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Abstract

Recent advancements in natural language pro-

cessing have highlighted the vulnerability of

deep learning models to adversarial attacks.

While various defence mechanisms have been

proposed, there is a lack of comprehensive

benchmarks that evaluate these defences across

diverse datasets, models, and tasks. In this

work, we address this gap by presenting an

extensive benchmark for textual adversarial

defence that significantly expands upon previ-

ous work. Our benchmark incorporates a wide

range of datasets, evaluates state-of-the-art de-

fence mechanisms, and extends the assessment

to include critical tasks such as single-sentence

classification, similarity and paraphrase identi-

fication, natural language inference, and com-

monsense reasoning. This work not only serves

as a valuable resource for researchers and prac-

titioners in the field of adversarial robustness

but also identifies key areas for future research

in textual adversarial defence. By establishing

a new standard for benchmarking in this do-

main, we aim to accelerate progress towards

more robust and reliable natural language pro-

cessing systems.

1 Introduction

Recent advancements in natural language process-

ing (NLP) have led to impressive performance on

various tasks, but also exposed the vulnerability of

deep learning models to adversarial attacks (Wang

et al., 2021; Han et al., 2022; Wang et al., 2022a;

Ranjan et al., 2023; Zeng et al., 2023; Goyal et al.,

2023; Shayegani et al., 2023; Huang et al., 2024).

While numerous defence mechanisms have been

proposed to counter these threats, there is a lack of

comprehensive benchmarks to evaluate their effec-

tiveness across diverse settings.

The advent of adversarial training (Goodfellow

et al., 2014a) has demonstrated notable success in

enhancing model robustness against small adver-

sarial perturbations in computer vision. Traditional

approaches adapt the training process to minimise

empirical risk based on a robustness loss, as op-

posed to the standard loss applied to clean input

samples (Madry et al., 2018). The robustness loss

refers to the standard loss applied to the worst-case

(i.e. loss-maximising) adversarial example for each

training sample. In the context of NLP, however,

adversarial training poses unique challenges due to

the discrete nature of text. Specifically, the inner

maximisation step required in the min-max formu-

lation of adversarial training becomes computation-

ally expensive (Yoo and Qi, 2021). To address

this, various methods have been proposed in the

literature, ranging from augmenting the training

set with adversarial examples tailored to a specific

model (Si et al., 2021; Dong et al., 2021; Zhou

et al., 2021a), to more sophisticated optimisations

in token-embedding space for the inner maximisa-

tion step (Zhu et al., 2020; Li and Qiu, 2021; Goyal

et al., 2023).

In parallel, other studies focus on structure-free

regularisation methods for adversarial robustness.

Yang et al. (2023b) argue that encouraging higher

entropy (i.e. uncertainty) in model outputs can en-

hance adversarial robustness. They emphasise the

need to understand the inherent robustness prop-

erties of models, focusing on those that are flex-

ible, simple, and not overly specialised for spe-

cific types of text adversarial attacks, as well as

the interplay between a model’s confidence and

robustness. Building on this idea, they highlight

that entropy regularisation techniques, such as label

smoothing (Szegedy et al., 2015, 2016), can implic-

itly contribute to adversarial robustness by address-

ing model overconfidence. Similarly, Raina et al.

(2024) proposed training-time temperature scaling

as a defence mechanism. They empirically demon-

strated that highly miscalibrated models (Guo et al.,

2017) interfere with an adversarial attacker’s abil-

ity to find meaningful search directions due to the

little sensitivity in the predicted probabilities.
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Unlike those adversarial training-based methods,

which rely on manipulating the token-embedding

space for inner maximisation to enhance adver-

sarial robustness, regularisation-based approaches

offer a more attractive and effective alternative.

These regularisation-based methods are synonyms-

agnostic and structure-free, which can be seam-

lessly applied across a broad spectrum of NLP

tasks, extending beyond traditional text classifica-

tion. To the best of our knowledge, the most recent

benchmark in this area was established by Li et al.

(2021b). They offered foundational insights but

limited their focus to text classification tasks, evalu-

ating only two datasets with defence methods devel-

oped prior to 2021. In contrast, our work broadens

the evaluation by emphasising synonyms-agnostic

and structure-free methods, ensuring broad appli-

cability and relevance to a wider array of NLP

challenges and tasks. Our contributions include:

1. We argue that the existing adversarial defence

benchmark, as established by Li et al. (2021b),

is limited in scope. In response, we extend

the evaluation to include more NLP datasets,

tasks, models, and recent advanced adversar-

ial defence techniques.

2. We propose TTSO++, a variant of training-

time temperature scaling that incorporates dy-

namic confidence adjustment through an en-

tropy term. This adaptation enhances robust-

ness against adversarial attacks, especially un-

der TextFooler and TextBugger scenarios.

Our code is available at https://github.com/

PuReDefence/AdvBench4Text.

2 Background

The vulnerability of deep learning models to adver-

sarial attacks has become a significant concern in

NLP. This section provides an overview of adver-

sarial attacks and defences in NLP, with a particu-

lar focus on flexible defence methods that can be

adapted to various NLP tasks.

2.1 Adversarial Attacks

Adversarial attacks in NLP aim to manipulate input

text in ways that preserve semantic meaning but

cause model misclassification. Following notation

in Raina and Gales (2023) the distance between

the benign sample x and the adversarial example x̃

can be measured via a proxy function G(x, x̃) ≤ ϵ,

where ϵ represents the maximum imperceptibility

threshold. Goyal et al. (2023) categorised these

attacks based on the attacker’s knowledge (white-

box vs. black-box), the perturbation level (charac-

ter, word, or sentence-level), and the attack goal

(targeted vs. untargeted). Common attack methods

include word substitution (Ren et al., 2019; Zang

et al., 2020; Li et al., 2020b; Garg and Ramakrish-

nan, 2020; Jin et al., 2020; Maheshwary et al., 2021;

Waghela et al., 2024; Lu et al., 2024), character ma-

nipulation (Gao et al., 2018; Eger et al., 2019a,b;

Pruthi et al., 2019; Liu et al., 2022a; Rocamora

et al., 2024), and sentence paraphrasing (Ribeiro

et al., 2018; Iyyer et al., 2018; Zhao et al., 2018; Li

et al., 2020a, 2021a). Many of these popular attack

methods are implemented in the TextAttack library

(Morris et al., 2020).

2.2 Adversarial Defences

In this section, we will discuss two different types

of adversarial defence methods.

2.2.1 Adversarial Training-based Methods

Numerous defence methods have been proposed

to counter adversarial threats. In computer vision,

adversarial training (Goodfellow et al., 2014b) min-

imises empirical risk from worst-case adversarial

examples, but its inner maximisation step is com-

putationally expensive for NLP models. To ad-

dress this, a group of adversarial training methods

like PGD (Madry et al., 2018), FreeLB (Zhu et al.,

2020), and TAVAT (Li and Qiu, 2021) accelerate

optimisation by identifying adversarial examples

in the token-embedding space.

