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CORRELATION INEQUALITIES FOR THE UNIFORM

8-VERTEX MODEL AND THE TORIC CODE MODEL

J. E. BJÖRNBERG AND B. LEES

Abstract. We investigate connections between four models in statis-
tical physics and probability theory: (1) the toric code model of Kitaev,
(2) the uniform eight-vertex model, (3) random walk on a hypercube,
and (4) a classical Ising model with four-body interaction. As a conse-
quence of our analysis (and of the GKS-inequalities for the Ising model)
we obtain correlation inequalities for the toric code model and the uni-
form eight-vertex model.

1. Introduction

Recent years have seen a rapid development of research on vertex mod-
els, primarily the six-vertex model. The six-vertex model was originally
introduced by Pauling as a simple model of hydrogen bonding in water
ice. In simple terms, the model is defined by taking a subgraph of Z

2

with nearest neighbour edges and imposing a direction on each edge so
that every vertex has precisely two edges (or arrows) directed towards it.
This gives six possibilities illustrated by vertex types I, . . . ,VI in Figure 1.1.
Lieb [26, 27, 28] carried out pioneering work on the model using the Bethe
Ansatz originally developed for the Heisenberg spin chain [33]. Recently,
the model has received growing attention from the probability community,
and progress on the rigorous understanding of aspects of these models such
as the (de)localisation of its associated height function for various values of
its parameters has been immense, e.g. [10, 11, 12, 18].

The eight-vertex model is a generalisation of the six-vertex model that
allows two extra types of vertices: sources and sinks, illustrated by VII and
VIII in Figure 1.1. Both the six- and eight-vertex models are integrable
lattice models [15, 32]. Using methods coming from integrability, Baxter [4]
computed the free energy per site. For information on integrable models we
direct the reader to the book by Baxter [5].

In this work we consider the eight-vertex model from a different perspec-
tive than solvability/integrability. We consider a simple dynamics which
preserve eight-vertex configurations: select a plaquette (face) of the square
lattice at random and reverse the direction of its four bounding edges. Be-
cause every vertex has an even number (either zero or two) of its incident
edges reversed, this dynamics preserve the set of allowed configurations. (A
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2 J. E. BJÖRNBERG AND B. LEES

variant of the dynamics preserves the six-vertex model and is in fact in
detailed balance with the six-vertex model’s probability distribution [1].)

In the case of uniform weights for vertices, we find that consideration of
these simple dynamics allows us to determine its communicating classes and
their sizes, as well as a simple way to sample from its limiting distribution
– the uniform measure on configurations. These useful considerations assist
us in determining the emptiness formation probability of the model with
domain wall boundary conditions and the entropy of the model, in particular
we show (Proposition 4.7) that the entropy of the uniform eight-vertex model
is realised for any fixed, valid, boundary conditions. These results use simple
arguments. See Sections 4.2 and 4.3 for precise definitions and statements.
We also derive a correlation inequality for the uniform eight-vertex model
and for other related models, this is discussed in detail below.

The domain wall boundary condition means that we take a box in Z
2

and fix a boundary condition so that arrows at the top and bottom of the
boundary point in towards the box and arrows on the left and right boundary
point away from the box, or vice-versa. See Figure 4.2 for an illustration.
This boundary condition was introduced in [23] for the six-vertex model
to study correlation functions for exactly solvable models. There is also
a connection to enumeration of alternating sign matrices that was used to
find expressions for the free energy density in the disordered and ferroelectric
phase and a connection to domino tilings [24]. These findings showed that
the behaviour is quite different to the case of periodic boundary conditions,
a feature of the model that one might not expect in models that are not as
tightly constrained.

Emptiness formation is the event that an entire column of horizontal edges
has the same direction (left, say), see Figure 4.2 for an illustration. This
non-local correlation function allowed the investigation of limit shapes in
the six-vertex model [8].

There is a close connection between this dynamics and Kitaev’s toric

code model. Kitaev’s model (at zero temperature) is an important example
of a quantum code, which are motivated by problems in quantum comput-
ing. While quantum computers would allow certain computations to be
performed much faster than a conventional computer (e.g. factoring large
numbers [30] or searching unstructured databases [20, 21]), a major barrier
in realising this potential is the proclivity for the quantum bits (qubits) of
the computer to have errors. One way to try to overcome this problem is to
use multiple physical qubits to encode a single logical qubit that performs
better than its individual physical qubit components, primarily due to the
ability to recover the intended state of the logical qubit even after one or
more of the component physical qubits have experienced an error. We direct
the reader to [29] for an accessible treatment of major topics in quantum in-
formation and quantum computation. Surface codes, such as Kitaev’s toric
code, are examples of such a scheme that have enjoyed considerable atten-
tion, in part due to their relatively high tolerance for local errors [31]. For
an introduction to the various aspects of the toric/surface code and how it
operates, we direct the reader to the review [14]. A brief summary may be
found in Appendix A.
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Using the dynamics indicated above facilitates explicit computations of
certain thermodynamic quantities for the toric code model at positive tem-
perature. Guided by these calculations and their consequences, we establish
a connection between certain correlations in the toric code model and expec-
tations in a many-body classical Ising model. The ground state of the latter
Ising model also gives the eight-vertex model with uniform vertex weights.
Using well-known correlation inequalities for the Ising model (GKS) we ob-
tain correlation inequalities for the uniform eight-vertex model and the toric
code model. The following is an example of our correlation inequality for
the uniform eight-vertex model: given any two sets of vertices, consider the
events that they are all sources or sinks. Then these events are positively
correlated, i.e. the probability of both occurring is at least as large as the
product of the probabilities of the two individual events. The full statement
appears in Theorem 1.1.

Correlation inequalities are major tools in the analysis of classical and
quantum systems, as well as in probability more widely. The GKS in-
equalites, first proven by Griffiths for the Ising model [17] and then extended
to a more general framework by Ginibre [16], were used in the construction
of infinite volume Gibbs states for the Ising model in dimension at least 2.
The construction of infinite volume Gibbs states is essential for the rigorous
understanding of phase transitions, arguably the most important phenom-
ena of systems studied in statistical mechanics. The Ising model also enjoys
other correlation inequalities, such as the FKG inequality. The FKG in-
equality has been invaluable for the study of the Ising model as well at the
random cluster model [19]. The literature making use of correlation inequal-
ities for the Ising model and various related models is too vast to do justice
to here, we direct the reader to [9] and references therein for a glimpse of this
enormous and interesting story. For other models, such as the classical and
quantum XY model, GKS inequalities are also major tools for constructing
infinite volume Gibbs states. Additionally, in the classical case, they have
been used to show monotonicity of the spontaneous magnetisation with re-
spect to temperature and dimension. In the classical and quantum case they
allow a rigorous comparison of the critical temperature for phase transition
in the model with the critical temperature for the Ising model. We direct the
reader to [6, 7] for statements and proofs of these inequalities and overview
of the GKS inequality and its applications.

1.1. Setting and results. Form,n ≥ 1, let V ≙ {1, . . . ,m}×{1, . . . , n} ⊆ Z2.
We view V as the vertex set of the m × n torus Λ. (It is possible to work
with Λ as a subset of Z2 with a boundary; we do this in Section 4.) Let E
denote the set of edges of Λ and F the set of faces. In keeping with common
terminology in the area, faces will often be referred to as plaquettes and
denoted p ∈ F , and vertices referred to as stars and denoted s ∈ V .

The first model we consider is the uniform eight-vertex model, defined
as follows. Let ∆ denote the set of assignments of directions to the edges
E, meaning that each horizontal edge is directed either → or ←, and each
vertical edge either ↑ or ↓. Elements of ∆ will sometimes be referred to as
arrow-configurations. Let ∆8vx ⊆ ∆ denote the set of arrow-configurations
such that the number of arrows pointing towards any vertex s ∈ V is even. At
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each vertex s ∈ V , there are eight possible configurations of arrows, depicted
in Figure 1.1. We refer to these eight local configurations by the roman
numerals I,II, . . . ,VIII. The first six of these are the allowed configurations
for the six-vertex model; VII is called a sink and VIII a source. We let µ(⋅)
denote the uniform probability measure on ∆8vx; this is the probability
measure governing the uniform 8-vertex model.

Figure 1. The eight vertex types I,II, . . . ,VIII for arrow-
configurations in ∆8vx.

The next model we consider is Kitaev’s toric code model [22], defined as
follows. For E the edge-set of the torus Λ as above, let (C2)⊗E be the tensor
product of one copy of C2 for each edge e ∈ E. Using the standard basis
∣+⟩ ≙ ( 10 ), ∣−⟩ ≙ ( 01 ) for C

2, one obtains a (product) basis for (C2)⊗E with

elements ∣ω⟩ for ω ∈ Ω ≙ {−1,+1}E . (Note that we use the statistical physics
convention of labelling this basis ∣±⟩, while in quantum information theory
it would be more common to use ∣0⟩ and ∣1⟩.) Consider the Pauli matrices

(1) σ(1) ≙ ( 0 1
1 0 ), σ(2) ≙ ( 0 −ii 0 ), σ(3) ≙ ( 1 0

0 −1 ),

and write σ(j)e for the linear operator on (C2)⊗E which acts as σ(j) on the
e factor and the identity elsewhere. Since each σ(3)e acts diagonally on the
basis elements ∣ω⟩, we refer to this basis as the σ(3) product basis.

Introduce the operators

(2) Zs ≙∏
e∼s

σ(3)e , Xp ≙∏
e∼p

σ(1)e , s ∈ V, p ∈ F,

where e ∼ s and e ∼ p mean that the edge e is adjacent to the vertex s or the
face p, respectively. (The operators Zs and Xp are more commonly denoted
As and Bp, respectively.) For Jx ≙ (Jx

p ∶ p ∈ F ) and Jz ≙ (Jz
s ∶ s ∈ V ) vectors

of constants satisfying Jx
p , J

z
s ≥ 0, the Hamiltonian operator is defined as

(3) H ≙H(Jx,Jz) ≙ −∑
p∈F

Jx
pXp − ∑

s∈V

Jz
sZs.

