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To the editors of Current Biology, 

 

We respectfully submit a manuscript for your consideration, titled “Social associations 

across species during nocturnal bird migration.” We believe that this work will be of 

great interest to a broad audience of scientists and non-scientists alike, and that it has the 

potential to change how we think about bird migration—one of the most widely recognized 

natural phenomena on Earth.  

 

Animal migrations are essential elements of earth’s ecosystems and their biodiversity, but 

enduring mysteries remain about fundamental processes underlying these behaviors. 

Current scientific understanding of songbird migration holds that birds migrate alone, 

guided by inherited migratory programs. An emerging literature of social information use 

during migration has begun to challenge this view, but this research has been almost 

entirely focused on single-species perspectives, and we believe broader perspectives are 

needed. Our case in point: The migratory journeys of diverse taxa overlap in space and time 

in widely recognized “co-migrations,” but a recent review of 817 animal migration studies 

found only one study that explicitly examined interspecific social information use. Social 

information exchanged during migration may be an underrecognized factor shaping 

the movement ecology, individual decision-making, and even fitness of songbird 

migrants.  

 

Our research takes an important step towards filling this large knowledge gap by 

investigating whether nocturnally migrating bird species form consistent social 

associations during migratory flights. Drawing on recent advances in artificial 

intelligence for bioacoustics, we find that, indeed, interspecific social associations 

are not only present, but common during migratory flights. We identify wing morphology 

and vocalization structure as two important factors that may drive in-flight associations 

and reject phylogenetic relatedness as a contributor, lending important insight into how 

these relationships are structured. Most importantly, we offer evidence that key 

elements of our understanding of songbird migration may be incomplete. The 
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substantial recent and continuing declines, and they raise important questions: What are 

the consequences of a decline in social information on the success of a migratory journey, 

and ultimately an individual’s survival?  

 

We believe that our combination of big data, cutting edge machine learning methods, and 

findings that challenge current understanding make this research ideal for the audience of 

Current Biology.  

 

We thank you for your consideration and look forward to your reply. 
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Benjamin Van Doren and co-authors	
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Summary

An emerging frontier in ecology explores how organisms integrate social information into movement be-
havior and the extent to which information exchange occurs across species boundaries1–3. Most migratory
landbirds are thought to undertake nocturnal migratory flights alone, guided by information from endogenous
genetic programs and past individual experience4,5. However, social information may be an underappreciated
contributor to migration behavior and decision-making1,2. We captured audio of >18,000 h of nocturnal bird
migration and used deep learning to extract >175,000 in-flight vocalizations of 27 species of North American
landbirds6–8. We used these vocalizations to test whether actively migrating birds distribute non-randomly
relative to other species in flight while accounting for similarities in migration phenology, geography, and
other non-social factors. We found that nocturnal migrants commonly show non-random social associations
with other species; each species engaged in significant associations with an average of 2.7 other species. So-
cial associations were stronger among species with similar wing morphologies and similar vocalizations, but
associations were surprisingly not explained by evolutionary relatedness. These results suggest that conver-
gent vocal signals broadcast during flight maintain in-flight interactions that are structured by flight speed
and behavior7,9,10. For small-bodied and short-lived bird species, transient social associations could play
an important role in migratory decision-making by supplementing information gained from endogenous or
experiential sources11–13. Substantial recent and continuing declines in bird populations14,15 may diminish
the frequency and strength of social associations during migration, with currently unknown consequences
for populations.

Results

Animal movements and migrations are essential elements of earth’s ecosystems and their biodiversity16, but
seasonal migrations are declining due to a range of threats from human activities17,18. Enduring mysteries re-
main about fundamental processes underlying these behaviors and their patterns, including how information
about migration routes, timing, and behavior is transmitted across generations5, among individuals, and
potentially even across species2,13. Songbirds (Order Passeriformes) compose the bulk of avian migratory
species and, among other orders, are thought to rely largely on innate migratory programs4, particularly
during their naïve first migrations5.

Evidence is emerging that the social environment plays a larger role in shaping an individual’s migra-
tory phenotype than previously understood2,19–21. Social information that aids navigation, orientation, or
survival could be extremely valuable during this dangerous part of the annual cycle2. The current under-
standing of social learning of migration behavior has arisen primarily from single-species studies of long-lived,
diurnally-migrating birds such as storks, cranes, and raptors22–24, as well as other species that move with
kin20. Some of these species may maintain stable social connections among flockmates20,25, whereas others
engage in more transient interactions24.

Although most research has focused on conspecific social interactions, the migratory journeys of diverse
taxa frequently overlap in space and time in “co-migrations” that are widely recognized but rarely studied13.
Songbird migration is a remarkable example of co-migration, with hundreds of millions of individuals of
dozens of species in the air on a given night26, providing opportunity for valuable and abundant social
information exchange. Though existing research on navigation and decision-making during songbird mi-
gration has often emphasized endogenous programs, these species also socially associate and interact with
each other during stopover11,27–29 and potentially in flight9,10,12. Many taxa actively vocalize during mi-
gratory flights6,7,30, and these vocalizations may be important for communicating social information en
route7,9,10,31–33. However, it is unknown whether meaningful interactions occur during migratory flights or
what information might be exchanged.