Despite their efficiency, the limited success of

these methods is often attributed to perturbations

in the embedding space, which may not adequately

represent true adversarial examples in natural lan-

guage. To mitigate this issue, approaches such

as ASCC (Dong et al., 2021) and DNE (Zhou

et al., 2021b) proposed a more meaningful em-

bedding perturbation space, defining it as the con-

vex hull of word synonyms. While these meth-

ods offer improved robustness, they require pre-

computation of synonyms, limiting their adaptabil-

ity and effectiveness against diverse adversarial

attacks. In light of these challenges, we emphasise

the need for synonyms-agnostic and structure-free

defence strategies, which provide broader appli-

cability across NLP tasks. In practical scenarios,

defenders should not rely on prior knowledge of the

adversary’s mechanisms for generating synonyms,

as this can limit the robustness of the defence.
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2.2.2 Regularisation-based Methods

Regularisation-based methods have emerged as a

more flexible and generalisable approach to adver-

sarial defence in NLP, particularly because they do

not rely on model structures or synonym sets, mak-

ing them adaptable across a wide range of tasks.

Methods such as Flooding-X (Liu et al., 2022c),

adversarial label smoothing (Yang et al., 2023b),

and temperature scaling (Raina et al., 2024) have

demonstrated notable effectiveness in enhancing

adversarial robustness.

Flooding-X (Liu et al., 2022c) aims to prevent

overconfidence in model predictions by maintain-

ing the loss around a pre-defined “flood” level

(Ishida et al., 2020), thereby mitigating the model’s

susceptibility to adversarial perturbations. Label

smoothing (Szegedy et al., 2016), on the other

hand, modifies the training objective by soften-

ing the hard labels, distributing a small amount

of probability mass across all classes, which helps

in reducing the model’s confidence in incorrect

predictions. Yang et al. (2023b) extensively stud-

ied standard label smoothing and its adversarial

variant (Ren et al., 2022), and showed that label

smoothing can improve robustness to textual ad-

versarial attacks (both black-box and white-box)

and mitigate overconfident errors on adversarial

examples. Additionally, Raina et al. (2024) high-

lighted that the extreme class confidence exhibited

by miscalibrated models (Guo et al., 2017) creates

an illusion of robustness (IOR). To address this,

they proposed training-time temperature scaling

as a defence mechanism to improve true robust-

ness against unseen attacks. Their empirical results

showed that highly miscalibrated models impede

adversarial attackers by reducing sensitivity in pre-

dicted probabilities, thereby limiting the attacker’s

ability to identify meaningful search directions.

Together, these regularisation-based methods

provide a synonyms-agnostic and structure-free

framework for adversarial defence, making them

well-suited for diverse NLP tasks without requiring

prior knowledge of adversarial strategies.

3 Experiments

3.1 Datasets

Experiments are carried out on six NLP datasets

(statistics summarised in Table 1), including differ-

ent tasks: single-sentence classification, similarity

and paraphrase identification, natural language in-

ference, and commonsense reasoning.

Dataset # Classes Train Validation Test Task

SST2 2 6920 872 1821 single-sentence classification

MR 2 8530 1066 1066 single-sentence classification

MRPC 2 3668 408 1725 paraphrase identification

SciTail 2 23088 2126 1304 natural language inference

SIQA 3 33410 1954 - commonsense reasoning

CSQA 5 9741 1221 - commonsense reasoning

Table 1: Dataset statistics.

SST2 (Socher et al., 2013) is a binary sentiment

classification task where each sample consists of a

single sentence from movie reviews. The objective

is to predict whether a given sentence expresses

positive or negative sentiment. MR (Pang and Lee,

2005) is another binary sentiment classification

dataset similar to SST-2, based on movie reviews.

Each sentence is labelled as expressing either pos-

itive or negative sentiment. MRPC (Dolan and

Brockett, 2005) is a binary classification dataset for

similarity and paraphrase identification, where the

task is to determine whether two sentences in a pair

are semantically equivalent. SciTail (Khot et al.,

2018) is a natural language inference (NLI) dataset

designed to test a model’s ability to recognise en-

tailment. SIQA (Sap et al., 2019) is a common-

sense reasoning dataset where the goal is to choose

the most appropriate answer from three options to

questions about everyday social situations. SIQA

presents a challenge in understanding social dy-

namics and reasoning beyond explicit facts. CSQA

(Talmor et al., 2019) is another multiple-choice

question answering dataset that requires different

types of commonsense knowledge to predict the

correct answers.

These datasets cover a range of tasks, including

single-sentence classification, similarity and para-

phrase identification, natural language inference,

and commonsense reasoning, enabling comprehen-

sive evaluation across multiple dimensions of lan-

guage understanding. Each dataset was carefully

selected to ensure diversity in task complexity and

linguistic phenomena, providing a robust bench-

mark for assessing model performance in various

natural language understanding (NLU) tasks.

3.2 Models

We follow existing adversarial robustness literature

(Raina et al., 2024; Zhao et al., 2024; Moraffah

et al., 2024) and use Transformer (Vaswani, 2017)

encoders, which are state-of-the-art on many NLP

tasks1. Specifically, we consider the base variants

1Appendix A shows the performance of encoder-only mod-
els relative to generative LLMs for many classification tasks.
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Model Checkpoint Params

BERT-base google-bert/bert-base-uncased 109M

RoBERTa-base FacebookAI/roberta-base 124M

DeBERTa-base microsoft/deberta-v3-base 184M

BGE-M3 BAAI/bge-m3 567M

Table 2: Pre-trained language models (PLMs) check-

points from HuggingFace Hub. Model: Lists the names

of different PLMs. Checkpoint: Specifies the Hug-

gingFace checkpoint name with each model. Params:

Indicates the number of parameters in each model.

of BERT (Devlin et al., 2019), RoBERTa (Liu et al.,

2019b), and DeBERTa (He et al., 2020), which are

the most commonly used baseline models in prior

adversarial defence studies. To extend this evalu-

ation, we also assess adversarial robustness using

a more recent state-of-the-art embedding model

BGE-M3 (Chen et al., 2024). A summary of all

evaluated models is presented in Table 2.

