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Abstract: This work proposes a single regime speed—flow model to fit the speed—flow
relationship on the M25, London’s main motorway which is recurrently congested, espe-
cially near Heathrow Airport. The proposed model had a better performance compared
with the existing classic models. A whole year’s field data on various sites of the M25
motorway were collected by the National Highways MIDAS (Motorway Incident Detection
and Automatic Signalling) system and analysed. The proposed model was fitter on both
four-lane and lane-by-lane conditions than the existing models, in terms of lower relative
error and RMSE values and higher R? values (minimum R? = 0.79), which means the
proposed model captured the speed—flow relationship better. In addition, the proposed
model was used to fit traffic characteristics under different weather conditions and decided
the threshold of the CM algorithms using the Gaussian function. The results showed that
both free-flow speed and road capacity were significantly reduced by up to 7% and 11%,
respectively, under different rainfall conditions, and that congestion management should
be triggered in advance on rainy days. Further analysis of extensive data over a wider
space and time is required to test the transferability of these findings to other contexts.

Keywords: single-regime model; speed—flow relationship; traffic flow; traffic speed;
M25 motorway

1. Introduction

Speed-flow models represent the interaction between speed and traffic flow, which
can be used to predict the critical values of road traffic speed and flow, thus playing a
crucial role in transportation planning [1-4]. When the critical values of traffic speed or flow
are surpassed, flow breakdown and stop—go waves occur. Flow breakdown diminishes the
effective capacity and traffic speed, leading to delays [5-8]. In addition, stop—go waves of
moving congestion tend to form, resulting in rapid changes in local speed, which disrupt
traffic flow, waste energy, emit more emissions, and create collision hazards [9,10]. Today,
more and more of the world’s highways are equipped with intelligent automatic traffic
management systems to smooth traffic flow and reduce congestion [11,12].

On England’s motorways, two traffic management algorithms, namely, congestion
management (CM) and queue protection (QP), are used as part of the operation of smart
motorways. Although the smart automatic traffic management system has been applied
to England’s motorways, congestion occurs from time to time, especially on the M25. The
M25, encircling London, is recognised as one of the busiest motorways in the country, with
an average daily traffic volume of 209,368 vehicles recorded in 2023 on the segment near
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Heathrow Airport (Junctions 14 and 15) [13]. Previously, Taylor et al. [4] attempted to
determine the relationship between traffic speed and flow for the M6 and M60 motorways
in England, but there has been no study on the specific speed-flow relationship of the M25
motorway. In addition, the M25 was chosen in this study due to the following factors:
(1) the current work focuses on the effect of weather factors on congestion; and (2) the
M25 can serve as a representative case for congested UK motorway, given its high traffic
volume and frequent congestion. Therefore, it is necessary to better understand the rela-
tionship between traffic flow and speed on the M25 motorway and further optimise the
CM algorithms to mitigate congestion.

Traffic flow characteristics change under different weather conditions because of differ-
ent driver behaviours, and how they are affected is different. Rainfall is the most common
adverse weather in the UK, and both the free-flow speed and speed-at-capacity of the
motorway are impacted on rainy days, especially on heavy rainy days. Hranac [14] studied
the freeway in the United States and demonstrated that light rain reduced speed and flow
by 2-4% and 10-11%, respectively. Akin et al. [15] observed that rainfall reduced speed
by 8-12% and capacity by 7-8% on an urban freeway in Turkey. Xu et al. [16] reported
that the reduction of the free-flow speed on freeways under light and heavy rain was
2-13% and 3-17%. Recently, Salvi et al. [17] analysed the sensitivity of traffic speed to
varying rainfall intensities across multiple road sections in Alabama, USA. They found that
the extent of the reduction was influenced by the intensity of the rainfall, along with the
free-flow speed of the road section and existing traffic volume. Nguyen et al. [18] applied
a Vector Autoregressive Model to study how weather conditions influenced traffic flow.
Their research indicated that weather conditions significantly affected traffic volume, with
precipitation leading to notable reductions in traffic speed and flow. Yang and Qian [19] de-
veloped a data-driven approach to predict highway travel time, revealing that precipitation
significantly increased travel times and reduced speeds. However, there is limited research
on how weather conditions impact the UK motorway and on how to combine congestion
management with weather conditions. Thus, it is necessary to analyse rainfall impacts on
the M25 motorway and enhance the CM algorithm under rainfall conditions. The main
contribution of this research is the development and validation of the proposed speed—flow
model and its application to congestion management under different weather conditions
on the M25 motorway.