For all Jx
p ≙ J

z
s ≙ 1 this is Kitaev’s H0, see [22]. All terms in H commute,

since for any star and plaquette the number of edges belonging to both of
them is even.

The Hamiltonian (3) defines the toric code model through the equilibrium
states defined as follows: for an operator A on (C2)⊗E ,

(4) ⟨A⟩ ≙ ⟨A⟩Jx,Jz ≙
tr∥Ae−H∥
tr∥e−H∥

.

If we take Jx
p ≙ J

z
s ≙ β →∞ we obtain the ground state which is important

in the theory of quantum codes; see Appendix A. We will see below that
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the limit of all Jx
p → ∞, with all Jz

s ≙ β fixed, essentially gives the uniform
8-vertex model.

By further relating the uniform 8-vertex model and the toric code model
to a classical Ising model, defined in the next subsection, we will prove
certain correlation inequalities. The setting is as follows. First, for the
8-vertex model, let η ∈ {I, . . . ,VIII}V be any 8-vertex configuration. For
C ⊆ V , let Aη

C be the event that, for each s ∈ C, the arrows around s are
either all equal to those of η or all the opposite to those of η. Additionally,
for ν ∈ {I, . . . ,VIII}V with ν ≠ η let Aη,ν

C be the event that, for each s ∈ C,
the arrows around s are either all equal to those of η or ν or all the opposite
to those of η or ν (this trivially includes the event Aη

C when ν has all arrows
opposite to those of η).

For the toric code the setting is similar but more complex to state. For
s ∈ V , consider the four edges e1, e2, e3 and e4 adjacent to s and write
σ
(3)

i (s) for σ(3)ei
. Let ε ∈ {−1,+1}4, satisfying ∏4

i≙1 εi ≙ +1, be a local sign-
configuration. Define the operators

(5) P (3)s (ε) ≙ 1
16

4∏
i≙1

(1 + εiσ(3)i (s)), P̄ (3)s (ε) ≙ 1
16

4∏
i≙1

(1 − εiσ(3)i (s)).
These are projection operators onto the subspaces of (C2)⊗E spanned by
elements ∣ω⟩ satisfying ωei ≙ εi, respectively ωei ≙ −εi, for i ∈ {1,2,3,4}. For
C ⊆ V let

(6) Q
(3)
C (ε) ≙∏

s∈C

(P (3)s (ε) + P̄ (3)s (ε)).
Note that each factor (P (3)s (ε)+P̄ (3)s (ε)) respects the symmetry of reversing

all the signs around s and that Q
(3)
C (ε) is an operator version of the event

Aη
C for appropriately paired ε, η. For δ ∈ {−1,+1}4 with δ ≠ ±ε define the

analog of Aη,ν
C by

(7) Q
(3)
C (ε, δ) ≙∏

s∈C

(P (3)s (ε) + P̄ (3)s (ε) + P (3)s (δ) + P̄ (3)s (δ)).
We also define similar operators for faces, but working in the σ(1)-basis
rather than the σ(3)-basis. For p ∈ F consider the four edges e1, e2, e3
and e4 surrounding p and write σ

(1)

i (p) ≙ σ(1)ei
. Let ε ∈ {−1,+1}4 be a local

sign-configuration. Define the operators

(8) P (1)p (ε) ≙ 1
16

4∏
i≙1

(1 + εiσ(1)i (p)), P̄ (1)p (ε) ≙ 1
16

4∏
i≙1

(1 − εiσ(1)i (p)),
and for D ⊆ F let

(9) Q
(1)
D (ε) ≙ ∏

p∈D

(P (1)p (ε) + P̄ (1)p (ε)).
For δ ∈ {−1,+1}4 with δ ≠ ±ε define

(10) Q
(1)
D (ε, δ) ≙ ∏

p∈D

(P (1)p (ε) + P̄ (1)p (ε) + P (1)p (δ) + P̄ (1)p (δ)).
Finally, we say that C ⊆ V is contractible if C does not contain a set of

nearest-neighbour vertices that forms a non-contractible loop on the torus
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Λ and that D ⊆ F is contractible if D does not contain a set of nearest-
neighbour faces that forms a non-contractible loop on the torus Λ. Note
that a non-contractible loop which wraps around the torus horizontally or
vertically necessarily has length which is of the same parity as the corre-
sponding side-length m or n, thus the loop can only have even length if the
corresponding side-length is even.

Theorem 1.1. Let η, ν, ε, δ, ε′, δ′ with ν ≠ η, δ ≠ ±ε, and ε′ ≠ δ′ be as
above and let C1, C2 ⊆ V be sets of vertices such that

● either C1 ∪C2 is contractible,● or any non-contractible loop in C1 ∪C2 has even length.

Further let C ⊂ V and D ⊂ F be such that both C and D are either con-
tractible or any non-contractible loop in them has even length. Then

(1) For the uniform 8-vertex model: µ(Aη
C1
∩ Aη

C2
) ≥ µ(Aη

C2
)µ(Aη

C2
) and

µ(Aη,ν
C1
∩Aη,ν

C2
) ≥ µ(Aη,ν

C2
)µ(Aη,ν

C2
).

(2) For the toric code model: ⟨Q(3)C1
(ε)Q(3)C2

(ε)⟩ ≥ ⟨Q(3)C1
(ε)⟩⟨Q(3)C2

(ε)⟩, and

⟨Q(3)C1
(ε, δ)Q(3)C2

(ε, δ)⟩ ≥ ⟨Q(3)C1
(ε, δ)⟩⟨Q(3)C2

(ε, δ)⟩.

(3) For the toric code model: ⟨Q(3)C (ε)Q
(1)
D (δ)⟩ ≤ ⟨Q(3)C (ε)⟩⟨Q

(1)
D (δ)⟩, and

⟨Q(3)C (ε, δ)Q
(1)
D (ε

′, δ′)⟩ ≤ ⟨Q(3)C (ε, δ)⟩⟨Q
(1)
D (ε

′, δ′)⟩.

The interpretation of the first part of the theorem is that the two eventsAη
C1
,Aη

C2
are more likely to occur at the same time, than if they had been

independent. This is usually referred to as positive correlation. Such mono-
tonicity properties are useful in many situations, for example when estab-
lishing existence of limits.

As an example of the correlation inequality for the 8-vertex model, we
can take η to be the constant vector of all VII’s, i.e. only sinks. Then Aη

C
is the event that every vertex in C is either a source or a sink, and the
Theorem says that Aη

C1
and Aη

C2
are positively correlated. This is primarily

interesting when C1 and C2 are not too far apart: we will see in Section 4.1
that if C1 and C2 are not adjacent to any common faces, then the states of
the vertices in C1 and C2 are in fact independent under µ(⋅).

1.2. Relations between the models. As mentioned above, Theorem 1.1
is built on relating the two models (uniform 8-vertex and toric code) to a
classical Ising model. We now define the latter. Let J ≙ (Js ∶ s ∈ V ) be a
vector with all Js ≥ 0. Recalling that Ω ≙ {−1,+1}E , define the probability
measure PJ(⋅) on Ω by

(11) PJ(σ) ≙
exp (∑s∈V Js∏e∼s σe)

∑ω∈Ω exp (∑s∈V Js∏e∼s ωe)
.

This is a ferromagnetic Ising model with four-body interaction, and the re-
striction of the toric code model to a certain class of observables is equivalent
to this model, as stated in the next result. Note that we take J ≙ Jz in the
statement.
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Proposition 1.2. Let Q be any observable diagonal in the σ(3) product
basis, with Q∣σ⟩ ≙ q(σ)∣σ⟩ for any σ ∈ Ω. Then

(12) ⟨Q⟩ ≙ EJz∥q(σ)∥,
where EJ∥⋅∥ denotes expectation with respect to PJ(⋅). In particular, ⟨Q⟩
does not depend on Jx.

Note also that if Js →∞ for all s ∈ V then limJ→∞ PJ(⋅) is supported on
the set Ω8vx ⊆ Ω of configurations σ satisfying∏e∼s σe ≙ +1 for all s ∈ V , since∑s∈V ∏e∼s σe attains its maximum value ∣V ∣ for such σ. This observation
will allow us to (essentially) identify the uniform 8-vertex measure µ(⋅) with
limJ→∞ PJ(⋅).

The key fact we use about the Ising model (11) is that it satisfies GKS-
inequalities (see e.g. [13, Theorem 3.49]): for any sets A,B ⊆ E we have

(13) EJ[∏
e∈A

σe∏
e∈B

σe] ≥ EJ[∏
e∈A

σe]EJ[∏
e∈B

σe], EJ[∏
e∈A

σe] ≥ 0.
This will be used in conjunction with Propositon 1.2 in order to establish
the first two parts of Theorem 1.1. For the third part of the Theorem, we
will use [6, Theorem 1], which implies that for any two subsets A,B ⊆ E we
have

(14) ⟨∏
e∈A

σ(3)e ∏
e∈B

σ(1)e ⟩ ≤ ⟨∏
e∈A

σ(3)e ⟩⟨∏
e∈B

σ(1)e ⟩.
The fourth model which we use in our analysis is simple random walk

on the hypercube. To define this, let F+2 denote the two-element group with
elements {0,1} satisfying 1 + 1 ≙ 0, and consider G ≙ (F+2)F with generators
gp given by

(15) g
p
j ≙ { 1, if j ≙ p,

0, otherwise.