While generative large language models (LLMs)

such as Llama (Dubey et al., 2024) and ChatGPT

(OpenAI, 2023) have demonstrated impressive ca-

pabilities in various NLP tasks, their inclusion in

adversarial robustness evaluations for our bench-

mark datasets is not appropriate. Our preliminary

experiments (summarised in Table 7) on some of

our benchmark datasets show that generative LLMs

like Llama3-8B (Dubey et al., 2024) and Phi3-3.8B

(Abdin et al., 2024) perform poorly on clean accu-

racy compared to smaller, discriminative models

such as BERT, RoBERTa, and DeBERTa. Despite

their large parameter counts, these models con-

sistently underperform on clean (without attack)

classification tasks, which undermines the signifi-

cance of their adversarial robustness, as robustness

should be evaluated in the context of maintaining

high accuracy on before-attack data. Given the high

computational cost and lower clean accuracy of

these models, it is misleading to report a high after-

attack accuracy and a low attack success rate with-

out considering their poor baseline before-attack

performance.

3.3 Adversarial Defence Approaches

We consider seven defence baselines in our bench-

mark: PGD (Madry et al., 2018), FreeLB (Zhu

et al., 2020), TAVAT (Li and Qiu, 2021), Flooding-

X (Liu et al., 2022c), standard label smooth-

ing (SLS) and adversarial label smoothing (ALS)

(Yang et al., 2023b), and training-time temperature

scaling optimisation (TTSO) (Raina et al., 2024).

We further create a simple variant of the baseline

TTSO that uses entropy-based temperature scaling

during training, named TTSO++. This approach

adjusts the temperature based on the entropy of the

prediction distribution. High entropy indicates that

the model is uncertain, so a lower temperature can

be applied to sharpen the distribution. Conversely,

low entropy (high certainty) can be smoothed by

applying a higher temperature. The temperature

T is adjusted according to the entropy H(·) of the

softmax distribution p:

T = Tbase + α ·H(p) (1)

where H(p) is the entropy of the softmax proba-

bilities p, Tbase is the base temperature, and α is

a scaling factor controlling how strongly the tem-

perature reacts to uncertainty. By adding entropy

H(p) to the temperature scaling formula, we in-

troduce dynamic confidence adjustment based on

the model’s uncertainty. Note that Balanya et al.

(2024) also proposed an entropy-based temperature

scaling method, but we introduce a simpler one that

does not need any learnable parameters.

3.4 Evaluation Metrics

We follow the conventions in the literature (Li et al.,

2021b; Liu et al., 2022c; Lee et al., 2022) to eval-

uate our benchmark. We leverage TextFooler (Jin

et al., 2020) and TextBugger (Li et al., 2018) to

attack the victim models and measure the empirical

performance. Both attackers are implemented us-

ing the default settings from the TextAttack library

(Morris et al., 2020). While we acknowledge the

advancements in attack techniques, TextAttack cur-

rently provides limited support for newer methods

and only includes adversarial attack methods devel-

oped prior to 2021. Similarly, another widely-used

OpenAttack (Zeng et al., 2021) library only cov-

ers adversarial attack methods up to 2020. There-

fore, we focused on three well-established, general-

purpose attack methods that are widely recognised

for evaluating adversarial robustness (Wang et al.,

2022b; Yang et al., 2023a; Zhan et al., 2023; Hu

et al., 2023; Yang et al., 2023b; Lu et al., 2024; Ji

et al., 2024; Zhang et al., 2024; Zhao et al., 2024).

To quantify the impact of each adversarial attack,

we follow prior works (Li et al., 2021b; Liu et al.,

2022c; Hu et al., 2023) and report the following

metrics: accuracy under attack (AUA), attack suc-

cess rate (ASR), and the average number of queries

(AVGQ) required to successfully attack a model.
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Additionally, we provide the before-attack accuracy

to offer a baseline for comparison, and quantify the

relative performance decline using performance

drop rate (PDR).

Clean Accuracy (ACC) measures the accuracy of

the model on the before-attack dataset. It provides

a baseline for how well the model performs without

adversarial interference.

Accuracy Under Attack (AUA) evaluates the ac-

curacy of the model when subjected to adversarial

examples. A higher AUA indicates better robust-

ness against adversarial attacks.

Attack Success Rate (ASR) is the percentage

of adversarial attacks that successfully cause the

model to misclassify. A lower ASR signifies a more

robust model.

Number of Queries (AVGQ) quantifies the aver-

age number of queries made to the model by an

adversarial attack to achieve success. A higher

number implies the model is harder to attack (Li

et al., 2021c).

Performance Drop Rate (PDR) quantifies the

relative performance decline, and provides a nor-

malised measure for comparing different attacks

(Zhu et al., 2023). APDR stands for average PDR

across different attacks.

In contrast to prior work (Dong et al., 2021; Bao

et al., 2021; Zheng et al., 2022; Liu et al., 2022b;

Wang et al., 2022b; Hu et al., 2023; Zeng et al.,

2023; Zhan et al., 2023; Wang et al., 2023), which

often limits evaluations to a small subset of test

samples from their datasets, we advocate for the in-

clusion of the entire test set across all datasets. This

comprehensive evaluation ensures a more robust

assessment of the defence methods’ effectiveness.

Such an approach contrasts with the prevailing prac-

tice in the field, where evaluations may be restricted

to a small portion of the available test data, poten-

tially leading to an incomplete representation of a

model’s performance across diverse scenarios.

3.5 Implementation Details

All experiments were conducted using the Hug-

gingFace framework (Wolf et al., 2020) to lever-

age pre-trained model weights. For the adversarial

training-based methods, including PGD, FreeLB,

and TAVAT, we used the default hyper-parameters

provided by the TextDefender library (Li et al.,

2021b). The default hyper-parameters for each

adversarial training baseline are: adversarial it-

erations of 5, adversarial learning rate of 0.03,

adversarial initialisation magnitude of 0.05, ad-

versarial maximum norm of 1, adversarial norm

type of l2. For experiments involving SLS and

ALS, we performed a hyper-parameter search

for the label smoothing coefficient from the set

{0.1, 0.2, 0.3, 0.4, 0.5}. In experiments involving

TTSO and TTSO++, we applied the same high

temperature T = 10 to every instance and scal-

ing factor α = 0.5 by default. The learning rate

was optimised by selecting the model that achieved

the highest validation accuracy after fine-tuning for

four epochs, with candidate values for the learning

rate drawn from the set {1e − 5, 2e − 5, 5e − 5}.

For commonsense reasoning datasets, we follow

Branco et al. (2021) to fine-tune the pre-trained

model, converting the multiple-choice task into a

sequence-ranking problem, as outlined in Liu et al.

(2019a). We process the elements of input pairs

separately, generating a score for each, with the

maximum score corresponding to the selected an-

swer. All experiments were executed on a single

NVIDIA RTX 4090 GPU with 24GB of memory.