2. Literature Review
2.1. Speed—Flow Model

According to the literature, single-regime models and multi-regime models are widely
used to describe the relationship between speed and flow nowadays. As shown in Table 1,
single-regime models may be classified into three types: generalised polynomial models,
exponential models, and logarithmic models. The Greenshields model [20] is the most
representative of the generalised polynomial models, which was first acquired by field
data fitting. In addition, this category also contains the Pipes-Munjal model [21], the
Drew model [22] and the modified Greenshields model [23]. Although the developed
Pipes—Munjal model, Drew model and modified Greenshields model made an effort to
advance the basic model by incorporating new parameters, the curves are insufficient
to accurately represent the actual data under various traffic situations. The Underwood
model [24] is a representation of the generalised exponential models, including the Newell
model [25], Northwestern model [26], Kerner and Konhauser model [27], and the Logistic
3PL model [28], as listed in Table 1. This category of models presents a satisfactory
performance in low-density conditions [25,28]. The primary shortcomings, however, are the
prediction ability of the infinity jam condition and the optimum value from field data. The
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Greenberg model [29] is a generalised logarithmic function, which improves performance
as the traffic flow increases. However, under this model, the free-flow speed approaches
towards infinity. Additionally, optimum speed and jam density are difficult to determine
using empirical data.

Table 1. Single regime models.

Single-Regime

Models Categories Function
[20] Generalised polynomials v="v f( — kk)
]
[22] Generalised polynomials 0= v ( 1— ( kk ) n+%)
. : f
[21] Generalised polynomials v = vy (1 - <k£> ), n>1
j
[30] Generalised polynomials k= ﬁ
1+ 1+¢3
. . o
[23] Generalised polynomials v = v+ (y ;- UO) ( — kﬁ)
j
[24] Generalised exponent v = vsexp (_kﬁ)
]
. 2
- 1_1
[27] Generalised exponent v =10y {1 —exp <_ % (E _ E) ﬂ
[26] Generalised exponent v = vexp <_ 1 ( kL )2)
v =
[27] Generalised exponent 1 i
[28] Generalised exponent v = %
1+exp<;—1f)
[29] Generalised logarithm V=" clog%

Where vy is free flow speed, v, is the critical speed at the average maximum capacity, vy is the average speed at
zero flow, k represents vehicle density, k; is the congestion density, k. is the density at critical speed, and 6 is the
known flow.

Multi-regime models have been developed to compensate for the shortcomings of
a single-regime model that cannot consistently match field data throughout the whole
density range. The typical two-regime model considered the free-flow and congested-flow
regimes [21-33], and the three-regime model [34] considered the transitional flow on extra
based on the two-regime model. However, it has obvious drawbacks: it is hard to ascertain
the precise number of regimes; it is unable to determine the breakpoint of the traffic
flow; it is hard to determine the single regime used for a certain curve, and each regime
unavoidably inherits the inherent issues in the chosen single-regime function. Recently, Lei
et al. [35] developed a sparse Gaussian process regression model to formulate stochastic
fundamental diagrams, which effectively captures the inherent variability in traffic flow
and provides a more robust representation of speed—density relationships. Cheng et al. [36]
developed a Bayesian calibration method using Gaussian Processes to model speed-density
relationships, offering a flexible, non-parametric approach that accounts for uncertainties
in traffic flow data.

The congestion management framework in the UK is based on identifying well-defined
thresholds for the congestion phase, determined by the turning point within a single-regime
model. However, multi-regime models segment traffic conditions into multiple regimes,
introducing additional turning points and potential discontinuities, which complicate
threshold identification and render these models unsuitable for the UK’s congestion man-
agement framework. The single-regime models, while widely used, struggle to capture
real-world traffic data under a variety of conditions, particularly under high-density or
congested conditions. Therefore, this study aims to emphasise the development of a
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single-regime model to address the limitations of existing models in order to capture the
relationship between speed and flow, especially under congested conditions.