Then G is a hypercube of dimension ∣F ∣. A random walk on G is given by
selecting, independently at random, faces p1, p2, . . . , pk and letting X(k) ≙
X(0) + ∑k

i≙1 g
pi where X(0) is a starting position. Here at each step we

choose face p with probability Jp/∑q∈F Jq.
The relation to the previous models comes by letting G act on the sets Ω

and ∆. The intuition is simple: gp acts on elements of ∆ by reversing all
the arrows around the face p, and on Ω by negating the ± signs on the edges
surrounding p. It is easy to see that this action leaves ∆8vx ⊆ ∆ invariant,
and also leaves the measures µ(⋅) and PJ(⋅) invariant. The connection to the
toric code model is slightly more subtle: we will see in Section 2.1 that the
term ∑p∈F Jx

pXp in the Hamiltonian (3) is essentially the generator matrix of
(the continuous-time version of) simple random walk on G. This allows us
to express the equilibrium states (4) for H using transition probabilities for
the random walk, which will be instrumental in understanding some basic
features of the toric code model, including the relation to the Ising model,
Proposition 1.2.
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1.3. Outline. In Section 2 we develop the tools which we will use to prove
our results, including the dynamics of plaquette-flipping and the connection
to the Ising model. In particular, we prove Proposition 1.2 at the end of
Section 2. In Section 3 we focus on correlation inequalities, and in particular
prove Theorem 1.1. In Section 4 we prove the results about emptiness
formation probabilities and entropy described in Section 1, which are natural
applications of our methods.

1.4. Acknowledgements. JEB gratefully acknowledges financial support
from Vetenskapsr̊adet, grant 2019-04185, from Ruth och Nils Erik Stenbäcks

stiftelse, and from the Sabbatical Program at the Faculty of Science, Univer-
sity of Gothenburg, as well as kind hospitality at the University of Warwick
and the University of Bristol. Both authors thank the referee for useful
comments.

2. Properties of the toric code model

2.1. Dynamic description. Recall that (below (15)) we defined random
walk on the hypercube G ≙ (F+2)F as the process obtained by sampling
independently at random faces p1, p2, . . . and successively adding them to
an initial element of G. We make this into a continuous-time random walk
using a Poisson process N(t) of rate ∣F ∣ and defining

(16) X(t) ≙X(0) + N(t)∑
i≙1

gpi .

An equivalent description is that each face p ∈ F is assigned an independent
exponentially distributed random ‘clock’ of rate Jp and that we add 1 in the
position of p when the corresponding clock rings.

We next map the random walk (16) onto a process in Ω ≙ {−1,+1}E
as well as onto a process in the set ∆ of arrow-configurations. As already
described for the discrete-time case, the process in Ω proceeds by ‘flipping’
(negating) all signs on the edges around the selected face p, and the process
in ∆ similarly reverses the arrows around p. We may describe this more
formally as follows. The group G acts on the set Ω by

(17) gp ∶ ω ↦ xp ⋅ ω, where xpe ≙ { −1, if e ∼ p,
+1, otherwise,

and ⋅ denotes component-wise multiplication. (We are implicitly presenting
F
+
2 as the multiplicative group with elements {−1,+1}.) Then we define ω(t)

as the result of applying (17) for the randomly selected faces pi in (16):

(18) ω(t) ≙ (N(t)∏
i≙1

xpi) ⋅ ω(0).
Here ω(0) ∈ Ω is an initial configuration, and since the group G is commu-
tative we do not need to specify an order of multiplication in (18).

It will be useful to record here the generator-matrix for the random walk
(18). Indeed, regarding the xp of (17) as a matrix with rows and columns
indexed by Ω, the generator matrix can be written as

(19) ∑
p∈F

Jp(xp − 1),
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where 1 denotes the identity matrix. It follows that the transition-probabilities
at time t are given by the matrix

(20) exp (t∑p∈F Jp(xp − 1)).
To formally define the process in ∆, we note that we may think of ω ∈

Ω as encoding an arrow-configuration in ∆ by indicating which edges are
reversed (or not) with respect to some a-priori configuration of arrows. More
precisely, fix a reference-configuration ρ ∈∆ and define, for ω ∈ Ω, the arrow-
configuration ω ⋅ ρ such that the arrow at e has the same orientation as in ρ

if ωe ≙ +1, respectively the opposite orientation if ωe ≙ −1. We then obtain
a random walk δ(t) ∈∆ by

(21) δ(t) ≙ ω(t) ⋅ ρ.
Note that δ(t) depends both on the reference-configuration ρ ∈ ∆ and the
initial sign-configuration ω(0) ∈ Ω.

We next describe the relevance of the random walk ω(t) for the toric code
model. Recall that the elements ω ∈ Ω are in one-to-one correspondence with
basis-vectors ∣ω⟩ for (C2)⊗E , given as the product-basis obtained from the
basis ∣+⟩ ≙ ( 10 ), ∣−⟩ ≙ ( 01 ) for C2. Thus the action of G on Ω carries over to

a representation of G on (C2)⊗E . Moreover, from the explicit form of the
Pauli-matrices (1) we see that σ(1)∣±⟩ ≙ ∣∓⟩. Thus the operator Xp in (2) acts
precisely as xp in (17). It follows from (19) that the term ∑p∈F Jx

pXp in the
Hamiltonian (3) is, up to adding a multiple of the identity, the generator for
a random walk ∣ω(t)⟩ on the set of basis-vectors.

We note here that the random walk on ∆8vx is not irreducible, i.e. the
set decomposes into several disjoint communicating classes. See Proposition
4.1.

2.2. Duality. There are two useful notions of duality for the toric code
model: that of the lattice Λ as a planar graph, as well as a duality between
the operators Zs and Xp. In this subsection we aim to make precise these
dualities as well as the connection between them.

We start by looking at the operators Zs and Xp. Recall that we have been
using a basis for C

2 in which σ(3) is diagonal and the other Pauli matrices
are given as in (1). For the rest of this subsection, we denote this basis by∣+⟩z ≙ ( 10 ), ∣−⟩z ≙ ( 01 ) where the subscript z serves to indicate that the third

Pauli matrix is diagonal. The corresponding product basis for (C2)⊗E will
be denoted ∣ω⟩z for ω ∈ Ω. Recall that, in this basis, the operator Xp negates
the signs on all edges e surrounding p ∈ F , while Zs is diagonal.

We can also consider a basis for C2 in which σ(1) is diagonal: define

(22) ∣+⟩x ≙ ∣+⟩z + ∣−⟩z√
2

and ∣−⟩x ≙ ∣+⟩z − ∣−⟩z√
2

.

The corresponding product basis for (C2)⊗E will be denoted ∣ω⟩x for ω ∈ Ω.
The basis-change matrix for going between ∣±⟩z and ∣±⟩x is the symmetric,
orthogonal matrix (the Hadamard matrix)

(23) U ≙ 1√
2
( 1 1
1 −1 ), for which U ∣±⟩z ≙ ∣±⟩x.
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To go between the bases for (C2)⊗E one uses the E-fold tensor product U⊗E .
This change of basis maps σ(1) to Uσ(1)U ≙ σ(3) and σ(3) to Uσ(3)U ≙ σ(1),
meaning that in the ∣⋅⟩x-basis, Zs negates all the signs on the edges adjacent
s ∈ V , while Xp is diagonal.

What we have described so far dovetails with the planar duality of Λ, as
follows. Define the dual Λ∗ to be the graph with vertex set V ∗ ≙ F (Λ), edge-
set E∗ ≙ E(Λ), and faces F ∗ ≙ V (Λ). One obtains Λ∗ by placing a vertex
s∗(p) in the middle of each face p of Λ and drawing edges perpendicularly
across those of Λ. In this way, any vertex s of the orignal lattice Λ lies in
the middle of a unique face p∗(s) of the dual Λ∗. We can then write, for
s ∈ V and p ∈ F ,

U⊗EXpU
⊗E ≙∏

e∼p
Uσ(1)e U ≙ ∏

e∼s∗(p)
σ(3)e ≙∶ Zs∗ , and

U⊗EZsU
⊗E ≙∏

e∼s
Uσ(3)e U ≙ ∏

e∼p∗(s)
σ(1)e ≙∶Xp∗ .

(24)

As noted above, the operators Zs∗ and Xp∗ act on the σ(1)-basis ∣ω⟩x in
the exact same way as Zs and Xp act on the σ(3)-basis ∣ω⟩z. Namely, Zs∗ is
diagonal while Xp∗ negates the signs around p∗. In this sense, going between
the lattice Λ and its dual Λ∗ is equivalent to changing basis between ∣⋅⟩z and∣⋅⟩x. Some particular instances of this are the identities:

z⟨τ ∣ exp (t∑p∈FJ
x
pXp)∣σ⟩z ≙ x⟨τ ∣ exp (t∑s∗∈V ∗J

x
s∗Zs∗)∣σ⟩x,

z⟨τ ∣ exp (t∑s∈V J
z
sZs)∣σ⟩z ≙ x⟨τ ∣ exp (t∑p∗∈F ∗J

z
p∗Xp∗)∣σ⟩x,(25)

and for any A ⊆ V (Λ), B ⊆ F (Λ) with corresponding dual sets A∗ ⊆ F (Λ∗),
B∗ ⊆ V (Λ∗),
(26) z⟨τ ∣∏s∈AZs∏p∈B Xp∣σ⟩z ≙ x⟨τ ∣∏p∗∈A∗Xp∗∏s∗∈B∗ Zs∗ ∣σ⟩x.
These identities may all be obtained by conjugating with U⊗E .

2.3. Consequences. We now provide some applications of the random-
walk dynamics and of the duality. Write Pσ(⋅) for the probability measure
governing the process ω(t) of (18) started at ω(0) ≙ σ. We revert to the
notation ∣ω⟩ without a subscript for the usual basis defined above (1) and
referred to as ∣ω⟩z above.

Lemma 2.1. For any σ, τ ∈ Ω and t > 0, we have the following matrix
entries:

⟨τ ∣ exp (t∑p∈FJ
x
pXp)∣σ⟩ ≙ et∑p∈F Jx

pPσ(ω(t) ≙ τ),
⟨τ ∣ exp (t∑s∈V J

z
sZs)∣σ⟩ ≙ exp (t∑s∈V Jz

s ∏e∼s σe)1Iσ≙τ .(27)

Moreover,

(28) et∑p∈F Jx
pPσ(ω(t) ≙ σ) ≙∏

p∈F

cosh(tJx
p ) +∏

p∈F

sinh(tJx
p ).

In particular, exp (t∑p∈FJ
x
pXp) is constant on the diagonal.