3.6 Results

3.6.1 Robustness in Classification Tasks

Table 3 presents the experimental results trained

with various defence methods. Notably, TTSO and

TTSO++ consistently outperform other baselines,

achieving superior AUA across diverse attacks

(TextFooler and TextBugger) and model architec-

tures (BERT, RoBERTa, and DeBERTa). This ro-

bustness can be attributed to their ability to coun-

teract the Illusion of Robustness (IOR) by address-

ing model miscalibration (Raina et al., 2024), a

key factor behind overconfidence in adversarial

scenarios. Unlike token-level embedding perturba-

tion techniques such as PGD, FreeLB, and TAVAT,

which often lead to overfitting specific attack pat-

terns without enhancing overall model uncertainty,

TTSO and TTSO++ effectively recalibrate model

confidence by softening predictions, setting a new

benchmark for adversarial defence strategies.

In comparison, methods like SLS and ALS

emerge as flexible and lightweight alternatives to

adversarial training-based methods. While ap-

proaches such as PGD, FreeLB, or TAVAT re-

quire computationally expensive inner maximisa-

tion steps during training and sometimes degrade

performance under adversarial conditions, SLS and

ALS offer significant improvements in adversarial

robustness with minimal additional complexity. As

shown in Table 3, Flooding-X consistently under-
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Dataset Defence

BERT RoBERTa DeBERTa

ACC↑
AUA↑

ACC↑
AUA↑

ACC↑
AUA↑

TF TB TF TB TF TB

SST2

- 91.54 6.59 28.08 93.79 7.80 31.52 95.22 8.57 39.65

PGD 92.64 8.73 34.27 94.29 8.79 34.21 94.67 8.73 38.88

FreeLB 91.98 8.57 31.80 95.11 6.43 36.90 95.22 10.32 44.10

TAVAT 92.64 10.71 34.32 95.17 9.23 37.40 95.83 11.04 47.01

Flooding-X 89.84 11.64 30.37 94.95 5.44 29.65 95.22 7.36 31.74

SLS 91.76 12.25 39.21 94.34 11.64 44.81 95.22 22.24 54.48

ALS 91.21 15.54 39.37 94.51 23.50 52.50 95.55 15.76 52.22

TTSO 91.71 41.63 50.85 94.67 45.63 56.84 95.66 55.02 65.84

TTSO++ 91.76 43.27 53.27 94.78 48.93 59.91 95.55 56.07 66.23

MR

- 85.55 3.94 22.80 88.65 6.75 31.80 90.71 9.94 34.24

PGD 85.93 12.85 35.46 87.90 6.29 34.33 89.21 5.35 30.11

FreeLB 86.30 6.66 28.71 89.12 5.53 33.58 91.18 8.63 34.80

TAVAT 86.02 8.26 30.11 87.99 6.19 32.46 90.90 10.60 38.37

Flooding-X 85.55 5.44 27.02 88.74 7.79 31.05 91.37 6.66 35.46

SLS 86.59 13.60 36.49 88.09 20.83 42.59 90.62 17.45 45.31

ALS 85.83 11.07 33.77 87.90 17.07 43.34 89.96 17.92 46.53

TTSO 86.02 35.27 43.06 87.71 42.40 51.97 90.34 47.84 56.75

TTSO++ 86.02 38.09 45.31 87.62 43.39 52.94 90.24 49.44 57.22

MRPC

- 84.40 2.32 3.25 86.96 6.09 9.57 87.94 2.96 9.86

PGD 84.06 9.86 11.25 87.48 5.28 11.54 87.83 3.71 10.55

FreeLB 85.45 11.48 11.65 87.54 6.38 11.71 86.43 8.58 15.07

TAVAT 84.29 8.70 10.43 87.59 9.97 15.07 88.06 6.61 16.23

Flooding-X 82.67 7.48 7.88 87.48 4.75 8.41 88.35 3.30 10.20

SLS 84.52 6.32 7.36 86.84 9.22 12.35 88.46 8.58 12.87

ALS 82.96 5.97 7.83 86.03 10.61 13.28 88.46 6.14 17.45

TTSO 83.77 41.62 39.71 86.78 46.38 41.91 87.54 50.78 54.38

TTSO++ 83.48 42.49 40.92 86.84 50.43 42.90 87.59 50.99 55.12

SciTail

- 92.80 44.45 32.22 93.60 42.80 31.70 95.53 47.04 33.82

PGD 93.09 50.19 32.69 93.09 43.27 31.42 94.36 43.32 30.39

FreeLB 93.60 47.04 32.60 93.79 44.21 31.51 95.67 47.04 33.68

TAVAT 92.29 52.21 30.48 93.79 46.38 34.71 96.52 50.19 39.98

Flooding-X 91.58 49.62 35.28 92.43 43.32 29.02 94.73 46.28 32.22

SLS 92.33 48.02 34.85 93.60 45.58 35.79 95.67 48.64 35.04

ALS 92.57 50.80 33.44 92.90 44.17 34.48 95.16 50.85 43.09

TTSO 92.33 52.02 48.21 92.52 51.27 47.22 95.63 55.13 50.05

TTSO++ 93.74 54.47 49.86 93.41 53.23 49.12 95.25 56.02 51.32

Table 3: The experiment results of different defence methods. TF: TextFooler. TB: TextBugger. The best

performance is marked in bold.

performs compared to other baselines. This poor

performance aligns with the findings of Zhu and

Rao (2023), who found flooding techniques ineffec-

tive for adversarial robustness. By maintaining the

loss above a threshold, we argue that Flooding-X

will hinder the model’s ability to minimise adver-

sarial loss and learn intricate decision boundaries.

Its non-targeted regularisation treats all examples

uniformly, lacking the specificity needed to counter

adversarial attacks. While aimed at improving gen-

eralisation, Flooding-X appears to compromise the

nuanced feature learning required for robust adver-

sarial performance.

3.6.2 Evaluate on Embedding-based Model

While BERT, RoBERTa, and DeBERTa are the

most commonly used encoder-based models in

prior studies (Raina et al., 2024; Zhao et al., 2024;

Moraffah et al., 2024), we extend this evaluation by

assessing adversarial robustness using a more re-

cent state-of-the-art embedding-based model BGE-

M3 (Chen et al., 2024). Results are summarised in

Table 4. TTSO++ consistently achieves superior

robustness performance, excelling in all metrics

across all datasets and attack types.

3.6.3 Robustness in Commonsense Reasoning

Table 5 highlights the adversarial robustness per-

formance of all baseline defence methods on com-

monsense reasoning tasks using RoBERTa-base.