2.2. Precipitation Impacts on Speed—Flow Model

The effect of precipitation on traffic flow and speed has been widely studied, and
almost all studies have found that precipitation reduces speed and road capacity. Chin
et al. [37] found that rain had the greatest effect on road capacity reduction compared with
snow and ice, and the heavier the rainfall, the greater the impact on capacity and speed.
Rakha et al. [38] assessed the effects of rainfall on the highway based on different regions
in the United States and discovered that rainfall reduced the free-flow speed and the speed
at capacity by 6-9% and 8-14%, respectively. Additionally, rainfall had a 10-11% decrease
in capacity. Akin et al. [15] studied both the weather conditions and surface conditions
of two main urban freeways in Turkey and found that rainfall led to an 8-12% reduction
in free-flow speed and a 7-8% reduction in capacity. Heshami et al. [39] studied the basic
diagram parameters of various weather conditions of a Canadian highway and found
that snow had a greater negative impact on traffic conditions, reducing speed and flow by
10.9% and 14%, respectively. In addition, some studies found that the reduction in both
flow and speed would be greater when precipitation intensities increased. Table 2 lists
the decreased proportion of speed and flow in previous studies which classified different
precipitation intensities into four types, including light and heavy rain and light and heavy
snow. In Table 2, regional differences can be observed in how precipitation impacts traffic.
Snow had the greatest impact in regions like Alberta, Canada, with speed reductions of
up to 35% during heavy snow, reflecting extreme weather challenges. Rain impacts varied
by adaptation levels, with regions like Seattle showing smaller reductions during light
rain (2-4%) compared to South Korea, where even light rain reduced speed by 5%. These
variations indicate that, in addition to precipitation, local infrastructure, climate adaptation,
and driving behaviours play a role in traffic flow and capacity.

Table 2. Proportion of decrease in speed and capacity under different precipitation intensities.

Rain Snow
Reference Area Light Rain Heavy Rain Light Snow Heavy Snow
Speed Capacity Speed Capacity Speed Capacity Speed Capacity
[40] Alberta, Canada 2-14% ~15% 5-17% ~15% 3-10% 5-10% 20-35% 25-30%
[41] Minneapolis, USA / / 4-7% 10-17% / / 11-15% 19-27%
[42] South Korea 5% 4-7% 8% ~14% / / / /
[43] ’?J“S‘Zs’ 2-4% 2-7% 6% 14% 4-8% 4-10% 13% 22%
Seattle, o o o o0
[14] USA 2-4% 10-11% / / 5-16% 12-20% /
[44] Belgium / / 5-8% 5-8% / / /
Louisville, o o o o
[45] USA 3% 7% 7% 17% / / /

3. Methodology
3.1. Proposed Speed—Flow Model

The proposed model was created based on the existing Underwood model [24,46] and
was used to simulate a traffic speed—flow relationship based on observations of speed—flow
scatter plots at 150 locations along the M25 motorway. It was assumed that the studied site
presented clear congestion conditions. This model is expressed by the following equation.
The four parameters (g, c1, ¢, and c3) were selected to ensure the model can capture key
traffic characteristics: a scales the flow variable, c; and ¢, control the curve’s shape to reflect
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transitions in traffic states, and c3 balances free-flow and congested conditions. These
parameters make the model flexible and accurate for real-world data.

v =1 [cl-exp(— (é})Q) +(1—c1)-exp(—<6{0)63)] (1)

where v is the actual average speed, vy is the average speed at zero flow, f is the actual
flow, a, c1, cp, c3 are parameters of the model (0 < ¢; < 1, ¢p, c3 > 0), which were
determined through nonlinear curve fitting using MATLAB's Isqcurvefit function. The
outliers identified using the Interquartile Range method were flagged and excluded to
ensure the dataset’s consistency and reliability. It follows the criteria: (1) the proposed
exponential function closely matches real-world data on traffic speed and flow; (2) itis a
single-regime model but reflects a primary phenomenon; (3) in comparison to the existing
classic models, the proposed model presents better results in terms of the R? coefficient,
relative error, and root mean-squared error (RMSE).