Proof. The first identity in (27) follows from the discussion at the end
of Section 2.1, since exp (t∑p∈FJ

x
p (Xp − 1)) is the matrix of transition-

probabilities of ω(t). The second identity in (27) follows from the fact that
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exp (t∑s∈V J
z
sZs) is diagonal in the given basis, with (σ,σ) entry precisely

exp (t∑s∈V Jz
s ∏e∼s σe).

For (28), we see from (18) that ω(t) ≙ ω(0) if and only if either (i) each
plaquette is flipped an even number of times, or (ii) each plaquette is flipped
an odd number of times. The number of times a given plaquette p is flipped
by time t is a Poisson random variable with parameter Jx

p t, and they are
independent. This gives the stated expression. □

Lemma 2.1 allows for straightforward, explicit calculation of some ther-
modynamic quantities:

Proposition 2.2. The partition function is given explicitly as
(29)

tr∥e−H∥ ≙ 2∣E∣(∏
s∈V

cosh(Jz
s) + ∏

s∈V
sinh(Jz

s))(∏
p∈F

cosh(Jx
p ) + ∏

p∈F
sinh(Jx

p )).
Moreover, for any C ⊂ F and D ⊂ V we have
(30)

⟨∏
p∈C

Xp⟩ ≙ ∏p∈F∖C cosh(Jx
p )∏p∈C sinh(Jx

p ) +∏p∈F∖C sinh(Jx
p )∏p∈C cosh(Jx

p )
∏p∈F cosh(Jx

p ) +∏p∈F sinh(Jx
p )

and
(31)

⟨∏
s∈D

Zs⟩ ≙ ∏s∈V ∖D cosh(Jz
s)∏s∈D sinh(Jz

s) +∏s∈V ∖D sinh(Jz
s)∏s∈D cosh(Jz

s)∏s∈V cosh(Jz
s) +∏s∈V sinh(Jz

s) .

Lastly, we have that

(32) ⟨∏
p∈C

Xp∏
s∈D

Zs⟩ ≙ ⟨∏
p∈C

Xp⟩⟨∏
s∈D

Zs⟩.
In particular, (30), (31), and (32) are positive.

Proof. For (29), note that

tr∥e−H∥ ≙ tr[ exp (∑s∈V J
z
sZs) exp (∑p∈FJ

x
pXp)]

≙ 2−∣E∣tr[ exp (∑s∈V J
z
sZs)]tr[ exp (∑p∈FJ

x
pXp)].(33)

The first equality follows from the fact that the terms commute, the second
equality from Lemma 2.1 and the elementary fact that tr∥AB∥ ≙ tr∥A∥tr∥B∥/r
if A,B are r × r matrices such that A is diagonal and B is constant on the
diagonal. Next, from Lemma 2.1 we have

(34) tr[ exp (∑p∈FJ
x
pXp)] ≙ 2∣E∣(∏

p∈F
cosh(Jx

p ) + ∏
p∈F

sinh(Jx
p )).

Also, from the duality-relations (25) we have

(35) tr[ exp (∑s∈FJ
z
sZs)] ≙ 2∣E∣(∏

s∈V
cosh(Jz

s) + ∏
s∈V

sinh(Jz
s))

This follows by taking the trace in the ∣ω⟩x-basis rather than the ∣ω⟩z-basis.
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For (30), we note that

tr[(∏p∈C Xp)e−H] ≙ tr[ exp (∑s∈V Jz
sZs)(∏p∈C Xp) exp (∑p∈F Jx

pXp)]
≙ ∑

σ,τ∈Ω
⟨σ∣ exp (∑s∈V Jz

sZs)∣τ⟩⟨τ ∣(∏p∈C Xp) exp (∑p∈F Jx
pXp)∣σ⟩

≙ ∑
σ∈Ω
⟨σ∣ exp (∑s∈V Jz

sZs)∣σ⟩⟨σ∣(∏p∈C Xp) exp (∑p∈F Jx
pXp)∣σ⟩,

(36)

where we used the fact that exp (∑s∈V Jz
sZs) is diagonal. Next, using the

notation of (17),

(37) ⟨σ∣(∏p∈C Xp) exp (∑p∈F Jx
pXp)∣σ⟩ ≙ e∑p∈F Jx

pPσ(ω(1) ≙∏p∈C xp ⋅ σ).
For the event in the probability to occur, either (i) all p ∈ C are flipped an
odd number of times and all p ∈ F ∖C an even number of times, or (ii) vice
versa. Computing this probability and using (35) and (29) gives (30). We
have that (31) follows from the duality (25).

Lastly, we will prove (32). To begin, note that, because Zp’s are diagonal
we have that

tr[(∏p∈C Xp)(∏s∈D Zs)e−H]
≙ ∑
σ,τ∈Ω
⟨σ∣(∏s∈D Zs) exp (∑s∈V Jz

sZs)∣τ⟩⟨τ ∣(∏p∈C Xp) exp (∑p∈F Jx
pXp)∣σ⟩

≙∑
σ∈Ω
⟨σ∣(∏s∈D Zs) exp (∑s∈V Jz

sZs)∣σ⟩⟨σ∣(∏p∈C Xp) exp (∑p∈F Jx
pXp)∣σ⟩.

(38)

As we saw in (37) and the remarks directly below it, we have

⟨σ∣(∏p∈C Xp) exp (∑p∈C Jx
pXp)∣σ⟩

≙ ∏
p∈F∖C

cosh(Jx
p )∏

p∈C
sinh(Jx

p ) + ∏
p∈F∖C

sinh(Jx
p )∏

p∈C
cosh(Jx

p )
(39)

which, in particular, is independent of σ. The remaining sum over σ ∈ Ω is
tr[(∏s∈D Zs)e∑s∈V Jz

sZs] which by duality is

tr[(∏s∈D Zs)e∑s∈V Jz
sZs]

≙2∣E∣( ∏
s∈V ∖D

cosh(Jz
s)∏

s∈D
sinh(Jz

s) + ∏
s∈V ∖D

sinh(Jz
s)∏

s∈D
cosh(Jz

s)).(40)

Now by combining (39), (40), and (29) we obtain (32). □

From (29) we immediately obtain an expression for the free energy of the

system in the case when all Jx
p ≙ βx and all Jz

s ≙ βz: using that sinhβ
coshβ

< 1 for

all β > 0 we get

(41) f(βx, βz) ≙ lim
∣V ∣→∞

1
∣V ∣ log (tr∥e−H∥) ≙ log(coshβx)+log(coshβz)+2 log 2.

In particular, f(βx, βz) is analytic for βx, βz > 0, indicating that the system
does not undergo a phase transition, as pointed out earlier in e.g. [2].

Next we record a result complementary to Proposition 2.2 that will be
useful in the proof of the correlation inequalities. The result is proven in [2],
we give another argument using our dynamic picture.



THE UNIFORM 8-VERTEX AND TORIC CODE MODELS 13

Proposition 2.3. For A,B ⊂ E define the operators

(42) XA ≙∏
e∈A

σ(1)e , ZB ≙∏
e∈B

σ(3)e .

Then ⟨XAZB⟩ ≙ 0 unless XA is a (possibly empty) product of plaquette
operators Xp, and ZB is a (possibly empty) product of star operators Zs,
i.e. unless XA ≙∏p∈C Xp for some C ⊆ F and ZB ≙∏s∈D Zs for some D ⊆ V .

Proof. The expansion (36) remains valid with ∏pXp replaced by XA, and
in place of (37) we find that

(43) ⟨σ∣XA exp (∑p∈F Jx
pXp)∣σ⟩ ≙ e∑p∈F Jx

pPσ(ω(1) ≙∏e∈A xe ⋅ σ),
where xe is −1 in position e and +1 elsewhere. Note that this expression is
independent of σ and hence can be pulled out of the sum over σ in (36). Now
if XA is not a product of plaquette operators then there is no realisation of
the dynamics with the property that ω(1) ≙ ∏e∈A xe ⋅ σ. Then Pσ(ω(1) ≙
∏e∈A xe ⋅σ) ≙ 0, as claimed. Additionally, using the duality (25) it is easy to
show that the correlation is 0 unless ZB is a product of star operators. □

We now turn to the Ising model (11) and Proposition 1.2. Recall that Q
is assumed to be an operator on (C2)⊗E diagonal in the ∣⋅⟩ ≙ ∣⋅⟩z-basis with
Q∣σ⟩ ≙ q(σ)∣σ⟩.
Proof of Proposition 1.2. We use Lemma 2.1 and orthonormality to expand:

tr∥Qe−H∥ ≙ ∑
σ,τ,φ∈Ω

⟨σ∣Q∣τ⟩⟨τ ∣ exp (∑s∈V Jz
sZs)∣φ⟩⟨φ∣ exp (∑p∈F Jx

pXp)∣σ⟩
≙ ∑

σ,τ,φ∈Ω
q(τ)δσ,τ exp (∑s∈V Jz

s ∏e∼sφe)δτ,φe∑p∈F Jx
pPσ(ω(β) ≙ φ)

≙ ∑
σ∈Ω

q(σ) exp (∑s∈V Jx
s ∏e∼s σe)e∑p∈F Jx

pPσ(ω(β) ≙ σ).

(44)

In particular,

(45) tr∥e−H∥ ≙ ∑
σ∈Ω

exp (∑s∈V Jz
s ∏e∼s σe)e∑p∈F Jx

pPσ(ω(β) ≙ σ).
By Lemma 2.1, e∑p∈F Jx

pPσ(ω(β) ≙ σ) does not depend on σ, thus these
factors cancel in ⟨Q⟩ ≙ tr∥Qe−H∥/tr∥e−H∥, giving the result. □

Remark 2.4.

(1) Recall that the probability measure PJ(⋅) is invariant under reversing
all the spin-values around any fixed plaquette p. This immediately gives
that EJ∥∏e∈A σe∥ ≙ 0 if there is any plaquette p such that A contains an
odd number of the edges surrounding p, which is in line with Proposition
2.3.