TTSO++ achieves the best overall performance,

with the highest AUA and lowest ASR across both

datasets, demonstrating its strong defence capabili-

ties. Flooding-X, however, consistently underper-

forms, reaffirming its limitations in adversarial set-

tings. Notably, token-level embedding perturbation

methods such as PGD, FreeLB, and TAVAT exhibit

marginal improvements over the baseline but fail

to achieve robustness comparable to TTSO++.
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Dataset Defence ACC↑
TextFooler TextBugger

APDR↓

AUA↑ ASR↓ AVGQ↑ AUA↑ ASR↓ AVGQ↑

SST2

- 93.36 6.59 92.94 91.14 38.00 59.29 43.33 76.11

PGD 92.86 6.59 92.90 94.72 40.14 56.77 44.30 74.84

FreeLB 93.85 6.43 93.15 90.58 39.43 57.99 43.79 75.57

TAVAT 94.89 6.70 92.94 92.85 40.47 57.35 44.15 75.14

Flooding-X 93.03 4.50 95.16 85.47 34.43 62.99 42.60 79.08

SLS 93.79 12.74 86.42 113.85 47.94 48.89 45.56 67.66

ALS 93.90 12.96 86.20 114.51 50.58 46.14 45.78 66.17

TTSO 93.63 45.96 50.91 162.66 57.94 38.12 104.55 44.52

TTSO++ 93.36 47.61 49.00 163.92 58.05 37.82 105.47 43.41

MR

- 87.15 5.16 94.08 94.13 33.30 61.79 47.11 77.94

PGD 87.71 5.16 94.12 96.62 35.08 60.00 48.89 77.06

FreeLB 88.27 4.50 94.90 97.93 35.37 59.94 47.54 77.42

TAVAT 89.59 6.10 93.19 102.61 38.37 57.17 49.03 75.18

Flooding-X 88.18 4.22 95.21 90.28 33.49 62.02 46.54 78.61

SLS 87.99 13.32 84.86 124.05 43.71 50.32 49.95 67.59

ALS 88.37 11.82 86.62 124.74 42.96 51.38 51.01 69.00

TTSO 88.46 41.09 53.55 171.37 50.38 43.05 112.69 48.30

TTSO++ 88.37 41.93 52.55 170.61 51.97 41.19 114.71 46.87

MRPC

- 86.96 4.81 94.47 152.11 12.23 85.93 101.07 90.20

PGD 86.55 4.58 94.71 161.32 11.88 86.27 104.67 90.49

FreeLB 86.67 5.45 93.71 152.83 10.32 88.09 102.72 90.90

TAVAT 87.54 4.87 94.44 174.73 15.54 82.25 112.24 88.34

Flooding-X 87.07 4.81 94.47 149.09 12.64 85.49 100.20 89.98

SLS 86.84 5.33 93.86 178.08 19.36 77.70 119.15 85.78

ALS 86.49 8.41 90.28 175.10 15.94 81.57 106.76 85.92

TTSO 85.74 43.94 48.75 380.00 52.46 38.81 254.36 43.78

TTSO++ 85.57 44.64 47.83 385.33 52.64 38.48 257.86 43.16

SciTail

- 94.54 44.97 52.44 105.04 35.32 62.64 96.17 57.54

PGD 94.97 49.81 47.55 109.80 38.85 59.09 98.06 53.32

FreeLB 94.78 50.66 46.55 109.44 40.36 57.42 104.09 51.98

TAVAT 95.11 50.80 46.59 111.04 42.00 55.84 102.13 51.22

Flooding-X 93.27 48.92 47.55 108.44 38.62 58.60 99.93 53.08

SLS 94.36 48.31 48.80 112.80 40.59 56.98 100.81 52.89

ALS 94.07 47.74 49.25 109.48 40.59 56.85 97.75 53.05

TTSO 94.40 54.37 42.40 123.80 52.63 44.25 169.03 43.33

TTSO++ 94.31 55.83 40.80 123.65 53.86 42.89 171.95 41.84

Table 4: The experiment results of different defence methods using BGE-M3 model. The best performance is

marked in bold.

4 Discussion

4.1 Dynamic Confidence Adjustment

From Table 3, we observe that TTSO++ consis-

tently outperforms TTSO across datasets and mod-

els in terms of all evaluation metrics. A key factor

in this improvement lies in the nuanced difference

between the temperature-scaling mechanisms of

TTSO and TTSO++. TTSO applies a uniform tem-

perature (Tbase = 10) to all instances during train-

ing, ensuring equal smoothing of logits across the

dataset. While this strategy offers simplicity and

improves model calibration, it is inherently lim-

ited. A fixed temperature does not account for

variations in the difficulty of individual examples.

For easy-to-classify examples (where the model is

naturally confident), applying a slightly higher tem-

perature can unnecessarily dampen the predictions,

leading to a loss of useful certainty. Conversely,

for hard-to-classify examples (where the model

should be uncertain) or adversarial instances, ap-

plying a fixed high temperature may not be enough

to capture the complexity of the example, leading

to insufficient adjustment of the logits. In contrast,

TTSO++ incorporates entropy-based temperature

scaling, where the temperature is dynamically ad-

justed for each input instance based on the model’s

certainty. This approach leverages entropy as a

proxy for uncertainty. Higher entropy (low cer-

tainty) leads to a higher temperature, while lower

entropy (high certainty) results in a lower temper-

ature. This adaptive mechanism allows TTSO++

to tailor the level of smoothing to the specific de-

mands of each input, striking a better balance be-

tween preserving confidence for easy examples and

enhancing robustness for challenging ones. As

a result, TTSO++ achieves superior performance,

where the ability to dynamically handle uncertain

inputs is critical.

The effectiveness of TTSO++ is particularly ev-

ident in commonsense reasoning tasks like SIQA

and CSQA (Table 5). Here, TTSO++ demonstrates
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Dataset Defence ACC↑
TextFooler

AUA↑ ASR↓ AVGQ↑

SIQA

- 71.24 57.98 18.61 16.15

PGD 71.24 58.39 18.03 16.18

FreeLB 71.55 59.01 17.53 16.15

TAVAT 71.19 62.33 12.44 16.32

Flooding-X 70.37 57.98 17.60 16.13

SLS 71.60 59.77 16.51 16.23

ALS 72.16 59.77 17.16 16.12

TTSO 71.08 59.21 16.70 16.23

TTSO++ 72.22 63.01 11.36 17.01

CSQA

- 59.87 48.24 19.43 11.94

PGD 59.11 48.01 18.77 11.92

FreeLB 60.77 48.73 19.81 11.99

TAVAT 60.81 48.51 20.22 12.01

Flooding-X 58.64 47.42 19.13 11.91

SLS 59.46 48.48 18.46 12.04

ALS 58.39 46.76 19.92 12.04

TTSO 59.91 49.12 18.01 11.62

TTSO++ 58.94 50.89 13.65 12.88

Table 5: The experiment results on the commonsense

reasoning tasks (SIQA and CSQA). Following Branco

et al. (2021), we employed TextFooler (Jin et al., 2020)

and evaluated adversarial performance with RoBERTa-

base under the same experimental settings. The best

performance is marked in bold.
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Figure 1: Average performance drop rate (APDR) across

two attackers using TTSO++ with RoBERTa-base as

training temperature varies.

the highest AUA and lowest ASR across all mod-

els and datasets. The instance-wise temperature

scaling provides the model with the flexibility to

adapt to diverse question-answering scenarios, ef-

fectively mitigating the impact of adversarial at-

tacks. TTSO++ sets a new benchmark, offering

superior adversarial robustness and generalisability

across datasets and tasks.