3.2. Model Analysis with Varying Important Parameters

Figure 1 illustrates a set of speed—flow curves generated by altering one parameter at a
time while maintaining the values of the other parameters constant. As shown in Figure 1a,
parameter c; has a significant effect on both the speed of the free-flow zone and the turning
points of the speed—flow relationship. When the ¢y, c3 and a parameters remained at 3, 5 and
7.69, respectively, the average speed at zero flow decreased significantly as the parameter
c1 increased from 0.84 to 0.90. As illustrated in Figure 1b, parameter c; has a large effect on
congested flow (the turning point) but has a minimal influence on the flow—speed zone.
When ¢y, ¢3 and a were kept at 0.90, 5 and 7.69, respectively, the average speed at zero
flow stayed almost constant with increasing cp, whilst the turning point of the speed—flow
relationship decreased dramatically. Generally, the turning point of the traffic speed—flow
relationship remains stable under normal situations; however, there will be significant
changes if the road conditions or traffic situation change. The values of c; = 0.9, ¢; =3,
c3 =5, and a = 7.69 are not constant for the 150 local observation points on the M25. These
parameters varied across local locations due to the different traffic conditions, such as
congestion levels and geometric features of the road.
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Figure 1. Effects of varying crucial parameters, (a) c; and (b) cp,on the speed—flow relationship.

3.3. Speed—Flow Relationship Under Different Precipitation

According to previous studies, precipitation has been proven to have an effect on
both traffic speed and road capacity, which inevitably influences the relationship between
speed and flow. Figure 2 represents the traffic flow and speed of the M25 motorway on
two random days: one of them a sunny day and the other a heavy rainy day. It was shown
that both traffic flow and speed under heavy rain had a significant reduction, which means
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the traffic speed—flow relationship is different under sunny days and under rainy days
on the M25 motorway. This work used the proposed speed—flow model to fit the traffic
speed—flow and capture the relationship between the speed and flow of the M25 motorway
under different weather conditions.

7000 Heavy rain 140 Heavy rain

Esooo B Sunny 1204 Sunny
£ _
2 5000 - E 100
g 4000 - X 80
& 3000 - S 60
o o
& 2000 & 4]
©
= 1000 20

0+ 0
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Time Time

Figure 2. Traffic flow and speed under different weather conditions.

4. Results and Discussion
4.1. Data Collection

A 99-km transport route running along the M25 motorway (see Figure 3) was chosen
for the analysis of congested traffic flow and speed relationship since this is one of the
most important and busiest roads in England. The data were collected from the National
Highways MIDAS (Motorway Incident Detection and Automatic Signalling) system, which
gathers data from inductive loop sites on each lane that are typically 400-500 m apart.
These data are primarily utilised to monitor and control traffic signals in real time. It is
general practice to calibrate a single-regime speed—flow curve for a location over 12 months,
and thus, the 12-month period from 1 July 2018 to 30 June 2019 was employed in the current
work. Traffic speed and flow of the M25 motorway were calculated with fifteen-minute
observation intervals. This research was to examine the overall speed—flow correlation
on the congested motorway network, so all data including the morning and evening rush
hours for the whole year were analysed. The data were not filtered by weekday in order to
offer a more comprehensive view of the relationships between the variables.

Figure 3. Road map running along the M25 motorway (dark colour).

4.2. Model Evaluation

In the current work, the existing single-regime speed—flow models and our proposed
model were used to fit field data from 120 congested sites on the M25 motorway. Here, only
models with better performance fitting to field data, including the Greenshields model,
Northwestern model, Van Aerde model, and Underwood model, are presented to compare
with our proposed model. Figure 4 illustrates some examples of these classic models
and the proposed model for fitting field data from the M25 motorway. M25/4068 and
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M25/4229A are located between junctions 1 and 2 and junctions 4 and 5, respectively. It
can be observed that the proposed model can match the field data of the M25 motorway
well under both free-flow and congested-flow situations. Among the five single-regime
speed—flow models considered, our proposed model showed a better performance when
compared to the other four models.
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Figure 4. Performance of the classic model and our proposed model fitting to four-lane field data
from various sites on the M25 motorway.