Here, we investigate whether nocturnally migrating bird species form consistent social associations during
migratory flights. We use recordings of in-flight vocalizations to characterize patterns of species’ spatial
and temporal proximity and test whether species’ distributions aloft differ from a null expectation based on
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non-social factors including shared phenology and geography. Significant differences from the null hypothesis
would suggest an active behavior driving social association among species. We investigate the factors that
explain any species associations, hypothesizing that species with similar migration routes, stopover habitats,
morphologies, vocalizations, and evolutionary histories will be more likely to socially associate. Finally, we
consider how social information exchange could be an important contributor to the movement ecology of
nocturnally migrating birds.

Songbirds associate with other species during migratory flights
We collected acoustic recordings of 18308.08 hours of autumn nocturnal bird migration (August to De-

cember) from 26 sites in eastern North America (Figure S1). We extracted vocalizations of migrating birds
(hereafter “flight calls”7,34) from audio data using a deep learning model that we designed for this purpose8,
and we manually reviewed species detections for accuracy to ensure data quality. We focused on 27 well-
sampled species: 25 songbird species (Order Passeriformes), plus two heron species (Order Pelecaniformes),
which we included to examine the potential for associations between songbirds and other orders. We con-
structed a network that captures the degree to which detections of different species occurred synchronously
in the data stream conditional on species co-occurrence (hereafter “social association network”). Using
custom network permutation tests, we evaluated whether the observed social association network differed
from a null expectation that incorporated shared timing, geography, and other non-social factors that may
contribute to network structure (Figure S2). The observed social association network was significantly non-
random (network coefficient of variation 𝑃30𝑠 = 0) (Figure S3). We quantified the overall tendency of each
species to associate with other species during migratory flights, finding that 17 out of 27 species in the social
association network showed significantly elevated total association strengths after accounting for non-social
factors (Figure 1). For this study, we considered detections to occur synchronously if they occurred in the
same 30-s time window, but we also tested networks constructed using 15-s and 60-s time windows and con-
firmed that the results were robust to the choice of window size (15-s social association: 17 of 27 significant;
60-s social association: 20 of 27 significant).

We assessed the statistical significance of social association for every species pair in the network using
custom permutation tests that accounted for non-social factors that may contribute to network structure. Of
213 species pairs with >100 association opportunities assessed using 30-s time windows, 36 were statistically
significant (Figure 2; Table S1). This result was consistent when using other window sizes (15-s: 35/215
pairs significant, Figure S4; 60-s: 35/210 pairs significant, Figure S4). For 30-s windows, species had a
mean of 2.7 ± 1.9 SD significant association partners, and 23 of 36 significant associations were between
two species of the same family (most commonly within the Parulidae). Although significant inter-family
associations were less frequent, those that did occur were of similar strength to interspecific associations
(t-test: t = 0.4, df = 21.5, P = 0.69).

Wing morphology and vocalization similarity explain social associations among species
We tested whether in-flight associations among species could be explained by phylogeny, spatiotemporal

distribution, habitat preferences, social relationships during stopover, morphology, or vocalizations. We
used non-parametric Mantel tests and again evaluated statistical significance using custom network permu-
tations that accounted for non-social factors. The distance between species’ wing lengths and the acoustic
distance of their vocalizations were statistically significant predictors of social association (Figure 3; Table 1).
These relationships were robust to choice of window size (15-s: Table S2; 60-s: Table S3) and present using
parametric and nonparametric matrix correlations (Table S4). These relationships were also present when
excluding two large-bodied heron species and including only species in the order Passeriformes (Table S5;
Figure S5). Species relationships at stopover, phylogenetic relatedness, spatiotemporal overlap in species’
migration routes, non-breeding range overlap, and migration-period habitat relationships were not consis-
tently associated with social association (Figure S6; Table 1), although stopover affiliation index, migration
overlap, and non-breeding range overlap showed some support at other window sizes (Table S2; Table S3).
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Discussion

Little is presently known about how organisms integrate interspecific information into behavioral decision-
making, a topic at the cutting edge of ecology1,2,13,35. Our results demonstrate that songbirds, typically
thought to be independent migrants, engage in interspecific social associations during migratory flights. The
majority of bird species studied showed significantly higher association strengths than expected under null
models accounting for species co-occurrence and non-social factors, indicating that it is common for various
species to participate in these associations. Social associations were most frequent among species of the same
family, particularly wood-warblers in the family Parulidae, but significant inter-family associations were also
frequent and no less strong when present. In contrast, we did not find evidence of social associations across
orders (e.g., between Passeriformes and Pelecaniformes).

Stronger social associations tended to occur between bird species with more similar wing lengths, but not
closer phylogenetic relatedness, suggesting that flight speed or flight altitude may be important in structuring
in-flight associations36. Over the course of hours-long migratory flights, individuals with similar flight speeds
and altitudes may more easily maintain close proximity and sustain an association, whereas individuals with
different flight behaviors are more likely to grow gradually apart, making any such associations ephemeral.
In contrast, we found no consistent evidence that in-flight associations were linked to habitat preferences,
geographic ranges, or species affiliations during diurnal stopovers. These results suggest that migrants’
interspecific relationships re-shuffle as they alternate between airspace and stopover habitats throughout
migration, with variables related to flight behavior shaping in-flight relationships and variables related to
foraging behavior shaping stopover relationships29.