4.2 High Temperature Training

While tuning Tbase could potentially enhance per-

formance against adversarial attacks, we opted for

a fixed temperature to ensure consistency and sim-

plicity in our experimental setup. The choice of

10 as the fixed temperature was empirically val-

idated across a range of NLP tasks and demon-

strated robust performance across clean and ad-

Defence SST2 MRPC SIQA

- 1 1 1

PGD x6.3 x10.2 x4.1

FreeLB x2.6 x3.1 x2.2

TAVAT x4.2 x3.9 x2.6

Flooding-X x1.2 x1.3 x1.1

SLS x1.1 x1.1 x1.1

ALS x1.2 x1.2 x1.1

TTSO x1.1 x1.1 x1.0

TTSO++ x1.1 x1.1 x1.1

Table 6: Runtime comparison of training RoBERTa-

base using different adversarial defence methods.

versarial examples. By using a fixed temperature,

we reduce the need for extensive hyper-parameter

tuning, which can introduce additional computa-

tional overhead and potential overfitting to specific

datasets or adversarial attacks.

Figure 1 presents the changes in before- and

after-attack accuracy of a model trained with the

standard objective and various base temperatures

(Tbase, as described in §3.3) during training. While

similar trends were observed across all models, we

present the results specifically for RoBERTa-base

in this section. The results indicate that higher tem-

peratures during training generally enhance robust-

ness against adversarial attacks. To quantify this,

we use the average performance drop rate (APDR)

(Zhu et al., 2023), which averages the performance

drop rate

PDR = 1−

∑
(x;y)∈D M[fθ(A(x)), y]
∑

(x;y)∈D M[fθ(x), y]
(2)

across different adversarial attacks, where A is the

adversarial attack applied to input text x, M[·] is

the evaluation function, and fθ(·) is the network.

For classification task, M[·] is the indicator func-

tion ✶[ŷ, y] which equals to 1 when ŷ = y, and 0

otherwise. Notably, on SST2 dataset, we observe

a slight increase in APDR when the training tem-

perature is set to 20. This suggests that excessively

high temperatures may overly smooth the predicted

probability distribution, making it harder for the

model to effectively learn from the training data.

4.3 Runtime Analysis

Table 6 presents the runtime comparison of training

the RoBERTa-base model on the SST2, MRPC, and

SIQA datasets using different adversarial defence

methods. The baseline model (no defence) has a

normalised runtime of 1 across all datasets, serving

as the standard for comparison.
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Adversarial training-based methods such as

PGD, FreeLB, and TAVAT introduce significant

runtime overhead due to the inclusion of inner

maximisation steps. PGD, which requires mul-

tiple gradient updates per iteration to approximate

adversarial perturbations, is the most computation-

ally expensive, resulting in training times that are

x6.3, x10.2, and x4.1 longer for SST2, MRPC, and

SIQA, respectively. Although adversarial training-

based methods offer slight improvements in ad-

versarial robustness, the runtime cost makes them

impractical for large-scale training tasks. In con-

trast, regularisation-based methods like Flooding-

X, SLS, ALS, TTSO, and TTSO++ impose min-

imal runtime overhead, with training times rang-

ing from x1.1 to x1.3 across all datasets. These

methods are particularly appealing for large-scale

scenarios, as they do not involve the computation-

ally expensive inner maximisation step. Among

these, TTSO++ stands out by combining strong ad-

versarial robustness with a minimal runtime impact.

Its entropy-based temperature scaling mechanism

effectively adjusts model predictions without re-

quiring extensive computational resources, making

it an ideal defence for both efficiency and robust-

ness.

5 Conclusion

In this work, we investigated adversarial defence

techniques that are broadly applicable across di-

verse NLP tasks, focusing on synonym-agnostic

and structure-free approaches. By establishing a

comprehensive benchmark, we evaluated state-of-

the-art adversarial defence strategies developed

prior to 2024, extending the evaluation beyond

traditional text classification to encompass single-

sentence classification, similarity and paraphrase

identification, natural language inference, and com-

monsense reasoning tasks.

Our systematic exploration of regularisation-

based methods revealed valuable insights into their

potential for textual adversarial defence. Based

on these findings, we proposed TTSO++, a sim-

ple yet effective variant of temperature scaling that

leverages entropy-based adjustments during train-

ing. TTSO++ achieves state-of-the-art robustness

under adversarial attacks while maintaining strong

performance on clean examples. Its minimal com-

putational overhead makes it highly practical for

real-world applications. By extending adversarial

evaluation to a broader spectrum of NLP tasks, we

aim to inspire the development of more flexible,

generalisable, and efficient defence mechanisms.

We believe this study provides a robust founda-

tion for future research, bridging the gap between

task-specific defences and universally applicable

solutions for adversarial robustness in NLP.

Limitations

Our study presents empirical results using state-of-

the-art encoder-based Transformer models, which

are widely regarded as the most appropriate for

classification-based NLP tasks (Raina et al., 2024;

Zhao et al., 2024). However, the rapidly grow-

ing field of LLMs opens new avenues for explo-

ration. Future work could examine the susceptibil-

ity of decoder-based LLMs to adversarial attacks

and evaluate the performance of the defence meth-

ods discussed in this paper in such settings. Ad-

ditionally, while our research focuses on defence

methods that can be uniformly applied across all

benchmark datasets, it remains unexplored whether

more specialised techniques, such as contrastive-

based methods (Pan et al., 2022; he et al., 2023) or

prompt-based methods (Xu and Wang, 2024; Yang

et al., 2024), could be adapted to provide univer-

sal adversarial defences. Investigating these meth-

ods’ applicability to a broader range of tasks could

further enhance the scope of adversarial robust-

ness research. Finally, we proposed TTSO++ as

an improvement over the fixed-temperature TTSO

method by introducing entropy-based temperature

scaling. While TTSO++ demonstrates significant

advancements, further optimisation of temperature

scaling strategies could yield additional improve-

ments. For example, dynamically adjusting the

temperature based on training progression (e.g.,

curriculum-based or confidence-based scaling) may

better align with the evolving complexity of the

task during training. Future research could explore

these methods to develop more adaptive and effec-

tive defences.
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A Generative LLMs