(2) Clearly the analog of Proposition 1.2 is true also for operatorsQ diagonal
in the ∣ω⟩x-basis, by the duality (25). Indeed, the same argument carried
out in that basis gives ⟨Q⟩ ≙ E∗

Jx∥q(σ)∥, where E∗J∥⋅∥ denotes expectation
under the measure

P
∗
J(σ) ≙ exp (∑p∈F Jp∏e∼p σe)

∑ω∈Ω exp (∑p∈F Jp∏e∼s ωe) , σ ∈ Ω.
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In this sense one can see the toric code model as two coupled classical
Ising models.

3. Correlation inequalities

The proof of Theorem 1.1 will proceed by first proving a similar statement
for the Ising model (11). To state the latter, we introduce the following
notation. For s ∈ V consider the 4 edges e1, e2, e3 and e4 adjacent to s, to
be definite ordered as in Figure 2. For σ ∈ Ω, write σi(s) ≙ σei . We define
the following quantities similar to (5) and (6): for ε ∈ {−1,+1}4 satisfying

∏4
i≙1 εi ≙ +1, let

(46) Iεs(σ) ≙ 1
16

4∏
i≙1

(1 + εiσi(s)), Īεs(σ) ≙ 1
16

4∏
i≙1

(1 − εiσi(s)),
and for C ⊆ V ,

(47) IεC(σ) ≙∏
s∈C

(Iεs(σ) + Īεs(σ)).
Then IεC(σ) is the indicator of the event that, for each s ∈ C, the values σi(s)
for i ≙ 1, . . . ,4 either all agree with εi, or are all the opposite. Similarly to
the eight-vertex model and toric code, for δ ∈ {−1,+1}4 with δ ≠ ±ε we also
define

(48) Iε,δC (σ) ≙∏
s∈C

(Iεs(σ) + Īεs(σ) + Iδs (σ) + Īδs (σ)).

Lemma 3.1. Let ε, δ, with δ ≠ ±ε, be as above and let C1, C2 ⊆ V be sets
of vertices such that

● either C1 ∪C2 is contractible,● or any non-contractible loop in C1 ∪C2 has even length.

Then for any J ≙ (Js ∶ s ∈ V ) such that all Js ≥ 0,

(49) EJ[IεC1
IεC2
] ≥ EJ[IεC1

]EJ[IεC2
].

and

(50) EJ[Iε,δC1
Iε,δC2
] ≥ EJ[Iε,δC1

]EJ[Iε,δC2
].

Figure 2. A vertex s with its four incident edges labelled
in a counter-clockwise fashion.
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The method of proof will be to expand the products defining IεC and then
apply the GKS-inequalities (13) to the terms of the expansion. The subtlety
is that the terms come with signs; we show, using Proposition 2.3, that all
terms with negative sign actually vanish in expectation.

Proof. We will prove the first inequality, the proof of the second inequality
is almost identical. Since ∏4

i≙1 εi ≙ +1, we have that Iεs + Īεs ≙ 1
8
(1+As +Rs)

where As ≙∏4
i≙1 σi(s) and (with the argument s suppressed for readability)

(51) Rs ≙ ∑
1≤i<j≤4

εiεjσiσj .

Let C be any of C1, C2 or C1 ∪C2. By expanding the product over s ∈ C we
get that

(52) IεC ≙∏
s∈C

1
8
(1 +As +Rs) ≙ 1

8∣C∣
∑
D⊆C

∑
D1⊆D

∏
s∈D1

Rs ∏
t∈D∖D1

At.

In this expression we expand the product over s ∈ D1. To write the ex-
pansion, we use the following notation. We let Σ(D1) denote the set of
sequences ({i(s), j(s)})s∈D1

of two-element subsets of {1,2,3,4}, indexed
by s ∈D1. We may represent such a subset {i(s), j(s)} pictorially as an ele-
ment of the set {⌞,−−,⌟,⌜, ∣,⌝}, indicating the orientations of the two edges
selected. Then,

(53) IεC ≙ 1

8∣C∣
∑

D1,D2⊆C
D1∩D2≙∅

∑
Σ(D1)

∏
s∈D1

εi(s)εj(s)σi(s)σj(s) ∏
t∈D2

At.

Now consider an arbitrary term T in the latter expansion, corresponding to
a choice of D1, D2 and sequence in Σ(D1). We write this term as

(54) T ≙ ∏
s∈D1

εi(s)εj(s) ∏
s∈D1

σi(s)σj(s) ∏
t∈D2

At.

The following is the key claim: if T can be written as a ‘product of stars’,
then it comes with a positive sign. That is, if there is a set D3 ⊆ V such
that

(55) ∏
s∈D1

σi(s)σj(s) ∏
t∈D2

At ≙ ∏
u∈D3

Au,

then

(56) ∏
s∈D1

εi(s)εj(s) ≙ +1.
Before proving the claim (i.e. that (55) implies (56)) we show how to deduce
the result. We may write

(57) IεC1
IεC2
≙

1

8∣C1∣+∣C2∣ ∑
T1,T2

T1T2,

where T1 and T2 are terms of the form (54) for C ≙ C1 and for C ≙ C2, respec-
tively, and T ≙ T1T2 is of the form (54) for C ≙ C1∪C2. We will use the GKS-
inequality (13) to see that all terms satisfy EJ∥T1T2∥ ≥ EJ∥T1∥EJ∥T2∥. By
retracing the steps of the expansion, this implies the result. Now, if T ≙ T1T2

does not satsify (55) then at least one of T1 and T2 does not satisfy it either.
By Propositions 1.2 and 2.3, then EJ∥T1T2∥ ≙ EJ∥T1∥EJ∥T2∥ ≙ 0. If T ≙ T1T2
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does satisfy (55) but one of T1 and T2 does not, then by Propositions 2.2 and
2.3, EJ∥T1T2∥ ≥ 0 ≙ EJ∥T1∥EJ∥T2∥. Finally, if all three of T1, T2, T ≙ T1T2

satisfy (55) then the desired inequality EJ∥T1T2∥ ≥ EJ∥T1∥EJ∥T2∥ follows
from the GKS-inequality (13) and the fact that the terms have positive
coefficients, thanks to the claim.

We now prove the claim that (55) implies (56). If (55) holds, then since
the At satisfy A2

t ≙ 1, we get

(58) ∏
s∈D1

σi(s)σj(s) ∏
t∈D2△D3

At ≙ 1.

Recall that we represent each factor of the product over s ∈D1 as an element
of the set of shapes {⌞,−−,⌟,⌜, ∣,⌝}, indicating the two selected edges. Simi-
larly, each factor of the product over t may be represented as a +, indicating
that all four edges are selected. We think of the latter as consisting of two
superimposed shapes, such as ⌞ and ⌝ (the precise choice does not matter).

We can assume that D1 ∩ (D2 △D3) ≙ ∅. Then we conclude from (58)
that each edge e ∈ E appears in the product either exactly twice, or not at
all. Consider now the subset of edges which appear exactly twice (counting
each such edge once). Due to the possible choices of ‘shapes’ at each vertex,
this subset forms an even subgraph (each vertex has even degree) and thus
decomposes as a collection of closed loops. We claim that each such loop
has the following property: the number of vertices where it exhibits a shape
from {⌞,⌝} is even, similarly the number of vertices where it exhibits a shape
from {⌟,⌜} is even, and finally the number of vertices where it exhibits a
shape from {−−, ∣} is even. The latter claim can be seen by induction, as
follows. We may take the loops to be non-crossing. For any non-crossing
contractible loop enclosing at least two squares, we can decrease its enclosed
area one square by removing a corner. As we do so, the number of shapes
from each of the four sets changes by an even amount. Eventually the loop
reduces to a single square, for which the claim holds by inspection. If the
loop is not contractible, then a similar reduction can be used to reduce it
to a ‘straight’ loop, which by our assumption on C1 ∪ C2 has even length,
meaning again that the claim holds by inspection.

Finally, the sign on the left-hand-side of (56) can be written as

(59) ∏
s∈D1

εi(s)εj(s) ≙ ∏
s∈D1

εi(s)εj(s) ∏
t∈D2△D3

ε1ε2ε3ε4.

Here we used that ε1ε2ε3ε4 ≙ +1. For any choice of an even number of
shapes from each of the sets {⌞,⌝}, {⌟,⌜} and {−−, ∣}, the product of the
corresponding ε’s in (59) is ≙ +1, again using ε1ε2ε3ε4 ≙ +1. The result
follows. □

Proof of Theorem 1.1. For the uniform 8-vertex model we deduce the result
by fixing a reference configuration ρ ∈ ∆8vx and letting all Jz

s → ∞. Since
the limit of the Ising-measure (11) is uniform on σ ∈ Ω8vx, the distribution
of σ ⋅ ρ is uniform on ∆8vx.

For the first claim for the toric code model, note that the operatorsQ
(3)
C (ε)

and Q
(3)
C (ε, δ) are diagonal in the ∣ω⟩ ≙ ∣ω⟩z-basis and satisfy Q

(3)
C (ε)∣ω⟩ ≙IεC(ω)∣ω⟩ and Q

(3)
C (ε, δ)∣ω⟩ ≙ Iε,δC (ω)∣ω⟩. Then, using Proposition 1.2 for the
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first identity, Lemma 3.1 for the inequality, and Proposition 1.2 again for
the last identity,
(60)

⟨Q(3)C1
(ε)Q(3)C2

(ε)⟩ ≙ EJz[IεC1
IεC2
] ≥ EJz[IεC1

]EJz[IεC2
] ≙ ⟨Q(3)C1

(ε)⟩⟨Q(3)C2
(ε)⟩,

as claimed. The argument for Q
(3)
C (ε, δ) is similar.