Associations were also stronger among species with more similar vocalizations, a finding consistent with
the hypothesis that flight calls are used to maintain multi-species associations during migratory flights37.
This result agrees with10, which found support for a similar relationship among wood-warblers in the family
Parulidae. These findings suggest the possibility that shared migratory behavior may be driving convergent
evolution in acoustic signals across species9.

Growing evidence for the importance of social information during migration
Our study contributes to a growing body of evidence that the social information available to an individual

may be an important and underappreciated contributor to migratory behavior and decision-making2,3. The
use of social information during migration is well documented in some bird species, such as large-bodied
birds like cranes and storks that primarily migrate diurnally in groups. For example, cranes (Gruidae)
exhibit long-term social learning22,23, and storks (Ciconiidae) use social information to aid navigation and
locate areas of uplift24. In addition, other species that commonly form groups or flocks, such as terns
(Laridae) and shorebirds (Charadriiformes), are increasingly understood to make use of social information
during migration19,20. In these species, social information is thought to be of particular importance for
younger birds undertaking their first migrations. We suggest that social information transmitted through
transient interspecific associations during migration may also be important among small-bodied and short-
lived bird species that are generally thought to undertake migration alone, guided by endogenous genetic
programs5. Since these species do not learn their migration routes from their parents, social information
could play an important role in supplementing information from the innate migratory program, especially
for inexperienced birds. Our study focused only on autumn migration, which is the first migratory journey
for first-year birds. Future work should investigate whether association dynamics differ during the return
journey in spring, when all individuals have prior migration experience. In addition, not all migratory
species vocalize during migration6,7; it is currently unknown whether generally silent species, like vireos
(Vireonidae) and New World flycatchers (Tyrannidae), also participate in in-flight associations.

Acoustics as a movement ecology tool
Acoustic monitoring is an increasingly important tool for studying movement ecology, especially of flying

vertebrates. A study of this scope was made possible only through recent advances in machine learning,
which automated an otherwise prohibitively laborious process of manual detection and identification of
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hundreds of thousands of vocalizations. The use of model fine-tuning was key to this study, as it allowed us
to adapt an existing generalist machine learning model to our specific dataset and achieve higher precision
than would otherwise have been possible. Despite these advances, we emphasize that the acoustic model
does not achieve 100% accuracy, and the manual review steps we employed were key to ensuring high data
quality. As scientific studies are increasingly powered by data generated using machine learning models, we
emphasize that data review by expert humans is often still a necessity.

Further work with acoustics promises to reveal more about associations among and within species, as well
as the decision-making and conservation status of migratory birds. Currently, it is not possible to distinguish
individuals by call with a standard recording setup, which prevented us from investigating associations among
conspecifics. However, recent evidence indicates that flight calls may encode individual identity information
in at least some species31,32, which suggests that this may be possible as acoustic analysis methods improve.
Distinguishing individuals is currently only possible using microphone arrays that allow calling birds’ source
locations to be triangulated, but this technique requires significant logistical challenges to implement on a
large scale38. Given our results, we would hypothesize that intraspecific social associations also occur, and
are potentially common, during nocturnal migratory flights10.

Implications
The vocalizations given by birds during migratory flights provide a valuable resource for monitoring the

movements and populations of migratory birds, studying their ecologies7, and even understanding why some
species are more susceptible to anthropogenic hazards like light pollution33. Here, we demonstrate that re-
search on these flight calls can also provide a window onto a hidden network of species associations aloft.
This study highlights the need for further investigation into the social context of animal migration, including
how an individual’s social experience might contribute to learning and decision-making during migratory
flights. Recent work supports the important role of transient interspecific social relationships during migra-
tory stopover periods29, and we propose that social associations are also important during migratory flights.
Our research emphasizes that species interactions are important to consider when investigating migratory
behavior, including in population and conservation contexts. Given substantial recent and continuing de-
clines in migratory bird populations14, it is likely that the frequency and strength of social associations
during migration are diminishing. What are the consequences of this decline in social information on the
success of a migratory journey, and ultimately an individual’s survival? Such density-dependent effects may
be complex; a lack of social information might, for example, impede navigational decision-making, impact
the duration and energy expenditure of migration, and increase mortality risk2,13. An understanding of
these dynamics is essential to assessing and mitigating potential negative impacts.
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Tables

Table 1: Nonparametric matrix correlations for the response variable of social association, based on 30-s time windows. Each
row corresponds to a single-predictor model.

Predictor Correlation P-value No. Taxa
Stopover affiliation index 0.067 0.308 22
Phylogenetic similarity 0.090 0.899 27
Migration overlap 0.187 0.251 27
Non-breeding range overlap 0.131 0.251 27
Wing length distance -0.252 0.000 27
Migration habitat similarity 0.081 0.162 27
Acoustic distance -0.266 0.000 27

Methods

Acoustic data collection
We collected acoustic recordings of autumn nocturnal bird migration (1 August to 7 December) from 26

sites in eastern North America (Figure S1), encompassing 18308.08 hours of monitoring across 379 nights,
with an average of 57.3 ± 34.6 SD nights of monitoring per recording station. The recording data come
from three monitoring efforts: (Dataset 1) multi-station monitoring in central New York State during fall
2015 (BirdVox-Full-Season39)40,41; (Dataset 2) multi-station monitoring in southern New York State during
fall 2010-201142; and (Dataset 3) a 2000-km recording transect across the Appalachian mountain region in
eastern North America during fall 2022. Recording locations are shown in Figure S1, and recording data
and hardware are summarized in Table S6. Although the hardware differed by monitoring effort, all units
were designed and deployed specifically to record migrating birds’ nocturnal flight calls.