To assess how well a fitted model accounts for variance in the field data, the coefficient
of R? is utilised as an indicator of goodness-of-fit. It is calculated by the following equation:

2

L(fo(v) = fu(v))
where f;(v) refers to the observed field data, f,(v) denotes the predicted data ac-
cording to the fitted curve, and f,(v) is the average value of the observed field
data. The closer R? value to 1, the better the model fitted. Furthermore, according to
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previous studies [47-50], R? is insufficient for determining which model is superior, and
the relative error (E) and RMSE are introduced to quantify the closeness between the
proposed model and other existing models due to the unsuitability of R? for comparative
analysis, defined as Equations (3) and (4), respectively.

1 folo) - £(0)
Sl A ®
RMSE = %\/nzi?zl (fr— o) 4)

where f,(v) refers to the observed field data and f,(v) denotes the fitted curve’s projected
data. The closer the relative error and RMSE values are to zero, the better the model
performance is. Table 3 shows the R? results for 20 randomly selected sites on the M25
motorway, given the limitations of publication space, and Table 4 summarises their E and
RMSE results. It can be seen that the proposed model outperformed all other models, with
a minimum R? value of 0.83 across the 20 randomly selected sites, clearly higher than
the Greenshields, Northwestern, and Van Aerde models. Although Underwood’s model
performed relatively well, it was still outmatched by the proposed model in both R? and
predictive accuracy. Additionally, the proposed model achieved smaller average relative
error and RMSE, confirming its superior ability to capture the speed—flow relationship.
However, in our research, it was found that the accuracy of our developed model tended
to decline in situations with lighter motorway congestion. Nevertheless, compared to the
classic models, its performance remained better than that of other classic models under such
conditions. The mathematical complexity of the developed model may lead to increased
computational cost, particularly in scenarios requiring real-time processing. Additionally,
the current research focuses primarily on the M25 motorway, and we have not yet conducted
studies on other highways. Therefore, the proposed model may have limitations in its
applicability to highways with different traffic conditions and infrastructure.

Table 3. Results of data fitting for R? using the classic model and our proposed model.

Greenshields Northwestern Van Aerde Underwood The Proposed
Data Sites Model
R2 R2 R2 R2 R2
M25/4055A 0.21 0.34 0.27 0.78 0.91
M25/4076A 0.39 0.44 0.21 0.83 0.85
M25/4097A 0.21 0.24 0.11 0.79 0.86
M25/4120A 0.17 0.17 0.26 0.79 0.89
M25/4139A 0.07 0.07 0.27 0.85 0.92
M25/4164A 0.23 0.23 0.11 0.77 0.84
M25/4193A 0.02 0.02 0.26 0.77 0.93
M25/4229A 0.07 0.07 0.06 0.85 0.92
M25/4259A 0.15 0.07 0.10 0.73 0.83
M25/4277A 0.07 0.07 0.10 0.78 0.85
M25/4296A 0.02 0.02 0.11 0.79 0.87
M25/4315A 0.07 0.07 0.21 0.78 0.90
M25/4332A 0.07 0.07 0.11 0.69 0.87
M25/4332A 0.04 0.04 0.27 0.81 0.92
M25/4358A 0.03 0.03 0.06 0.87 0.86
M25/4390A 0.11 0.11 0.07 0.75 0.91
M25/4409A 0.22 0.22 0.23 0.85 0.91
M25/4423A 0.06 0.06 0.02 0.75 0.85
M25/4442A 0.08 0.13 0.07 0.68 0.86
M25/4465A 0.14 0.16 0.24 0.69 0.86
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Table 4. Results of data fitting for E and RMSE using the classic model and our proposed model.

