy
l ] and Wr = [wx

r ,wy
r]). These values are computed virtually based on the filament-based model

[78]. When there is no odour sensed, the agent conducts a random search around the spot (set θ to be −1 or 1 randomly
and Sl to be a small value like 5∘). When the odour is detected (i.e. concentration exceeds Top = 10−6), the agent compares
the left and right odour concentrations, turning towards the upwind direction where a higher concentration is sensed.
Specifically, the desired turning orientation is computed by m(t) = tan−1 (wy/wx). Then the step length and rotation are set
to be

(3.11)
θ(t) = sign(m(t) − ℎ(t))
Sl(t) = min([5 + | (m(t) − ℎ(t))%5 | , 15]),

where ℎ(t) is the current heading of the ant robot. Note that the agent will conduct one gait loop using the parameters
defined in the above equation and then go forward (Sl = 15, θ = 0) for two gait loops.

Table 4. Comparison between different simulation tools.

I2Bot Hector NeuroMechFly NeuroMechFly2 CompoundRay

physics ✓(ODE) ✓(ODE) ✓(PyBullet) ✓(MuJoCo) ✘

vision ✓(binocular/
panoramic)

✘ ✘ −−✓(binocular) −−✓(binocular)

olfactory ✓ ✘ ✘ −−✓ ✘

tactile ✓ −−✓ −−✓ ✓ ✘

programming language ✓(Python/Java/C/C++/
Matlab)

−−✓(Python) −−✓(Python) −−✓(Python) −−✓(Python)

user interface ✓ ✘ ✘ ✘ ✘

Table 5. Roadmap for developing a community hub of simulation tools in insect neuroethology.

now

(I2Bot currently can offer)

next

(implementable immediately)

future

(long-term featured goals)

sensory
vision (binocular and panoramic);

olfactory (airborne and chemical);

force sensing (joint torque and tactile)

more bio-realistic vision simulation (e.g. embedded CompoundRay [85]);

more precise tactile sensing with touch sensor arrays;

compound odour sensing

multi-modal and real-time sensory

brain models central complex steering circuit [28];

heading direction using ring attractor;

central complex copy-and-shift [17]

mushroom bodies model for visual navigation [27];

models of the insect motor centre: lateral accessory lob (LAL) [101];

central complex multiple cues integration [17], etc.

bio-plausible neural models of insect brain

locomotion first body model (desert ant);

robotics gait control

biomimetic locomotor control (e.g. NeuroWalkNet [52]);

body models of other walking insects (e.g. stick insect [83]);

embedded other body model framework [102], etc.

agility of walking, flying and jumping

environment three-dimensional visual scenes;

odour plume with wind;

stable odour trails;

uneven terrain and walls

visual scenes reconstructed from real world;

polarize light simulation;

magnetic simulation;

simulating multiple odours simultaneously, etc.

realistic three-dimensional and interactive

environment
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4. Discussion
Computer simulations have proven extremely valuable in neuroethology studies of insect vision (e.g. [81,82]), brain function
(e.g. [28,29]) and locomotion (e.g. [54,83]) allowing researchers to verify and adapt their hypotheses efficiently and effectively.
Yet, as animal behaviour arises from the interaction of each of the above plus information from internal and external cues, new
tools are required that integrate as many of these elements as possible. Moreover, for these tools to be adopted widely across
this highly multi-disciplinary community they should be robust, easy to install and easy to use.

As a step towards this goal, we presented I2Bot, an open-source tool for studying the mechanisms of multi-modal and
embodied insect navigation. We have provided a series of case studies that demonstrate the usability and flexibility of the
proposed platform, which has the potential to accelerate research in this fast moving research field. Compared with other
simulation tools (see table 4), Hector [84] and NeuroMechFly [33] primarily focus on locomotion. Additionally, I2Bot provides
a flexible visual and olfactory world construction and is simple to extend with other tools. For example, CompoundRay [85]
could be integrated with the camera model to generate more realistic insect visual inputs, and make use of more realistic
three-dimensional environments (e.g. [86–88]). Regarding the physics engine, both the Open Dynamic Engine (ODE) and
MuJoCo are popular in the robotics field, each with its own pros and cons for physics simulation (for detailed comparison, see
[89,90]).

4.1. Reinforcement learning and swarm intelligence

I2Bot can also be used as a (deep) reinforcement learning (RL/DRL) tool [91–93], which is becoming a more common tool for
insect neuroscience [34,79,94] and insect-inspired robotics [54,95], but requires efficient simulation to run the large number of
trials involved in the optimization process. The proposed tool could provide an efficient way to conduct this kind of study. The
sensory and body kinematic states of the robot can construct the State Space, while the motor commands sent to all available
joints form the Action Space. Our robot, functioning as an RL agent, could dynamically interact with a controllable environment.
As for Reward, it is scenario dependent, for example, in the visual navigation context, the distance between the agent and the
desired spot could be used to form the reward while in the odour plume tracking case, reward could be determined by the
sensed odour concentration. The proposed I2Bot platform offers a high variety of interaction forms that interest researchers
from biology and robotics, facilitating research into the underlying mechanisms of intelligent behaviours and the training and
testing of RL-based algorithms.

I2Bot is also suitable for simulating multi-agent systems, making it ideal for swarm intelligence and robotics studies [96,97].
Similar to previous studies using Webots for swarm robotics simulation [98–100], I2Bot can easily be applied to investigate
similar scenarios by adding multiple ant robots (see electronic supplementary material, video S12, for an example of multiple
agents simulation). This approach can lead to embodied swarm intelligence, as the body morphology and physical dynamics
are integrated into this platform.

4.2. Roadmap for a community hub: simulation tools in insect neuroethology

The intention of this study was to demonstrate the opportunities that modern computer simulation tools offer to the field of
insect neuroethology, taking the classic desert ant navigation problem as a representative use case. Yet, for I2Bot’s maximum
value to be realized will require adoption by the community to create a virtuous cycle of usage driving tool development and
vice versa. We outline a roadmap of developments that could take place to enhance the tool to make it usable by the broad
community of insect neuroethologists in table 5. Such extensions will allow researchers to continuously enhance the platform’s
capabilities and apply it to a broader range of studies in insect navigation and robotics. Our hope is to enable community hub
to drive ever faster research cycles as has been realized through tool sharing in field such as machine-learning (such as FastAI
[103] and MLlib [104]), robotics (like ROS [105]) and neuroscience (such as FlyWire [106] and insectBrainDB [41]). To this end,
we extend an open invitation to the neuroethology community to become active contributors to this open-source project [107].
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