Acoustic data processing
To extract nocturnal flight calls from audio data, we used Nighthawk, a machine learning tool designed

for detecting and classifying nocturnal flight calls8. The Nighthawk core model8 is freely available43, and it
has been validated on diverse test data, including on the BirdVox-Full-Season dataset (Dataset 1, above)43.
Performance on target datasets can be improved by conducting additional model training with the dataset
in question, termed “fine-tuning”8. We therefore fine-tuned models on Datasets 2 and 3 to maximize model
accuracy on those datasets. We manually screening a representative sample of audio data for flight calls and
using this dataset to fine-tune Nighthawk8. For Dataset 2, we used existing annotations42. For Dataset 3,
which had not been previously analyzed, we randomly sampled 310 segments of audio each 10 minutes in
duration (total 51.7 h; 0.8% of Dataset 3) and screened these for nocturnal flight calls. We then set aside one
half of screened data for model fine-tuning and the other half for model validation8. That study evaluated
multiple fine-tuning approaches; we used the custom batch construction strategy described in that paper
since it requires only one epoch of additional training while producing a model that performs very well on
target data and original test data.

After fine-tuning, we ran Nighthawk on all data using the freely available Python utility43. For Dataset
1, we used the core model provided in the public package. For Datasets 2 and 3, we substituted in the
corresponding fine-tuned model. We used the following important parameters when running the model:

• –no-calibration: do not apply default calibration parameters.
• –threshold 50: export all detections with a probability score of 0.50 or greater.
• –ap-mask 0: do not filter out taxa based on performance on the core Nighthawk test dataset.
• –tax-output: export outputs for each taxonomic level independently.
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We performed data processing on Amazon Web Services to parallelize inference across thousands of CPU
cores. We mapped each detection to time relative to nautical twilight, when the center of the sun is 12 degrees
or more below the horizon. We retained detections occurring during the nocturnal period after nautical dusk
or before nautical dawn, when any detected flight calls can confidently be attributed to individuals in active
nocturnal migratory flight.

Nighthawk returns classifications at multiple taxonomic levels, including order, family, and species. Because
we were focused on testing relationships among well-represented species, we only included detections at the
species level for species with >250 detections across the dataset. Although our focus is on Passeriformes,
we also included two nocturnal migrant species in the order Pelecaniformes to examine the potential for
associations between passerines and other orders.

Because our analysis relies on high quality detection data, we used a multi-step review process to ensure
detection accuracy. First, we randomly sampled up to 200 detections per species per dataset and manually
screened these detections for accuracy. We used the results to set confidence thresholds for each species
in each dataset to target a precision of approximately 0.95 on all classes. After retaining detections with
confidence scores above the corresponding thresholds, authors BMVD and AF manually reviewed all acoustic
detections from the subset of 30-s time windows that included multiple taxa. In other words, we manually
reviewed all data that contributed to any potential associations among species pairs. In total, we reviewed
64909 detections. We conservatively removed all detections with any ambiguity in species identity, primarily
recordings with a low signal-to-noise ratio. In total, we removed 6538 detections (10.1% of those reviewed).
After all filtering steps, our acoustic dataset comprised 177962 detections of flight calls from 27 species
(Table S7; Figure 1).

Network analysis
Network generation
Fine co-occurrence networks.

We used acoustic detections to construct networks of observed species co-occurrence in the acoustic tem-
poral data stream. In these networks, stronger connections among species indicate that those species were
recorded together more frequently during migratory flights. To construct networks, we split our acoustic
data streams into independent, nonoverlapping 30-s windows and grouped species detected in the same 30-s
window into “events.” Although this choice was somewhat arbitrary, an interval of 30 s corresponds to a
maximum linear distance of 450 m, assuming a bird’s groundspeed of 15 𝑚𝑠−1; we reasoned that migrating
birds recorded in the same 30-s window would likely be close enough to hear one another and potentially
exchange information. We quantified network connections from these 30-s events using the default Simple
Ratio Index formula implemented in the get_network function in the R package asnipe44. For a given pair
of species, the Simple Ratio Index is calculated by dividing the number of events (i.e. 30-s windows) in which
both species occur by the number of events in which either one or both species occur. We also constructed
networks using 15-s and 60-s windows to assess whether the results were sensitive to the choice of window
length. Networks generated from different window sizes were very tightly correlated using Mantel correla-
tions (30-s vs. 60-s: r = 0.99; 30-s vs. 15-s: r = 0.99). We refer to these networks as fine co-occurrence
networks because they capture the degree to which vocalizations of each species pair occur close together
in our data stream.

Coarse co-occurrence network.

The network connection strength among species in fine co-occurrence networks is partly a function of
species’ similarity in migration timing, geographic distributions, and other factors unrelated to social asso-
ciations. We accounted for this by constructing an acoustic network as described above, but with events
defined using longer 15-minute time windows. Rather than considering fine-scale social associations, this
coarse co-occurrence network captures broader species co-occurrence in the dataset driven by shared
seasonal timing, geography, and consistent behavioral patterns over the nocturnal period.

