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Tuning Higher Order Structure in Colloidal Fluids 

†Xiaoyue Wu,1 Katherine Skipper2, Yushi Yangb, Fergus J. Mooreb, Fiona C. Meldruma, and 

C. Patrick Royall∗c
 

 

Abstract 

Colloidal particles self assemble into a wide range of structures under external AC electric fields due to 

induced dipolar interactions. As a result of these dipolar interactions, at low volume fraction the system is 

modulated between a hard–sphere like state (in the case of zero applied field) and a “string fluid” upon 

application of the field. Using both particle–resolved experiments and computer simulations, we 

investigate the emergence of the string fluid with a variety of structural measures including two-body and 

higher– order correlations. The higher–order structure we probe using three-body spatial correlation 

functions and a many–body approach based on minimum energy clusters of a dipolar–Lennard– Jones 

system. The latter constitutes a series of geometrically distinct minimum energy clusters upon increasing 

the strength of the dipolar interaction, which are echoed in the higher–order structure of the colloidal 

fluids we study here. We find good agreement between experiment and simulation at the two-body level. 

Higher–order correlations exhibit reasonable agreement between experiment and simulation, again with 

more discrepancy at higher field strength for three–body correlation functions. At higher field strength, 

the cluster population in our experiments and simulations is dominated by the minimum energy clusters 

for all sizes 8 ≤ m ≤ 12. 
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2 H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom. c Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France. 
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1 Introduction 

Particles with a dipolar interaction are of significant fundamental importance in the study of fluids and 

disordered materials. They are among the simplest models which describe long range directional 

interactions, which are exhibited by molecules1,2. Colloidal dispersions provide suitable models of atomistic 

and molecular systems as they exhibit phase behaviour following the same rules of statistical mechanics, 

yet are amenable to real space observation using optical microscopy3–5. 

 

Colloidal dipolar systems fall broadly into two categories. Some, for example ferromagnetic nanoparticle 

systems, like atoms and molecules, have an intrinsic dipole moment6 and can be modeled with the 

Stockmayer model which combines a dipolar interaction with a Lennard–Jones interaction7. These systems 

exhibit intriguing string–like structures8,9, with branching 10, coiling 11 and clustering 7 behavior, not to 

mention a ferromagnetic transition12. Rather than spontaneous dipolar interactions, in other colloidal 

systems, dipoles may be induced by an external electric or magnetic field4,5,13. This has the consequence 

that the dipolar interactions are aligned in the direction of the applied field. Using ferromagnetic and 

superparamagnetic nanoparticles in an external field then opens further possibilities such as a very strong 

response to the field14. Other, more exotic possibilities include the use of a biaxial field, leading to 

phenomena such as in–plane condensation in (quasi) 2d systems4,15, control of assembly and tuning of 

interactions 16,17 and direct observation of cluster growth18. In addition to their fundamental interest, such 

dipolar colloidal systems may find application as electrorheological fluids19,20, hydraulic valves21 and 

photonic materials 22. 

 

Here we shall focus on dipolar systems with an external field. A particular attraction of these systems is 

the ease with which the dipolar interactions can be tuned with the external field. Indeed a combination of 

real23 and reciprocal space24,25 studies of such systems enables the investigation of a variety of crystal 
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structures including fcc, hcp, bcc, body-centered tetragonal (bct) and body-centered orthorhombic (bco) 

structures5,23,26, along with a transient labyrinthine structure20. Tuning the electric (or magnetic) field in–

situ enables the control of phenomena such as a martensitic transition27. Adding softness28 or attractions29 

to the interaction potential further increases the range of structures into which the system may self–

assemble. 

 

In addition to the rich crystalline phase behavior, dipolar colloids feature a fluid phase at lower colloid 

volume fraction and electric field strength than those at which the crystals are found. Interestingly, the 

symmetry–breaking dipolar interactions cause this fluid to assemble into string–like structures which are 

aligned in the direction of the electric field20,23,30. This “string fluid” has been investigated analytically31 and 

can form the basis for producing “colloidal polymers”32,33. Meanwhile, it is possible to take the system out 

of equilibrium, which enables investigation of string growth mechanisms18, and aggregation phenomena 

between the strings34. This suggests that the structure of the “string fluid” may be rather interesting and 

it has been investigated analytically31 and in reciprocal space9 in addition to real space23,29. 

 

In atomic and molecular systems, characterizing structure in the fluid state beyond pair correlations is 

challenging, although not impossible35,36. With colloidal systems, particle–resolved studies4 which deliver 

coordinates in real space are amenable to the measurement of higher–order correlation functions, 

relevant to a variety of phenomena such as dynamical arrest35,37–39 and polymorph selection40–42 and crystal 

precursors 41,43. Furthermore, theoretical treatments have been developed to describe the higher–order 

structure of hard sphere colloids44–46. 

 

Methods to characterize higher–order structure include three– body correlation functions such as g3 
44,47,48, 

and higher–order correlations such as common neighbor analysis (CNA)49 and Voronoi face analysis50. 
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These have been shown to be successful in studying the structure of fluids and glasses51,52. Another 

strategy, the bond orientation order (BOO) parameters developed by Steinhardt et al. 53, focuses on the 

local symmetry around a central particle. This method has been shown to be very useful in the study of 

crystallization, especially in identification of small crystalline clusters in a supercooled liquid54,55 and also 

in the characterization of fivefold symmetric order in amorphous systems37. With the popularity of 

machine learning rising, it has been applied effectively to local structure in amorphous materials, for 

example by combining many structural metrics such as the pair correlation function41,56. Other examples 

include combining it with local descriptors such as CNA and BOO to better characterize the local 

environment around a single particle in disordered materials41,57,58. Both supervised59 and unsupervised 

learning60 have been used to further our understanding of supercooled liquid and glass forming systems. 