Data Greenshields Northwestern Van Aerde Underwood The Proposed Model
Sites E RMSE E RMSE E RMSE E RMSE E RMSE
M25/4055A 0.51 338.63 0.28 309.93 0.33 246.54 0.21 6.54 0.15 4.70
M25/4076A 0.40 305.73 0.52 292.88 0.46 198.65 0.12 8.62 0.12 493
M25/4097A 0.53 397.12 0.37 391.80 0.32 263.45 0.14 7.65 0.12 542
M25/4120A 0.59 328.13 0.43 326.56 0.44 475.32 0.14 8.45 0.13 5.79
M25/4139A 0.46 297.85 0.30 297.86 0.31 168.25 0.17 10.35 0.16 6.20
M25/4164A 041 352.93 0.41 352.63 0.35 195.46 0.19 7.65 0.12 4.57
M25/4193A 043 302.99 0.31 302.99 0.32 203.65 0.19 8.65 011 4.98
M25/4229A 0.50 335.17 0.43 335.18 0.45 218.45 0.18 9.25 0.12 513
M25/4259A 0.48 208.11 0.47 207.95 0.49 205.36 0.21 7.54 0.15 5.78
M25/4277A 0.50 429.89 0.38 429.90 0.32 214.78 0.17 9.65 0.13 6.87
M25/4296A 0.54 419.00 0.35 419.01 0.32 221.54 0.19 8.25 0.17 7.23
M25/4315A 0.54 420.01 0.38 420.01 0.35 204.65 0.17 11.35 0.14 7.81
M25/4332A 0.35 390.13 0.32 390.13 0.36 204.35 0.16 12.45 0.15 6.68
M25/4358A 0.36 414.35 0.34 414.35 0.38 206.15 0.22 9.35 0.16 7.48
M25/4390A 0.42 432.36 0.38 432.37 0.38 145.67 0.21 10.45 0.15 7.71
M25/4409A 0.37 325.07 0.34 325.08 0.47 175.32 0.27 12.21 0.18 7.08
M25/4423A 0.44 338.54 0.39 338.54 0.42 142.56 0.25 9.78 0.17 6.03
M25/4442A 0.48 360.01 0.45 360.01 0.46 184.35 0.26 12.02 0.11 6.49
M25/4465A 0.46 338.63 0.42 338.63 042 201.32 0.30 11.38 0.17 7.93
M25/4479A 0.52 460.39 0.48 456.13 0.44 223.65 0.26 9.67 0.11 5.36

Comparisons of the classic models and proposed model for lane-by-lane field data
on the M25 motorway were carried out to evaluate the model. Figure 5 shows the classic
models and the proposed model fitted to field lane-by-lane data from M25/4068A. As
seen in Figure 5, the performance of the various models is different. Compared to the
Underwood model and the proposed model, the Greenshields and Van Aerde models
did not perform as well for the lane-by-lane field data, which did not accurately predict
the traffic speed—flow relationship in free-flow and congested-flow situations on the M25
motorway. Visually, our proposed model was able to better predict the turning point of the
traffic speed—flow relationship in comparison with the Underwood model.
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Figure 5. Performance of the classic models and our proposed model fitted to lane-by-lane field data
from M25/4068A.

To evaluate quantitatively the goodness-of-fit of different models fitted to the lane-by-
lane speed—flow relationship on the M25 motorway, the R? values were calculated. The
results of the four best models are summarised in Table 5. Overall, the proposed model
consistently achieved higher R? values compared to other models across all lanes on the
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M25 motorway. Among the classic models, while the Underwood performed relatively well,
the proposed model demonstrated superior accuracy and robustness, with a minimum R?
of 0.79 and better fitting results, particularly in lane 1. The minimum R? across 20 datasets
was 0.79 for lane 4 at the M25/4865 site, and lane 1 presented better fitting results compared
to the other three lanes.

Table 5. R? values of fitting to lane-by-lane data (from Lane 1 to Lane 4) using the classic model and
our proposed model.