9



Social association networks.

Because connections among species in fine co-occurrence networks may arise from factors that are unrelated
to species’ propensity to actively associate, we used the coarse co-occurrence network to control for these
factors. The goal was to generate networks that explicitly captured the degree to which species’ vocalizations
occurred synchronously, independent of shared timing, geography, or other non-social factors. We calculated
social association networks as follows: for each species pair, we subset the data to only the 15-minute
time periods in which both species were detected. Then, we calculated the Simple Ratio Index on this subset
using 30-s windows as described above. To ensure that our measures were reliable, we did not calculate
social association for species pairs for which there were less than 100 15-minute windows in which the two
species occurred (i.e. <100 association opportunities). After performing these calculations for all pairs of
species, the resulting social association network captured the degree to which vocalizations of each species
pair occur close together, conditioned on the time periods during which both species are detected. Because
this metric is conditioned on species co-occurrence, these networks do not depend on seasonal migration
timing or nocturnal vocalization patterns; they only quantify the degree of acoustic synchronicity among
species pairs independent of broader temporal or geographic patterns. As above, we also generated social
association networks for 15-s and 60-s window durations to assess whether our results were sensitive to the
choice of window length. Networks generated from different window sizes were very tightly correlated using
Mantel correlations (30-s vs. 60-s: r = 0.93; 30-s vs. 15-s: r = 0.94).

Generating covariates
To test hypotheses about the drivers of species associations during migration, we generated seven covari-

ates that summarize the similarity of each species pair in phylogeny, spatiotemporal distribution, habitat
preferences, social relationships during stopover, morphology, and vocalization structure.

Phylogenetic relationships
We obtained a phylogenetic tree of the species included in our study using the R package clootl45. We

used the extractTree function in that package to output a tree and used the cophenetic.phylo function
in the R package ape46 to convert the tree topology to pairwise phylogenetic distances for all species pairs.
We used the inverse of these distance values as measures of phylogenetic similarity.

Species geographic ranges
For each species pair, we calculated pairwise range overlap scores for their non-breeding ranges. We used

species ranges modeled by eBird Status & Trends47 to calculate pairwise overlap for each species pair. We
used the eBird Status & Trends models accessible in the R package ebirdst (v. 2.2021.3)48. We downloaded
Status & Trends data for each species and used the load_ranges function to extract the modeled ranges.
We then calculated the range overlap for each species pair by dividing the area of the intersection of the two
ranges by the area of the union of the two ranges.

Migration overlap
We estimated the overall migration similarity for each species pair using a spatiotemporal measure of

overlap in the species’ geographic distribution during migration season. We extracted weekly 27x27 km
relative abundance rasters for each species using the ebirdst package and subset these to the migration
period for that species as defined by eBird in the package. For each species pair, we found the total number
of cells where modeled relative abundance was greater than zero for both species, and we divided this by the
total number of raster cells where relative abundance was greater than zero for either species. This resulted
in a proportion of overlapping cells for each week. Finally, we took the mean weekly overlap proportion
across all weeks of the migration periods. This resulted in a single proportion value for each species pair
that captured the spatiotemporal overlap in their geographic distributions during the migration period.
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Stopover habitat
To calculate the degree of similarity in the habitat preferences of each species pair during the migration

season, we extracted weekly habitat associations from eBird Status & Trends data47. We filtered habitat
association data to the migration period for each species using the migration period dates provided in the
ebirdst package. Using all available habitat association characters, we used the dist function in R to
calculate a pairwise distance matrix that captured the overall pairwise similarity in habitat associations for
all species pairs.

Social affiliations during stopover
To assess migratory species’ social networks at stopover sites, we used over half a million records of

banded migratory birds collected during spring and fall migration seasons by Braddock Bay Bird Observa-
tory (43.324, -77.717), Long Point Bird Observatory’s banding stations at Old Cut (42.584, -80.398) and
Breakwater (42.561, -80.284), Powdermill Avian Research Center (40.164, -79.268), and Michigan State Bird
Observatory’s Burke Lake banding station (42.812, -84.383). More details about these datasets are reported
in29.

Following that study29, we calculated species associations from the banding data using the Simple Ratio
Index. Next, we calculated generalized affiliation indices by regressing the species associations against
measures of temporal overlap, spatial overlap, and relative abundance. The standardized residuals of the
regression are the generalized affiliation indices for each species pair. The affiliation indices quantify the
degree to which two species associate after accounting for structural features of the data, including temporal
overlap, spatial overlap, and relative abundance. We calculated fall affiliation indices separately for each
site and averaged affiliation values across sites. We included only species with >100 fall captures.

Wing-length measurements
Because body morphology impacts flight behavior and could contribute to in-flight dynamics, we extracted

wing-length measurements from the AVONET dataset49 for each species. Wing length is associated with
flight speed and flight style and may influence species’ in-flight associations. For each species pair, we
calculated the Euclidean distance between the base-10 logarithms of their wing lengths as a measure of the
difference in wing length (hereafter “wing length distance”).