The second claim for the toric code model uses similar arguments, but
in place of the GKS-inequality uses a correlation inequality for quantum
XY-models in [6]. The main step is to check that the argument of Lemma
3.1 goes through. Indeed, by expanding as in (51)–(53) we find that

(61) Q
(3)
C (ε)Q(1)D (δ) ≙ 1

8∣C∣+∣D∣
∑

T 3,T 1

T 3T 1

where T 3 are operators of the form

(62) T 3 ≙ ∑
s∈C′

εi(s)εj(s) ∏
s∈C′

σ
(3)

i(s)σ
(3)

j(s) ∏
t∈C̃∖C′

Zt

with i(s), j(s) two elements of {1,2,3,4} indexing the edges incident to s

and C̃,C ′ ⊂ C. The operators T 1 are of the form

(63) T 1 ≙ ∑
p∈D′

δi(s)δj(s) ∏
p∈D′

σ
(1)

i(p)σ
(1)

j(p) ∏
q∈D̃∖D′

Xq

with i(s), j(s) two elements of {1,2,3,4} indexing the edges around p and

D̃,D′ ⊂D.
Now by Proposition 2.3, ⟨T 3T 1⟩ ≙ 0 unless T 3 is a product of star oper-

ators and T 1 is a product of plaquette operators, in which case T 3 and T 1

both come with a positive sign (i.e. ∏s∈C′ εi(s)εj(s) ≙ ∏p∈D′ δi(s)δj(s) ≙ +1)
as in (56). Now by [6, Theorem 1] we have that ⟨T 3T 1⟩ ≤ ⟨T 3⟩⟨T 1⟩ and by
tracing back the calculation leading to (61) we obtain the result. □

Remark 3.2. It is possible, as in [3], to construct a quantum system
generalising the Kitaev model, whose ground state configurations correspond
to eight-vertex configurations with the general weights

(64) µa,b,c,d(ω)∝ a#I+#IIb#III+#IVc#V+#VId#VII+#VIII

depending on the numbers #I, . . . ,#VIII of vertices of the different types.
However, the operators that must be added to the hamiltonian to achieve
this do not satisfy the required non-negativity. This suggests that the in-
equalities in Theorem 1.1 may not hold for non-uniform weights.

Using almost the same argument as for Lemma 3.1 we can also prove the
following:

Proposition 3.3. For any C,D ⊆ V and any ε ∈ {−1,+1}4 satisfying

∏4
i≙1 εi ≙ +1, as above,

(65) ⟨Q(3)C (ε)∏u∈D Zu⟩ ≥ ⟨Q(3)C (ε)⟩⟨∏u∈D Zu⟩.
In particular, for any s ∈ V ,

(66) ∂
∂Js
⟨Q(3)C (ε)⟩ ≙ ⟨Q(3)C (ε)Zs⟩ − ⟨Q(3)C (ε)⟩⟨Zs⟩ ≥ 0.
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Similarly, for C ⊆ F and D ⊆ V ,

(67) ⟨Q(1)C (ε)∏u∈D Zu⟩ ≤ ⟨Q(1)C (ε)⟩⟨∏u∈D Zu⟩,
and hence

(68) ∂
∂Js
⟨Q(1)C (ε)⟩ ≙ ⟨Q(1)C (ε)Zs⟩ − ⟨Q(1)C (ε)⟩⟨Zs⟩ ≤ 0.

Proof. For (65), we have

(69) ⟨Q(3)C (ε)∏u∈D Zu⟩ ≙ EJ∥IεC(σ)∏u∈DAu(σ)∥,
where Au(σ) ≙∏4

i≙1 σi(s) as before. The same working as for (53) combined
with the fact that Au(σ)2 ≙ +1 gives

(70) IεC ∏
u∈D

Au(σ) ≙ 1

8∣C∣
∑

D1,D2⊆C
D1∩D2≙∅

∑
Σ(D1)

∏
s∈D1

εi(s)εj(s)σi(s)σj(s) ∏
t∈D2△D

At.

From there the same argument as in Lemma 3.1 applies.
Similarly, for (67) we may write

(71)

Q
(1)
C (ε)∏

u∈D

Zu ≙
1

8∣C∣
∑

C̃,C′⊆C

C̃∩C′≙∅

∑
Σ(C̃)

∏
p∈C̃

εi(p)εj(p)σ
(1)
i(p)σ

(1)
j(p) ∏

p∈C′
A(1)p ∏

u∈D

A(3)p

and as before, only terms which are products of stars and plaquettes survive
the expectation and they come with positive sign. □

A standard consequence of (66) is the existence of infinite-volume limits

of correlation functions of the form ⟨Q(3)C (ε)⟩; see e.g. [6, Proposition 4] for
arguments of this nature.

4. Further results for the uniform 8-vertex model

In this section we discuss further properties of the uniform eight-vertex
model that are natural to consider from the viewpoint of ‘plaquette-flipping’.
While not directly related to the correlation inequalities that were the main
focus of the previous section, they serve as further illustration of the useful-
ness of the methods used in the proofs of the correlation inequalitites.

4.1. Communicating classes. We start by considering the communicat-
ing classes of the dynamics (21) in the case when all Jp > 0. Recall that Λ
is an m × n torus.

Proposition 4.1. We have that ∣∆8vx∣ ≙ 2∣V ∣+1, and there are four com-

municating classes for the dynamics (21), each of size 2∣V ∣−1. We may move
between them by reversing arrows along a non-contractible path in Λ.

Proof. We start by showing that ∣∆8vx∣ ≙ 2∣V ∣+1. First, clearly ∣∆∣ ≙ 2∣E∣ ≙
22∣V ∣. By fixing a reference-configuration ρ as in (21) we can encode each
element of ∆ using an element v ∈ (F2)E where F2 ≙ {0,1} is the two-element
field. Then, for each s ∈ V , the constraint that s has an even number of
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incoming arrows becomes a linear constraint over F2, namely gs ⋅v ≙ 0 where
(similarly to (15))

(72) gse ≙ { 1, if e ∼ s,
0, otherwise,

and ⋅ is the scalar product. These constraints are not linearly independent,
since (∑s∈V gs)e ≙ 0 for each e ∈ E. However, this is the only linear relation:
any other linear relation would have to be of the form ∑s∈A gs ≡ 0 for some
proper subset A of V . But then there must be some edge e ∈ E with precisely
one end point in A and then (∑s∈A gs)e ≙ 1 ≠ 0. From this and the rank-

nullity theorem we get that ∣∆8vx∣ ≙ 22∣V ∣−(∣V ∣−1) ≙ 2∣V ∣+1, as claimed.
Now it is simple to see that there are four communicating classes for

the dynamics. There are ∣V ∣ plaquettes in F and hence 2∣V ∣ possible sums∑p∈A gp for A ⊆ V . However, we have that ∑p∈A gp ≙ ∑p∈V ∖A gp (since

∑p∈V gp ≡ 0). Hence, starting from any reference configuration ρ ∈ ∆8vx,

there are 2∣V ∣−1 configurations reachable by flipping plaquettes. This shows
that there are four communicating classes.

Lastly, let P ⊂ E be a non-contractible path of edges in Λ, it is clear
that such a path is not the boundary of a collection of plaquettes A ⊂ F .
This means that the configuration obtained by reversing arrows on P is
not reachable from the reference configuration via the dynamics. There are
two homotopy classes of non-contractible paths on the torus and reversing
arrows along a path of edges in one or two of the classes moves us between
the four communicating classes. □

Remark 4.2.

(1) Because our dynamics for the uniform eight-vertex model correspond to
a random walk on the hypercube (F+2)F , we can import results about
mixing times from the literature. For example, the mixing time for the
dynamics is log(∣V ∣) (recall that the Poisson process of steps has rate∣F ∣ rather than the usual rate 1). The interested reader can consult [25]
and references therein for detailed statements.

(2) The limiting distribution of random walk on the hypercube (F+2)F is uni-
form. This leads to a method for sampling from the uniform eight-vertex
distribution µ(⋅): first sample uniformly a representative ρ ∈ ∆8vx from
each of the four communicating classes to act as reference-configuration,
then toss independent coins for each of the plaquettes for whether to ‘flip’
the plaquette or not.

(3) If s1, s2 ∈ V are vertices not adjacent to any common plaquette p, then
by the previous item, the vertex-types at s1 and s2 can be written as
functions of independent random variables (states of the plaquettes sur-
rounding them). Thus their states are independent.

4.2. Emptiness formation probability. In this subsection we allow to
view Λ not only as a torus, but also as a subset of Z2 with a boundary.
In that case we replace each of the edges of the form {(m,y), (1, y)} with
two boundary-edges {(m,y), (m + 1, y)} and {(0, y), (1, y)}, and similarly
replace each {(x,n), (x,1)} with two boundary-edges {(x,n), (x,n+1)} and{(x,0), (x,1)}.
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Figure 3. Left: extending Λm−1,n−1 to Λm,n with
both having domain wall boundary conditions. Right:
∆dw

8vx(Λm−1,n−1) ≠ ∅ implies ∆dw
8vx(Λm,n) ≠ ∅.

First we consider the domain wall boundary condition. This means that
the top and bottom boundary edges (of the form {(x,0), (x,1)} or {(x,m), (x,m+
1)}) receive the fixed orientation pointing in towards Λ, and that the left
and right boundary-edges (of the form {(0, y), (1, y)} or {(m,y), (m+1, y)})
are fixed to point out of Λ. See Figure 3 for an illustration.

We emphasise m and n by using the notation Λm,n. We denote by
∆dw

8vx(Λm,n) the set of eight-vertex configurations on Λm,n with domain wall
boundary conditions as described above.

Proposition 4.3. We have that

(73) ∣∆dw
8vx(Λm,n)∣ ≙ { 0, if m + n is odd,

2(m−1)(n−1), if m + n is even.

When non-empty, ∆dw
8vx(Λm,n) consists of a single communicating class for

the dynamics (21).

Proof. We begin by showing that ∆dw
8vx(Λm,n) ≠ ∅ if and only if m + n is

even. This is done in three steps.
Step 1: if ∆dw

8vx(Λm−1,n−1) ≠ ∅ then ∆dw
8vx(Λm,n) ≠ ∅. Indeed, Figure

3 illustrates how an element of ∆dw
8vx(Λm−1,n−1) can be ‘extended’ to an

element of ∆dw
8vx(Λm,n).