With the advent of powerful generative large lan-

guage models (LLMs), such as ChatGPT (Ope-

nAI, 2023), their usage has become increasingly

widespread. However, similar to recent studies

(Zhong et al., 2023a; Raina et al., 2024; Periti et al.,

2024), we find that these popular generative LLMs

are not suitable for inclusion in our benchmark for

several key reasons. A comparative analysis of their

performance with state-of-the-art generative LLMs,

using 0-shot and few-shot prompting, is presented

in Table 7 for some datasets considered in this pa-

per. First, fine-tuned encoder-based models (e.g.,

BERT-based models) continue to demonstrate com-

petitive, if not superior, performance on each task,

which has led to their extensive adoption in many

industry applications. These models are not only

lightweight (possessing far fewer parameters com-

pared to generative LLMs) but also cost-effective

while achieving strong performance across a wide

range of tasks. Second, the use of generative LLMs
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Model Params SST2 (%) MR (%) MRPC (%)

Mistral-7B (0-shot)† 7B - 86.47 67.15

Mistral-7B (5-shot)† 7B - 88.92 76.21

ChatGPT-3.5 (0-shot)‡ - 92.00 - 66.00

ChatGPT-3.5 (1-shot)‡ - 96.00 - 66.00

ChatGPT-3.5 (5-shot)‡ - 98.00 - 76.00

ChatGPT-3.5 (0-shot CoT)‡ - 96.00 - 78.00

BERT-base 110M 91.54 85.55 84.40

RoBERTa-base 110M 93.79 88.65 86.96

DeBERTa-base 110M 95.22 90.71 87.94

Phi3-3.8B (0-shot) 3.8B 85.93 81.57 74.01

Phi3-3.8B (0-shot CoT) 3.8B 87.19 83.44 74.29

Llama3-8B (0-shot) 8B 89.46 83.80 76.90

Llama3-8B (0-shot CoT) 8B 90.12 84.13 78.49

Table 7: Comparison of model performance with pop-

ular generative LLMs. † Figures given in Raina et al.

(2024). ‡ Figures given in Zhong et al. (2023b).

complicates the standardisation of input-output for-

mats across diverse tasks and datasets, which in-

troduces potential bias into the evaluation process

(Liu et al., 2023). This challenge makes it difficult

to ensure reproducibility and to facilitate fair com-

parisons across different research contexts (Hayase

et al., 2024; Rathje et al., 2024). Moreover, dis-

entangling a model’s intrinsic performance from

artifacts introduced by the prompting strategy is

non-trivial, as model outcomes are influenced by

both the design of the prompts and the generated

responses (Gao et al., 2021; Liu et al., 2023). Fi-

nally, the adversarial attack and defence literature,

which forms the basis of our contributions, predom-

inantly focuses on encoder-based models. Aligning

our experimental setup with this body of work en-

ables us to build on existing attack and defence

mechanisms.

In Table 7, we provide a comparative analysis of

the performance of several state-of-the-art gener-

ative LLMs, utilising both zero-shot and five-shot

prompting. Additionally, we present performance

comparisons from Zhong et al. (2023b) and Raina

et al. (2024), and evaluate encoder-based models

(BERT, RoBERTa, and DeBERTa) alongside gen-

erative LLMs, including Phi3 (Abdin et al., 2024)

and Llama3 (Dubey et al., 2024), on some of the

datasets covered in this work.

B Detailed Performance Breakdown

In this section, we provide the detailed breakdown

of performances for the different Transformer en-

coders across each dataset: Table 8 for BERT-base

model, Table 9 for RoBERTa-base model, and

Table 10 for DeBERTa-base model. Each Table

presents the adversarial robustness performance

trained with different defence methods. The best

performance is marked in bold.
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Dataset Defence ACC↑
TextFooler (%) TextBugger (%)

APDR↓

AUA↑ ASR↓ AVGQ↑ AUA↑ ASR↓ AVGQ↑

SST2

- 91.54 6.59 92.80 89.53 28.08 69.35 41.30 81.06

PGD 92.64 8.73 90.57 98.54 34.27 63.01 42.74 76.79

FreeLB 91.98 8.57 90.69 98.95 31.80 65.43 42.35 78.06

TAVAT 92.64 10.71 88.44 103.78 34.32 62.95 43.21 75.70

Flooding-X 89.84 11.64 87.04 95.38 30.37 66.20 43.08 76.62

SLS 91.76 12.25 86.65 108.85 39.21 57.27 44.74 71.96

ALS 91.21 15.54 82.96 110.51 39.37 56.83 46.48 69.90

TTSO 91.71 41.63 54.61 148.27 50.85 44.55 95.83 49.58

MR

- 85.55 3.94 95.39 82.70 22.80 73.36 42.85 84.37

PGD 85.93 12.85 85.04 115.93 35.46 58.73 49.77 71.89

FreeLB 86.30 6.66 92.28 99.94 28.71 66.74 45.51 79.51

TAVAT 86.02 8.26 90.40 107.21 30.11 64.99 47.04 77.70

Flooding-X 85.55 5.44 93.64 91.97 27.02 68.42 44.77 81.03

SLS 86.59 13.60 84.29 118.28 36.49 57.85 47.95 71.08

ALS 85.83 11.07 87.10 112.63 33.77 60.66 49.31 73.88

TTSO 86.02 35.27 59.00 157.94 43.06 49.95 103.85 54.47

MRPC

- 84.40 2.32 97.25 124.00 3.25 96.15 72.84 96.70

PGD 84.06 9.86 88.28 205.38 11.25 86.62 101.98 87.44

FreeLB 85.45 11.48 86.57 212.41 11.65 86.36 107.19 86.47

TAVAT 84.29 8.70 89.68 229.16 10.43 87.62 106.60 88.65

Flooding-X 82.67 7.48 90.95 151.69 7.88 90.46 86.56 90.71

SLS 84.52 6.32 92.52 170.88 7.36 91.29 88.79 91.91

ALS 82.96 5.97 92.80 168.67 7.83 90.57 93.89 91.68

TTSO 83.77 41.62 50.31 370.89 39.71 52.60 220.98 51.46

SciTail

- 92.80 44.45 52.10 106.17 32.22 65.28 95.52 58.69

PGD 93.09 50.19 46.08 111.88 32.69 64.88 95.07 55.48

FreeLB 93.60 47.04 49.75 109.00 32.60 65.18 96.17 57.46

TAVAT 92.29 52.21 43.43 115.19 30.48 66.97 98.18 55.20

Flooding-X 91.58 49.62 45.81 111.23 35.28 61.48 102.06 53.65

SLS 92.33 48.02 47.99 110.77 34.85 62.25 94.86 55.12

ALS 92.57 50.80 45.12 112.64 33.44 63.87 97.90 54.50

TTSO 92.33 52.02 43.66 123.38 48.21 47.78 157.87 45.72

Table 8: The experiment results of different defence methods using BERT-base model.