Acoustic distance
It is possible that bird species with more acoustically similar flight calls may be more likely to interact

during migration10. To evaluate this hypothesis, we calculated the acoustic distance of the vocalizations
given by species in our dataset. We randomly sampled 200 vocalizations for each species from the expert-
verified set of recordings used in8 and selected recordings with sufficiently clean spectrograms for further
analysis. We retained a mean of 61.1 ± 16.8 SD (range 13–89) vocalizations per species. We used Raven Pro
1.650 to manually draw bounding boxes around each call and used the spectro_analysis function in the R
package warbleR51 to extract a series of 26 spectrographic measurements. See warbleR documentation for
a description of measurements. We summarized these measurements using a Principal Component Analysis
(PCA function in R package FactoMineR52) and extracted the first 5 components, comprising 89.7% of total
variance. We used the centroids of each species in multidimensional PCA space to generate a distance
matrix (dist function in the base R package stats53) that describes acoustic distance among species.
Smaller values indicate more similar vocalizations. An ordination plot of these species in PCA space for the
first two principal components is show in Figure S7.

Statistical tests
Generating null network distributions with permutations

To test the statistical significance of network parameters, including the strength of species connections in
co-occurrence and social association networks, we generated null distributions of network parameters using
custom permutations of the original data stream. The permutation procedure was as follows: first, we
divided acoustic detection data into 15-minute periods for each site and date. Then, for each species in each
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15-minute period, we shifted the timing of all detections by a random time interval between 0–15 minutes.
Each species present in the 15-minute period was shifted by a different random interval, and all calls of that
species in that period were shifted by the same amount. If the procedure shifted any detections further than
the bounds of the 15-minute period, those detections were “wrapped around” to the beginning of the period.
In this way, each permuted time period maintained the same quantity and the same temporal structure of
vocalizations of each species as the original dataset. This procedure randomly changed the degree to which
different species’ vocalizations occurred relative to other species, allowing us to test a null hypothesis of no
association among species in vocalization patterns. After applying this permutation procedure independently
to every 15-minute period in the dataset, we calculated co-occurrence and social association networks from
the permuted data using the procedures described above. We repeated this procedure 1000 times, yielding
1000 null networks for 15-, 30-, and 60-s window sizes.

Testing for network randomness
We first evaluated whether networks of co-occurrence and social association differed significantly from

random. We calculated the network coefficient of variation by taking the standard deviation of the adjacency
matrix and dividing it by the mean of the adjacency matrix. We performed this calculation for observed
networks and for all permuted networks. If the observed coefficient of variation was greater than the 0.95
quantile of the corresponding null (permutation) distribution, we considered the network non-random at the
P<0.05 level.

Testing for social associations among species
We evaluated the statistical significance of each species’ connections with other species in networks using

null distributions derived from the permuted networks. For each species, we quantified its overall tendency
to occur with other species during migratory flights by summing the strength of all network connections
between the focal species and other species, also known as the weighted degree centrality. Larger degree
values indicate that a species shows stronger and/or more numerous connections to other species in the
network. We compared total association strength values calculated from observed co-occurrence and social
association networks to those calculated from the corresponding permuted networks. We considered a species
to show statistically significant associations with other species if the observed total association strength for
that species was greater than the 0.95 quantile of the corresponding null distribution derived from the
permuted networks.

We assessed statistical significance for every species pair in co-occurrence and social association networks
using the same procedure: we compared the connection strength for a given species pair with the null
distribution of values derived from the corresponding null networks. We again assessed significance by
comparing observed values to the corresponding null distribution. We corrected p-values for multiple testing
using a false discovery rate correction with a false discovery rate of 0.05.

Explaining migrant associations
Finally, we tested whether in-flight associations among species could be explained by phylogeny, spatiotem-

poral distribution, habitat preferences, social relationships during stopover, morphology, or vocalization
structure. We constructed single-predictor statistical models in which the response variable was social asso-
ciation. As described above, social association does not depend on seasonal migration timing or nocturnal
vocalization patterns; it quantifies the degree of social association among species pairs independent of broader
temporal or geographic patterns.

We evaluated statistical significance using a modification of the Mantel test procedure (mantel function in
R package vegan54): for each predictor, we calculated the Mantel matrix correlation between that predictor
and the social association matrix; then, we compared this observed statistic to the null distribution of test
statistics obtained from our custom set of permuted social association networks. For each test, the p-value
was the proportion of permuted networks that achieved a Mantel correlation equal to or more extreme than
the observed statistic. To eliminate any bias from skewed data distributions, where outliers could exert a
strong influence on the correlation value, we calculated Mantel statistics using the nonparametric Spearman
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rank correlation. For comparison, we also obtained results using the standard Pearson correlation. For the
single-predictor case, the Pearson-based tests of statistical significance were equivalent to those obtained
using Multiple Regression Quadratic Assignment Procedure (MRQAP) to regress predictor matrices on the
response matrix, as recommended for networks55, using the mrqap.custom.null function in the R package
asnipe44.

We elected to use a series of single-predictor models instead of multiple matrix regression for the following
reasons: first, we did not have stopover affiliation data for all species, and this imbalance would have required
removing those species from a multiple regression model and/or running multiple sets of models; second, we
wanted to avoid collinearity among predictor variables from biasing coefficient estimates; third, we found
matrix correlation statistics, which vary between -1 to 1, to be more easily interpretable than multiple
regression coefficients, which are unbounded; and fourth, this allowed us to test our hypotheses using more
robust nonparametric rank correlations.
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Table S1: Statistically significant pairwise species associations assessed using 30-second time windows. P-values have been
adjusted using a false discovery rate correction.