Step 2: conversely, if ∆dw
8vx(Λm,n) ≠ ∅ then ∆dw

8vx(Λm−1,n−1) ≠ ∅. Indeed,
fix an element δ ∈∆dw

8vx(Λm,n) and consider the bottom row of vertical edges
and the rightmost column of horizontal edges in Λm,n (see Figure 4). If all
those vertical edges are oriented in, and all the horizontal ones are oriented
out, then the restriction of δ to Λm−1,n−1 is an element of ∆dw

8vx(Λm−1,n−1).
Otherwise, the edges pointing the ‘wrong way’ (i.e. out for vertical edges on
the bottom, in for horizontal edges on the right side) will be called faults.
It is not hard to check that the number of faults must be even. Then, pair
up the successive faults and mark the plaquettes between the pairs, as in
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Figure 4. An arbitrary element of ∆dw
8vx(Λm,n) can be

mapped to one whose restriction to Λm−1,n−1 also has do-
main wall boundary condition. The highlighted plaquettes
separate pairs of faults, i.e. arrows pointing the opposite way
to the boundary condition. Flipping the highlighted plaque-
ttes gives the desired element of ∆dw

8vx(Λm−1,n−1).
Figure 4. Flipping all the marked plaquettes maps δ to a configuration
whose restriction to Λm−1,n−1 is an element of ∆dw

8vx(Λm−1,n−1).
Step 3: from the previous two steps we see that ∆dw

8vx(Λm,n) ≠ ∅ if and only
if ∆dw

8vx(Λm−1,n−1) ≠ ∅. If m ≥ n this holds if and only if ∆dw
8vx(Λm−n+1,1) ≠ ∅;

if n ≥m it holds if and only if ∆dw
8vx(Λ1,n−m+1) ≠ ∅. It is straightforward to

check that the latter sets are non-empty if and only if m − n is even, which
is equivalent to m + n being even.

To determine the number of configurations when m + n is even, we use a
simple counting argument. First, let us count the number of choices at each
vertex if we start at the top left corner (1, n) and proceed left to right and
then top to bottom. As we proceed, each time we ‘arrive’ at a new vertex
except the rightmost column or bottom row, exactly two incident arrows are
already fixed, leaving us with exactly two choices. In the rightmost column
and bottom row, three incident arrows are fixed when we arrive, leaving us
at most one (possibly no) choice per vertex. This gives that

(74) ∣∆dw
8vx(Λm,n)∣ ≤ 2(m−1)(n−1).

On the other hand, if ∆dw
8vx(Λm,n) ≠ ∅, fix some δ ∈ ∆dw

8vx(Λm,n). An argu-
ment similar to that of Proposition 4.1 shows that, in this case, the number
of configurations reachable by flipping plaquettes equals the total number
of configurations. Since there are (m − 1)(n − 1) plaquettes, this gives that
(75) ∣∆dw

8vx(Λm,n)∣ ≥ 2(m−1)(n−1).
Combining (74) and (75) shows that, when non-empty, ∆dw

8vx(Λm,n) has size
2(m−1)(n−1). The claim about irreducibility follows from the proof of (75).

□
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Figure 5. Example of an empty column in a box with do-
main wall boundary condition. Here m ≙ n ≙ 7 and r ≙ 4.

We now turn our attention to the so-called emptiness formation probability

of the model. This is the probability that a fixed column of horizontal
edges has all of its arrows pointing to the left (say). In this case we say
that the column is empty. Denote by EFr the event that the column of
horizontal edges whose left end-points have first coordinate r is empty, see
Figure 5. In what follows, µdw(⋅) denotes the uniform probability measure
on ∆dw

8vx(Λm,n). We calculate the probability of EFr in the case of the torus
and the case of domain wall boundary conditions. We begin with the domain
wall case.

Proposition 4.4. Assume that m + n is even so that ∆dw
8vx(Λm,n) ≠ ∅.

Then µdw(EFr) ≙ 2−(m−1)1l{r∈2N}.
Proof. The proof is similar to that of Proposition 4.3. First we show that
EFr ≠ ∅ if and only if r is even. Indeed, by Proposition 4.3, the part of Λm,n

to the right of the empty column can be ‘filled in’ if and only if n − r +m is
even. Since m + n is even, this is equivalent to r being even. To fill in the
part to the left of the empty column, we can make the top row alternate
between types VI and VII (this is also possible if and only if r is even) and
the rest all type IV. (Recall Figure 1.1 for the vertex types.) This shows
that EFr ≠ ∅ if and only if r is even.

Assuming then that r is even, let us count the number of choices at each
vertex in the two parts, going from left to right and then top to bottom in
each. We see that (r−1)(m−1)+ (n− r−1)(m−1) ≙ (m−1)(n−2) vertices
have two choices of vertex type and the remaining vertices have at most one
choice. From this and Proposition 4.3 we see that

(76) µdw(EFr) ≤ 2(m−1)(n−2)/2(m−1)(n−1) ≙ 2−(m−1).
On the other hand, consider the (m−1)(n−1)−(m−1) plaquettes that may
be reversed without affecting the empty column. Similarly to the proof of
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Proposition 4.3 we see that each distinct choice gives a different configura-
tion. From this we have that

(77) µdw(EFr) ≥ 2(m−1)(n−1)−(m−1)/2(m−1)(n−1) ≙ 2−(m−1),
which completes the proof. □

In the case when Λm,n is viewed as a torus, the emptiness formation prob-
ability is independent of the position of the empty column. We hence simply
denote by EF the event that an arbitrary, fixed, column of the torus is empty.
Recall that µ(⋅) is the uniform distribution on eight-vertex configurations.

Proposition 4.5. Consider Λm,n with sides identified to form a torus.
Then µ(EF) ≙ 2−m.

Proof. Let us fix the column that is to be empty as the rightmost column.
First, it is simple to see that EF ≠ ∅ as the configuration consisting of all
vertices being type II has all columns empty. For an upper bound on µ(EF)
we again use a simple counting argument. By fixing the vertex types starting
from left to right and then top to bottom, we see that the leftmost column
has one fixed incident arrow, hence these n − 1 vertices have four choices.
The ‘bulk’ (m − 2)(n − 1) + 1 vertices have two choices and the remaining
vertices have at most one choice. We therefore have that

(78) µ(EF) ≤ 22(n−1)+(m−2)(n−1)+1/2mn+1 ≙ 2−m.

On the other hand, consider the m(n − 1) plaquettes whose bounding ar-
rows can be reversed without affecting the empty column. Note that dis-
tinct choices of which plaquettes to reverse give different configurations (we
can now only reverse plaquettes in one of A,Ac ⊂ F and not both because
one of A,Ac contains the plaquettes of the empty column). Thus we can

obtain 2m(n−1) distinct configuration in EF from a fixed reference configu-
ration. Next, note that if we reverse all arrows along a straight, vertical,
non-contractible path of vertices away from the rightmost column, then we
obtain a configuration in EF that can not be reached from the reference con-
figuration by reversing arrows around plaquettes. By now reversing around
plaquettes from this new eight-vertex configuration we find another 2m(n−1)

distinct configuration with the empty column. This gives that

(79) µ(EF) ≥ 2 ⋅ 2m(n−1)/2mn+1 ≙ 2−m,

which matches our upper bound. □

4.3. Entropy. Now we consider the entropy of the model, meaning that we
compare the number of eight-vertex configurations for various boundary con-
ditions. We will suppose thatm,n are fixed such thatm+n is even and we re-
vert to the notation Λ without subindices. Let η be a fixed assignment of ar-
rows to the boundary edges (i.e. the edges {(m,y), (m+1, y)}, {(0, y), (1, y)},{(x,n), (x,n + 1)} and {(x,0), (x,1)}) and denote by ∆η

8vx(Λ) the set of
eight-vertex configurations on Λ with the boundary configuration η. We
call η valid if ∆η

8vx(Λ) ≠ ∅.
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Proposition 4.6. A boundary condition η is valid if and only if the
number of arrows around the boundary of Λ that point into Λ is even. In
this case ∣∆η

8vx(Λ)∣ ≙ 2(m−1)(n−1).
Proof. If ∆η

8vx ≠ ∅, then the same argument as in the proof of Proposition
4.3 shows that all configurations in ∆η

8vx are reachable by flipping plaquettes,

and thus ∣∆η
8vx∣ ≙ 2(m−1)(n−1). It remains to determine when ∆η

8vx ≠ ∅.
Let η0 be the boundary condition such that all arrows are → or ↑. By

taking the configuration on Λ with every vertex of type I we see that ∆η0
8vx ≠∅. This boundary condition does indeed have an even number (m + n)

of inward arrows. Now, a similar argument as for Proposition 4.1 shows
that any valid boundary condition η is obtainable by flipping the exterior
boundary plaquettes. Then η differs from η0 at an even number of boundary
edges, and hence still has an even number of inward pointing arrows. Indeed,
if η differs from the reference boundary condition in an even number of places
then we can pair off differing edges into neighbouring pairs and reverse arrow
around plaquettes between the pairs, similarly to Figure 4. On the other
hand, if η differs from η0 at an odd number of edges then there is no set of
plaquettes that can be flipped to obtain η. □

The next result can be interpreted as saying that the entropy of the
uniform eight-vertex model on Λ is realised (up to a factor that is exponential
only in the size of the boundary) for any fixed valid boundary condition. It
is an immediate consequence of Propositions 4.1 and 4.6.

Proposition 4.7. Let η be a valid boundary condition on Λ. Then

∣∆8vx∣∣∆η
8vx∣ ≙ 2

m+n−1 ≙ 2O(∂Λ).

Appendix A. The toric code

In this appendix we summarise some of the original motivation for the
toric code model, starting with basic properties of quantum codes.

Recall that classical codes store information in sequences of numbers 0
or 1, each of which is called a bit. For quantum codes, the bits 0 or 1 are
replaced by so-called qubits which are more elaborate objects. A qubit may
be defined as an irreducible two-dimensional representation of su2(C) and a
quantum code as a sub-representation of a tensor product of qubits. Let us
now unpack these definitions.