Greenshields Van Aerde Underwood The Proposed Model
Data Sites R? R? R? R?
L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 14 11 12 L3 14
M25/4055A 0.31 0.33 0.39 0.34 0.35 0.51 0.40 034 071 073 066 065 083 0.88 085 0.86
M25/4076A 0.61 0.49 0.52 0.36 0.67 0.56 0.52 054 064 051 049 048 092 084 086 0.80
M25/4097A 0.35 0.44 0.53 0.40 0.35 0.50 0.61 040 081 081 073 078 0.88 0.83 0.85 0.83
M25/4120A 0.41 0.48 0.42 0.42 0.42 0.57 0.44 045 072 076 066 073 084 083 085 082
M25/4139A 0.36 0.41 0.48 0.53 0.36 0.48 0.48 053 068 063 059 055 0.8 08 083 083
M25/4164A 0.49 0.54 0.54 0.45 0.49 0.60 0.54 042 084 087 069 068 096 089 091 089
M25/4193A 0.17 0.36 043 0.35 0.17 0.41 043 045 067 075 051 050 0.82 081 083 082
M25/4229A 0.25 0.45 0.39 0.54 0.26 0.50 0.39 039 078 080 069 069 090 086 0.85 0.80
M25/4259A 0.26 0.36 0.42 0.65 0.26 0.50 0.39 042 076 063 064 058 091 090 0.88 081
M25/4277A 0.20 0.30 0.33 0.32 0.22 0.37 0.41 041 064 072 046 051 082 083 089 0.87
M25/4296A 0.22 0.29 0.31 0.39 0.22 0.34 0.36 039 08 089 077 072 091 093 090 0.86
M25/4315A 0.20 0.31 0.31 0.37 0.20 0.35 0.41 038 081 076 068 0.68 091 089 090 0.88
M25/4332A 0.29 0.34 0.34 0.44 0.31 0.38 0.38 044 074 077 059 056 086 088 090 0.79
M25/4358A 0.26 0.29 0.35 0.47 0.26 0.34 0.42 047 073 073 059 0.60 0.80 0.83 085 0.83
M25/4390A 0.20 0.18 0.27 0.46 0.20 0.19 0.30 046 075 070 066 062 087 083 080 0.86
M25/4409A 0.30 0.30 0.48 0.36 0.30 0.32 0.48 045 068 063 063 070 0.80 082 083 083
M25/4423A 0.62 0.33 0.04 0.38 0.62 0.37 0.04 037 082 080 066 063 091 087 089 082
M25/4442A 0.22 0.31 0.40 0.42 0.24 0.39 0.40 041 079 078 075 080 0.87 0.81 0.80 0.80
M25/4465A 0.20 0.24 0.30 0.38 0.20 0.28 0.30 046 084 075 079 078 088 082 0.82 0.81
M25/4479A 0.24 0.39 0.34 0.32 0.24 0.27 0.34 031 066 066 060 076 080 085 091 0.87

In addition, the relative error and RMSE were also calculated to assess the performance
of various applied models fitted to the lane-by-lane data on the M25 motorway. The results
of relative error and RMSE are illustrated in Figures 6 and 7. It can be seen from Figures 6
and 7 that the relative error and RMSE of the proposed speed—flow model are generally
lower than those of the other four models. The results of various model performances in
terms of relative error and RMSE varied across various observation sites. The calculated
relative error and RMSE varied when model parameters were set differently, but this had
no significant effect on model performance. These results indicate that the proposed model
accurately matched four-lane and lane-by-lane field data on the congested M25 motorway.
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0.7] —© VanAerde —e— Van Aerde
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s g
o 0.5+ 5
Y o 0.5
2 0.4 2
=] s
& T 0.4
Q 0.3 [}
4 (14
0.24 0.3+
0.1 0.2
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Figure 6. Cont.
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Figure 6. Relative errors of different models fitted to lane-by-lane field data from various sites on the

M25 motorway.
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Figure 7. Root mean-squared error (RMSE) of different models fitted to lane-by-lane field data from
various sites on the M25 motorway.