Species 1 Species 2 Family 1 Family 2
Social

association
P-

value
Swainson’s Thrush Rose-breasted

Grosbeak
Turdidae Cardinalidae 0.116 0.000

Black-and-white
Warbler

American Redstart Parulidae Parulidae 0.102 0.000

Veery Swainson’s Thrush Turdidae Turdidae 0.102 0.000
Swainson’s Thrush Gray-cheeked Thrush Turdidae Turdidae 0.100 0.000
Rose-breasted
Grosbeak

Gray-cheeked Thrush Cardinalidae Turdidae 0.093 0.000

Veery Rose-breasted
Grosbeak

Turdidae Cardinalidae 0.081 0.000

Rose-breasted
Grosbeak

Wood Thrush Cardinalidae Turdidae 0.077 0.000

Veery Gray-cheeked Thrush Turdidae Turdidae 0.074 0.000
Northern Parula American Redstart Parulidae Parulidae 0.069 0.027
Wood Thrush Gray-cheeked Thrush Turdidae Turdidae 0.068 0.000
Savannah Sparrow White-throated

Sparrow
Passerellidae Passerellidae 0.067 0.000

Yellow-rumped
Warbler

Chipping Sparrow Parulidae Passerellidae 0.066 0.000

Ovenbird American Redstart Parulidae Parulidae 0.065 0.000
Ovenbird Cape May Warbler Parulidae Parulidae 0.065 0.000
Ovenbird Mourning Warbler Parulidae Parulidae 0.063 0.000
Ovenbird Black-throated Blue

Warbler
Parulidae Parulidae 0.062 0.000

Swainson’s Thrush Wood Thrush Turdidae Turdidae 0.062 0.000
American Tree Sparrow Chipping Sparrow Passerellidae Passerellidae 0.061 0.000
Savannah Sparrow Common Yellowthroat Passerellidae Parulidae 0.061 0.000
Swainson’s Thrush Hermit Thrush Turdidae Turdidae 0.059 0.000
Veery Green Heron Turdidae Ardeidae 0.059 0.048
Swainson’s Thrush Green Heron Turdidae Ardeidae 0.057 0.021
Common Yellowthroat White-throated

Sparrow
Parulidae Passerellidae 0.055 0.008

Ovenbird Common Yellowthroat Parulidae Parulidae 0.054 0.000
Canada Warbler Common Yellowthroat Parulidae Parulidae 0.054 0.000
Black-throated Blue
Warbler

Common Yellowthroat Parulidae Parulidae 0.052 0.000

Rose-breasted
Grosbeak

Bobolink Cardinalidae Icteridae 0.051 0.008

White-throated
Sparrow

White-crowned
Sparrow

Passerellidae Passerellidae 0.050 0.008

White-throated
Sparrow

Palm Warbler Passerellidae Parulidae 0.048 0.000

Savannah Sparrow White-crowned
Sparrow

Passerellidae Passerellidae 0.048 0.016

Savannah Sparrow Gray-cheeked Thrush Passerellidae Turdidae 0.047 0.021
Black-throated Blue
Warbler

Canada Warbler Parulidae Parulidae 0.044 0.048
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Table S1: Statistically significant pairwise species associations assessed using 30-second time windows. P-values have been
adjusted using a false discovery rate correction.

Species 1 Species 2 Family 1 Family 2
Social

association
P-

value
Ovenbird Canada Warbler Parulidae Parulidae 0.044 0.027
Mourning Warbler Chestnut-sided

Warbler
Parulidae Parulidae 0.043 0.039

Savannah Sparrow Northern Parula Passerellidae Parulidae 0.043 0.021
Ovenbird Yellow-rumped

Warbler
Parulidae Parulidae 0.042 0.048

Table S2: Nonparametric matrix correlations for the response variable of social association, based on 15-s time windows. Each
row corresponds to a single-predictor model.

Predictor Correlation P-value No. Taxa
Stopover affiliation index 0.127 0.031 22
Phylogenetic similarity 0.056 0.963 27
Migration overlap 0.211 0.091 27
Non-breeding range overlap 0.163 0.082 27
Wing length distance -0.252 0.000 27
Migration habitat similarity 0.048 0.383 27
Acoustic distance -0.252 0.000 27

Table S3: Nonparametric matrix correlations for the response variable of social association, based on 60-s time windows. Each
row corresponds to a single-predictor model.

Predictor Correlation P-value No. Taxa
Stopover affiliation index 0.036 0.652 22
Phylogenetic similarity 0.013 1.000 27
Migration overlap 0.241 0.045 27
Non-breeding range overlap 0.175 0.043 27
Wing length distance -0.208 0.000 27
Migration habitat similarity 0.081 0.273 27
Acoustic distance -0.206 0.000 27

Table S4: Parametric matrix correlations for the response variable of social association, based on 30-s time windows. Each row
corresponds to a single-predictor model.