Consider as before the two-dimensional vector space C2 and with standard
basis ∣+⟩ ≙ ( 10 ) and ∣−⟩ ≙ ( 01 ) (as mentioned before, these are often denoted∣1⟩ and ∣0⟩ in quantum information theory, while ∣+⟩ and ∣−⟩ is more common
in statistical physics). The Pauli matrices (1) generate a Lie-algebra of
two-by-two Hermitian matrices with trace 0. Together with the underlying
vector space C

2 on which the matrices act, this algebra of matrices is a
representation of su2(C). That is, they form a single qubit by our definition.

It is a crucial point that there are other ways to represent a qubit than
the specific construction above. That is, one may find other two-dimensional
vector spaces V (over C), together with matrices X,Y,Z acting on V, that
have “all relevant properties” of C2 together with the σ(1), σ(2), σ(3). More
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precisely, there are other representations of su2(C) which are isomorphic

to the one above and therefore also form a single qubit. To check that V

together with X,Y,Z form a qubit, one needs to check that X,Y,Z satisfy
the following relations:

(80) ∥X,Z∥ ∶≙XZ −ZX ≙ −2iY ≙ −2ZX, and X2 + Y 2 +Z2 ≙ 31I.

For classical codes, one obtains protection from errors by using redun-

dance; that is, a single bit is encoded in a sequence of several bits of length
n > 1, where the extra bits are used to detect possible errors of transmis-
sion. For quantum codes, the analogous setting is obtained using the n-fold
tensor product (C2)⊗n. For each ℓ ∈ {1, . . . , n} one then has a physical qubit

consisting of copies σ(1)
ℓ
, σ
(2)

ℓ
, σ
(3)

ℓ
of the Pauli matrices which act only on the

ℓ entry. To obtain a quantum code with desirable properties, one sets this
up in such a way that (C2)⊗n has at least one two-dimensional subspace
carrying a representation of su2(C), that is, forms a qubit (other than the
ones obtained using the factors σ(1)

ℓ
, σ
(2)

ℓ
, σ
(3)

ℓ
). Such a sub-representation is

then called a logical qubit.
For the toric code, we use the setting described above with n ≙ ∣E∣ physical

qubits, that is the physical qubits are indexed by the edge-set E of the
torus. For simplicity, and consistency with notation in the literature, we
will consider vertex set {1, . . . , d}2 ⊂ Z2 with edge set E making it a torus.
This means we have 2d2 physical qubits. To identify logical qubits we use
the operators

(81) As ≙∏
e∼s

σ(3)e , Bp ≙∏
e∼p

σ(1)e , s ∈ V, p ∈ F.

(These are the same as Xs and Zp in (2) but here we use the more common

notation (81).) The relevant subspace of (C2)⊗E is

(82) L ≙ {∣ξ⟩ ∈ (C2)⊗E ∶ As∣ξ⟩ ≙ Bp∣ξ⟩ ≙ ∣ξ⟩, for all s ∈ V, p ∈ F},
i.e. the subspace stabilised by all As and Bp. We will see that L carries two
logical qubits.

Let us look more closely at the condition As∣ξ⟩ ≙ ∣ξ⟩. Note that if ∣ξ⟩ ≙⊗e∈E ∣ξe⟩ is a tensor product of eigenvectors of the σ(3)-basis then

(83) As∣ξ⟩ ≙ (∏
e∼s

ξe)∣ξ⟩.
Then the condition As∣ξ⟩ ≙ ∣ξ⟩ is identical to the constraint defining Ω8vx ⊆ Ω
as the set of configurations σ satisfying ∏e∼s σ1 ≙ +1 for all s ∈ V . In
particular, we may identify L with a subset of Ω8vx.

Translating the multiplicative constraints defining L into linear constraints,
one may use the same reasoning (rank-nullity) as for Proposition 4.1 to con-
clude that dim(L) ≙ 4. Thus L has the correct dimension for carrying
two logical qubits. To see that it indeed does, we need to define operators
X1, Z1 and X2, Z2 on L which commute (for differing indices) and satisfy
(80) (for matching indices). Let L1 ⊆ E be the set of edges of the form{(x,1), (x + 1,1)} for 1 ≤ x ≤ d. Thus L1 is a horizontal path that wraps
around the torus. Also let L′1 be the set of edges of the form {(1, y), (2, y)}
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for 1 ≤ y ≤ d forming a vertical ‘ladder’ around the torus. Define

(84) X1 ≙ ∏
e∈L1

σ(1)e , Z1 ≙ ∏
e∈L′

1

σ(3)e .

Similarly let L2 be the set of edges of the form {(1, y), (1, y+1)} for 1 ≤ y ≤ d
and let L′2 be the set of edges of the form {(x,1), (x,2)} for 1 ≤ x ≤ d,
respectively forming a vertical path and a horizontal ‘ladder’, and define

(85) X2 ≙ ∏
e∈L2

σ(1)e , Z2 ≙ ∏
e∈L′

2

σ(3)e .

One may check that these operators indeed have the desired properties, the
key observation being that the paths share either zero or exactly one edge.
We call these operators logical operators as they have the effect of applying
a Pauli operator to one of the logical qubits.

Let us briefly describe the error-correction properties of the code L on an
intuitive level.

Imagine that data is encoded as an element of the space L. In this case
the data is encoded by two qubits (because dim(L) ≙ 4) but various methods
(creating a boundary and removing qubits to create “holes” [14] or simply
taking tensor products of multiple copies of L) allow for a greater number of
qubits and hence more data. This data may represent some information we
wish to retrieve, or the state of our quantum system (quantum computer)
at an intermediate step of an algorithm. An error may occur in the data,
due to imperfect implementation of a step of the algorithm, or otherwise,
so that the data is no longer an element of L. This means that one or
more qubits are in a state that the algorithm did not intend. Assuming the
hardware implementing the algorithm is well built, we would hope that the
most likely cause for this fault results in a minimal (non-zero) number of the
constraints As∣ξ⟩ ≙ ∣ξ⟩ and Bp∣ξ⟩ ≙ ∣ξ⟩ being broken. By parity constraints,
this minimal number is two (since ∏s∈V As ≙ 1 and ∏p∈F Bp ≙ 1). Suppose
that As1 ∣ξ⟩ ≠ ∣ξ⟩ and As2 ∣ξ⟩ ≠ ∣ξ⟩, the case of constraints ∏p∈F Bp ≙ 1 being
broken is analogous by duality, as is the case of more constraints being
broken. Thinking in terms of arrow configurations ω ∈ Ω, ∣ξ⟩ can be thought
of as a linear combination of arrow configurations. This means that s1 and
s2 are faults, i.e. the total number of in- (or out-) pointing arrows is odd in
each term of this linear combination. A moments thought will reveal that
there must be a path π of adjacent vertices and edges whose end vertices are
s1 and s2 such that each arrow along edges of this path has been reversed
(flipped). We say the corresponding qubits have picked up faults and note
that there are at least ∥s1−s2∥ of these faulty qubits. By flipping arrows (i.e.
applying σ(1)) at every edge along this path we will correct this fault. In
other words, we have that ∣ξ⟩ ≙∏e∈π σ

(1)
e ∣ξ′⟩ for some ∣ξ′⟩ ∈ L (the element ofL we would have if there had been no fault) and hence that ∣ξ′⟩ ≙∏e∈π σ

(1)
e ∣ξ⟩.

Notice, however, that we only know the end points of this path and there is
no way to know the path itself because As∣ξ⟩ ≙ ∣ξ⟩ for every s in the interior
of the path (in terms of arrows, each such s has had two adjacent arrows
flipped, preserving the even parity of incoming arrows at s). Thankfully this
is often not a problematic feature of the model (in fact, in some sense, it is
an essential feature of the model for error correction). We can flip arrows
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(i.e. apply σ(1)) to all the qubits along any path π′ with end points s1 and s2
and often obtain ∣ξ′⟩ ∈ L. Indeed, ∏e′∈π′ σ

(1)

e′ ∣ξ⟩ ≙∏e∈π⊔π′ σ
(1)

e′ ∣ξ′⟩ and if π∪π′
is a contractible (closed) path then ∏e∈π⊔π′ σ

(1)

e′ ≙ ∏p∈P Bp where P is the

set of plaquettes enclosed by π ∪π′. By noting that P ≙ P−1 and P ∣ξ′⟩ ≙ ∣ξ′⟩
(as ∣ξ′⟩ is an element of L) we see that flipping arrows along π′ returns us
to L. The element, ∣ξ′⟩, that we obtain in this way is the element we would
have obtained if no fault occurred and we say we have successfully corrected

the fault. If π∪π′ is not contractible then ∏e∈π⊔π′ σ
(1)

e′ is not a product of Bp

operators, so applying it to ∣ξ⟩ has the effect of applying a logical operator.
In order to avoid the case where π ∪ π′ is not contractible as much as

possible, a sensible choice of π′ is a shortest path between s1 and s2. This
will result in π ∪ π′ being contractible whenever ∣s1(j) − s2(j)∣ < d/2 for
j ≙ 1,2, where si(j) is the jth coordinate of si. It is common to select d to
be odd to avoid a “tie-breaking” situation when ∣s1(j)−s2(j)∣ ≙ d/2. In this
case we are guaranteed to successfully correct the fault whenever ∥s1 − s2∥ ≤(d − 1)/2 (we will also successfully correct cases where ∥s1 − s2∥ > (d − 1)/2
but ∣s1(j) − s2(j)∣ < d/2 for j ≙ 1,2) and we say the code has distance d.
Notice that in our case (and indeed generally) d is the minimum distance
(i.e. number of qubits that need to be acted upon) between code words

(elements of L). For the toric code the distance between neighbouring code
words is constant, but this need not be the case in general. Also note that
n, k, d do not necessarily uniquely identify the code. In the literature the
parameters are often written together as ∥∥n, k, d∥∥ to describe a code with
n physical qubits encoding k logical qubits and with the guaranteed ability
to correct (d − 1)/2 faults.
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