All the work in this section was based on our proposed model. Figure 8 shows the
relationship between speed and flow using our proposed model under different weather
conditions, including normal weather, light rain, and heavy rain. The normal weather data
were the field data, while the speed and flow data under light and heavy rain were based
on the average values of the previous studies shown in Table 2. The average reduction of
speed under light and heavy rain was 5% and 7%, respectively, and the flow reduced by 7%
and 11% on average, as used in the present work. Comparatively, Hranac et al. [14] reported
reductions of 2% to 3.6% in free-flow speed under light rain and 6% to 9% under heavy rain,
with a consistent capacity reduction of 10% to 11% across rainfall intensities. Additionally,
rainfall caused a consistent reduction in capacity by 10% to 11%, irrespective of intensity.
Akin et al. [15] observed speed reductions of 8% to 12% (approximately 7-8 km/h) and
capacity decreases of 7% to 8% on urban freeways in Istanbul. Xu et al. [16] further
highlighted the effects of rainfall on urban road networks, noting average reductions of
9.7% in weighted flow and 10.7% in weighted speed during the rainy evening peak.
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Figure 8. Speed—flow relationship using our proposed model under different weather conditions.

National Highways used the MIDAS system to automatically activate signals on the
motorway network, aiming to delay the onset of traffic flow breakdown according to the
CM algorithm. This algorithm primarily relies on traffic flow. When traffic flow approaches
the road’s capacity, marked as flow threshold (FT2), 60 mph signals are displayed to manage
traffic and maintain smoother flow. If traffic flow continues to rise and reaches the flow
threshold (FT3), the signals are adjusted to 50 mph. These thresholds (FT2 and FI3) were
determined by National Highways at various locations on the M25. To explore potential
relationships between the flow value at the turning point of the real speed—flow curve
and FT2 and FT3, the data above were randomly selected, and a Gaussian function was
employed to establish these relationships [51], as illustrated in Equations (5) and (6). The
R? values for the relationships between the flow values at the turning point and FT2, as
well as FT3, are 0.91 and 0.89, respectively. These results indicate that Equations (5) and
(6) effectively capture the correlations between the flow values at the turning point and
FT2/FT3. Given the change in the turning point of the traffic-flow curve under light and
heavy rain conditions, the corresponding FI2 and FT3 thresholds of the CM algorithm
should be adjusted.

2

FT2 = 1542 exp(— <1TT1134854> ) (5)
2

FT3 = 1669 exp(— (1%13216%2> ) (6)

where Fr is the traffic flow at the turning point.

Figure 9 depicts the thresholds of the CM algorithm under different weather conditions
on the site M25/4229A. It should be noted that the M25/4229A was randomly selected as a
representative example. The dashed line represents FT2 and the dotted line represents FT3.
It can be seen that the values of traffic flow and speed of FI2 and FT3 under rainy days
were smaller than the normal weather, which means that congestion management should
be triggered in advance under rainfall conditions.
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------- FT2 (Normal weather)
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] FT2 (Light rain)
— - — FT3 (Heavy rain)
--------- FT2 (Heavy rain)

80
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Figure 9. FT2 and FT3 values under different weather conditions.
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5. Conclusions

This study proposed a single-regime speed—flow model, which was successfully fitted
to the four-lane and lane-by-lane speed—flow relationships on the congested M25 motorway
in England. The results demonstrated that the proposed model outperformed existing
classic models, as indicated by smaller relative error and RMSE values and larger R? values.
It means that the proposed model effectively captured the speed—flow relationship under
both free-flow and congested-flow conditions, accurately matching field data from the
M25 motorway. Furthermore, the developed model was applied to capture the impact
of rainfall on the speed—flow relationship, revealing that both free-flow speed and road
capacity experienced significant reductions under rainfall conditions. Heavy rain had
a more pronounced effect compared to light rain. On this basis, a Gaussian function
was utilised to determine the thresholds of the congestion management (CM) algorithm
under various weather conditions. It was found that the thresholds of the congestion
management algorithm were reduced under rain conditions. The results suggest that rainy
days should be triggered at smaller thresholds in advance in the UK’s intelligent congestion
management system. Future research should focus on analysing extensive data from other
congested motorways in England to evaluate the broader applicability of these findings.
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