Predictor Correlation P-value No. Taxa
Stopover affiliation index 0.085 0.182 22
Phylogenetic similarity 0.084 0.873 27
Migration overlap 0.161 0.343 27
Non-breeding range overlap 0.133 0.472 27
Wing length distance -0.261 0.000 27
Migration habitat similarity 0.097 0.056 27
Acoustic distance -0.334 0.000 27
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Table S5: Nonparametric matrix correlations for order Passeriformes for the response variable of social association, based on
30-s time windows. Each row corresponds to a single-predictor model.

Predictor Correlation P-value No. Taxa
Stopover affiliation index 0.067 0.308 22
Phylogenetic similarity 0.089 0.941 25
Migration overlap 0.251 0.044 25
Non-breeding range overlap 0.188 0.044 25
Wing length distance -0.273 0.000 25
Migration habitat similarity 0.058 0.375 25
Acoustic distance -0.245 0.000 25

Table S6: Summary of model datasets

Dataset Description Hardware Total Hours Reference
1 Multi-station

monitoring in central
New York State
during fall 2015.

Cornell ROBIN
recording units

6663 Farnsworth et al. 2022

2 Multi-station
monitoring in southern
New York State
during fall 2010-2011.

Wildlife Acoustics
Song Meter 2 with
plate microphone

4884 Van Doren et al. 2015

3 Transect across
Appalachian
mountains during fall
2022.

OldBird 21c
microphones with
custom Cornell
SWIFT recorder.

6760 None

Table S7: Summary of model detections by species and dataset included in the analysis after dataset-specific filtering steps.
All recordings are from autumn. Dataset 1 is from central New York State (2015); dataset 2 is from southern New York State
(2010-2011); and dataset 3 is from a transect across Appalachia (2022).

Common Name Species
Code

Order Dataset
1

Dataset
2

Dataset
3

American Tree Sparrow amtspa Passeriformes 2755 0 9
Black-and-white Warbler bawwar Passeriformes 352 22 128
Bobolink boboli Passeriformes 290 210 117
Black-throated Blue Warbler btbwar Passeriformes 3850 133 355
Cape May Warbler camwar Passeriformes 1314 0 2926
Canada Warbler canwar Passeriformes 507 115 47
Chipping Sparrow chispa Passeriformes 2580 5262 2129
Chestnut-sided Warbler chswar Passeriformes 2280 651 793
Common Yellowthroat comyel Passeriformes 2779 1221 271
Dark-eyed Junco daejun Passeriformes 314 508 291
Great Blue Heron grbher3 Pelecaniformes 88 192 0
Green Heron grnher Pelecaniformes 312 162 37
Gray-cheeked Thrush gycthr Passeriformes 2848 132 1712
Hermit Thrush herthr Passeriformes 202 0 145
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Mourning Warbler mouwar Passeriformes 410 12 0
Northern Parula norpar Passeriformes 686 577 133
Ovenbird ovenbi1 Passeriformes 5418 0 1436
Palm Warbler palwar Passeriformes 307 292 228
Rose-breasted Grosbeak robgro Passeriformes 5663 1040 2633
Savannah Sparrow savspa Passeriformes 6980 7486 252
Swainson’s Thrush swathr Passeriformes 36908 7775 39104
Veery veery Passeriformes 4812 1660 988
White-crowned Sparrow whcspa Passeriformes 369 16 22
White-throated Sparrow whtspa Passeriformes 6502 1824 1841
Wood Thrush woothr Passeriformes 419 66 882
Yellow-rumped Warbler yerwar Passeriformes 975 752 127
American Redstart amered Passeriformes 0 0 1328
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Figure S1: Recording locations. Red box in inset shows bounds of focal region.
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Figure S2: Observed coarse co-occurrence network. Vertices are colored by family, and labels are species codes assigned by
the eBird database. Edge weights and heatmaps show connection strength. Species are ordered by hierarchical clustering on
co-occurrence data.
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Figure S3: Observed social association networks. (Top) Network based on 15-s time windows. (Center) Network based on 30-s
time windows. (Bottom) Network based on 60-s time windows. Vertices are colored by family, and labels are species codes
assigned by the eBird database. Edge weights show association strength. All networks were significantly non-random.
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Figure S4: Significant social associations (top: 15-s time windows; bottom: 60-s time windows). Network diagram and heatmap
show only statistically significant edges after applying a false discovery rate correction.

S.8



0.03

0.06

0.09

0.12

0.0 0.1 0.2 0.3

Wing length distance

S
o

c
ia

l 
a

s
s
o

c
ia

ti
o

n

0.03

0.06

0.09

0.12

3 6 9

Acoustic distance

S
o

c
ia

l 
a

s
s
o

c
ia

ti
o

n

Figure S5: Scatterplots of statistically significant pairwise species relationships for order Passeriformes. Each point represents
a species pair. Best fit line drawn to aid interpretation; refer to matrix correlations for coefficient estimates and statistical
significance. Plots shown from data generated with 30-s time windows.
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Figure S6: Scatterplots of non-significant pairwise species relationships. Each point represents a species pair. Best fit line
drawn to aid interpretation; refer to matrix correlations for coefficient estimates. Plots show from data generated with 30-s
time windows.
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Figure S7: Ordination from principal component analysis showing acoustic distance among species. The scatterplot shows the
centroids of each species in PCA space for the first two principal components
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