Dataset Defence ACC↑
TextFooler TextBugger

APDR↓

AUA↑ ASR↓ AVGQ↑ AUA↑ ASR↓ AVGQ↑

SST2

- 93.79 7.80 91.69 89.15 31.52 66.39 43.31 79.04

PGD 94.29 8.79 90.68 97.68 34.21 63.72 44.28 77.20

FreeLB 95.11 6.43 93.24 94.88 36.90 61.20 44.23 77.22

TAVAT 95.17 9.23 90.31 100.21 37.40 60.70 44.25 75.50

Flooding-X 94.95 5.44 94.27 85.27 29.65 68.77 41.99 81.52

SLS 94.34 11.64 87.66 111.72 44.81 52.50 45.69 70.08

ALS 94.51 23.50 75.13 130.85 52.50 44.45 49.03 59.79

TTSO 94.67 45.63 51.80 159.93 56.84 39.97 101.98 45.88

MR

- 88.65 6.75 92.38 101.06 31.80 64.13 48.91 78.26

PGD 87.90 6.29 92.85 102.56 34.33 60.94 49.29 76.89

FreeLB 89.12 5.53 93.79 98.94 33.58 62.32 47.84 78.06

TAVAT 87.99 6.19 92.96 102.04 32.46 63.11 48.46 78.04

Flooding-X 88.74 7.79 91.23 99.61 31.05 65.01 46.73 78.12

SLS 88.09 20.83 76.36 136.77 42.59 51.65 53.54 64.00

ALS 87.90 17.07 80.58 130.26 43.34 50.69 53.59 65.64

TTSO 87.71 42.40 51.66 171.72 51.97 40.75 114.56 46.20

MRPC

- 86.96 6.09 93.00 163.57 9.57 89.00 96.71 91.00

PGD 87.48 5.28 93.97 180.35 11.54 86.81 102.54 90.39

FreeLB 87.54 6.38 92.72 191.58 11.71 86.62 105.26 89.67

TAVAT 87.59 9.97 88.62 212.02 15.07 82.79 108.67 85.71

Flooding-X 87.48 4.75 94.57 173.10 8.41 90.39 101.31 92.48

SLS 86.84 9.22 89.39 208.54 12.35 85.78 111.62 87.58

ALS 86.03 10.61 87.67 220.83 13.28 84.57 108.99 86.12

TTSO 86.78 46.38 46.56 389.29 41.91 51.70 226.51 49.13

SciTail

- 93.60 42.80 54.27 101.92 31.70 66.13 92.84 60.20

PGD 93.09 43.27 53.51 104.29 31.42 66.25 95.29 59.88

FreeLB 93.79 44.21 52.86 104.06 31.51 66.40 96.19 59.63

TAVAT 93.79 46.38 50.55 106.96 34.71 62.99 98.50 56.77

Flooding-X 92.43 43.32 53.13 104.57 29.02 68.60 92.31 60.87

SLS 93.60 45.58 51.31 106.60 35.79 61.76 103.88 56.53

ALS 92.90 44.17 52.46 105.72 34.48 62.89 93.94 57.67

TTSO 92.52 51.27 44.59 121.66 47.22 48.96 158.72 46.77

Table 9: The experiment results of different defence methods using RoBERTa-base model.
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Dataset Defence ACC↑
TextFooler TextBugger (%)

APDR↓ (%)

AUA↑ ASR↓ AVGQ↑ AUA↑ ASR↓ AVGQ↑

SST2

- 95.22 8.57 91.00 96.80 39.65 58.36 44.45 74.68

PGD 94.67 8.73 90.78 96.96 38.88 58.93 44.15 74.85

FreeLB 95.22 10.32 89.16 108.13 44.10 53.69 45.09 71.42

TAVAT 95.83 11.04 88.48 111.03 47.01 50.95 46.74 69.71

Flooding-X 95.22 7.36 92.27 92.93 31.74 66.67 42.09 79.47

SLS 95.22 22.24 76.64 130.72 54.48 42.79 47.70 59.71

ALS 95.55 15.76 83.51 120.09 52.22 45.34 49.00 64.43

TTSO 95.66 55.02 42.48 173.84 65.84 31.17 109.65 36.83

MR

- 90.71 9.94 89.04 101.00 34.24 62.25 47.71 75.65

PGD 89.21 5.35 94.01 96.21 30.11 66.25 47.00 80.13

FreeLB 91.18 8.63 90.53 105.07 34.80 61.83 48.37 76.18

TAVAT 90.90 10.60 88.34 110.67 38.37 57.79 50.01 73.06

Flooding-X 91.37 6.66 92.71 98.27 35.46 61.19 47.03 76.95

SLS 90.62 17.45 80.75 135.75 45.31 50.00 52.15 65.37

ALS 89.96 17.92 80.08 132.54 46.53 48.28 53.05 64.18

TTSO 90.34 47.84 47.04 179.78 56.75 37.18 117.93 42.11

MRPC

- 87.94 2.96 96.64 155.80 9.86 88.79 97.04 92.71

PGD 87.83 3.71 95.78 170.55 10.55 87.99 98.00 91.88

FreeLB 86.43 8.58 90.07 186.01 15.07 82.56 107.91 86.32

TAVAT 88.06 6.61 92.50 194.10 16.23 81.57 110.88 87.03

Flooding-X 88.35 3.30 96.26 156.63 10.20 88.45 97.65 92.36

SLS 88.46 8.58 90.30 158.34 12.87 85.45 101.25 87.88

ALS 88.46 6.14 93.05 182.10 17.45 80.28 111.49 86.67

TTSO 87.54 50.78 41.99 394.67 54.38 37.88 253.36 39.94

SciTail

- 95.53 47.04 50.76 107.60 33.82 64.60 85.38 57.68

PGD 94.36 43.32 54.09 106.32 30.39 67.80 89.40 60.94

FreeLB 95.67 47.04 50.84 107.88 33.68 64.80 90.24 57.81

TAVAT 96.52 50.19 48.00 112.98 39.98 58.58 98.80 53.29

Flooding-X 94.73 46.28 51.14 106.81 32.22 65.99 85.41 58.57

SLS 95.67 48.64 49.16 110.09 35.04 63.37 92.54 56.27

ALS 95.16 50.85 46.56 116.84 43.09 54.72 103.17 50.64

TTSO 95.63 55.13 42.35 126.89 50.05 47.66 164.70 45.01

Table 10: The experiment results of different defence methods using DeBERTa-base model.
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