 

The methods discussed above are geometric in nature. An alternative approach, which takes into account 

the interactions between the constituent particles of the system, has its roots in the work of Sir Charles 

Frank61, who postulated that since the minimum potential energy configuration of 13 Lennard-Jones atoms 

corresponds to an icosahedron, that this would be a common geometric motif in (supercooled) liquids. 

With the advent of energy landscape calculations62, it has become possible to determine the structure of 

minimum potential energy clusters for a wide range and size of systems including the Lennard-Jones63, 

“Sticky Sphere” 64, Stockmayer65 models and more exotic interactions relating to multiple fields66. Since the 

dipolar interaction of the Stockmayer model is not constrained to lie in any particular direction it thus 

corresponds to a molecular (or nanoparticle7) system, rather than a colloidal dipolar system in an external 

field in the context of the discussion above. 

 

Identifying local arrangements of particles in bulk systems whose bond network is identical to such clusters 

can be carried out using the topological cluster classification (TCC)67,68. The TCC has been used to identify 
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locally favored structures or minimum energy clusters in systems undergoing dynamic arrest38, colloid-

polymer mixtures interacting via the Morse potential69,70, colloidal suspensions with attractive 

interactions71, colloidal gels48,72 and the liquid–gas interface73. However, thus far this method has only been 

applied to systems with a spherically symmetric interaction, and those whose state point is fixed by the 

composition of the system. Some of us have recently determined the minimum energy clusters for a 

Lennard–Jones–dipolar system where the dipoles are induced in a particular direction (Fig. 1) 68, which 

opens the possibility to use this method to probe the higher–order structure of dipolar colloids. in this way, 

we can apply the TCC method to an experimental system with asymmetric interactions which can be tuned 

in-situ. 

 

Herein, we report a combined experimental and computer simulation study which carries out such a study 

of higher-order structure of dipolar colloids. Since the electric field can be tuned at will, it is possible to 

vary the state point of the system in situ. This is somewhat unusual for colloidal systems, where the state 

point is often fixed by the composition of the system. Here we explore the equilibrium string fluid phase, 

but we can also increase the field such that the system becomes metastable to a phase coexistence 

between a fluid and a body-centered tetragonal crystal26. We consider pair correlations in the form of 

radial distribution functions g2(r) and three-body correlations in the form of order parameters to 

determine “string-like” configurations and also the triplet correlation function g3(r,r0,η). We use the 

topological cluster classification67,68 to explore higher– order spatial correlations in the form of minimum 

energy clusters of the dipolar–Lennard–Jones interaction68. Before concluding, we provide an outlook on 

the study of non-equilibrium behaviour accessed via higher-order correlations. 
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2 Dipolar Interactions in Colloidal Systems 

The colloids in our experiments are suspended in an indexmatching solvent with added salt, as described 

in Sec: 3.1. Like very many colloidal systems74, ours carry an electrostatic charge. This we screen by adding 

salt, and we have previously demonstrated that this is sufficient to treat the particles as hard spheres, with 

a slight increase in effective diameter due to the residual electrostatics75. 

 

When colloids are subjected to an external electric field E, a dipole-dipole interaction is induced between 

the particles which reads 

 

where udip is the dipolar interaction, kBT is the thermal energy and θ is the angle made by r and the z-axis. 

Here r is the vector between the centres of the colloids. In our experimental system, γ =γexp is a 

dimensionless prefactor that depends on the strength of the external field and material properties of the 

system. Here r is the vector connecting the centres of the two particles. The prefactor 

 

where εs is the dielectric constant of the solvent and the dipolar moment 

 

Here α = (εp −εs)/(εp +2εs) where εp and εs is the dielectric constant of the particles and solvent respectively 

and Eloc is the local electric field. Here we follow Hynninen and Dijkstra 26 and set Eloc = E/(1−απ/6) which 

is the case for a cubic crystal.  Combining with the hard sphere interaction noted above uhs, the total 

interaction between two colloids under the electric field becomes 
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Fig. 1 Rigid minimum energy clusters of the dipolar–Lennard-Jones system for various sizes m. 8B, 9B, 10B, 

11C and 12B are minimum energy clusters for the Lennard–Jones system (γ = 0). Different geometries 

correspond to minimum energy clusters as a function of of the dipolar strength γ. Here we consider rigid 

clusters only. The clusters are formed from rings of three, four or five particles. These are coloured grey. 

In the axis perpendicular to the rings are so–called spindle particles, colored yellow, one above and one 

below the ring. Single spindle particles are coloured red67,68. 

 

3 Methods 

3.1 Experimental 

The colloidal suspension used in this experiment was prepared by adding sterically-stabilised polymethyl 

methacrylate (PMMA) spheres (synthesized following reference76,77) (ρ =1.196 gcm−3)78 of diameter σ = 
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1.73 µm and polydispersity . 5%79 * to a mixture of density and refractive index matched solvents. The 

particles we labelled with 1,1’-dioctadecyl-3,3,3’,3’tetramethyl-indocarbocyanine perchlorate, which 

may be excited at a wavelength of 543 nm76. The solvent is a mixture of cisdecalin (ρ ≈ 0.897 gcm−3) and 

cyclohexyl-Bromide (CHB) (ρ = 1.32 gcm−3). Tetrabutylammonium bromide (TBAB) salt was dissolved in 

the solvent to make up a solution with TBAB concentration of 260 µM. This corresponds to a Debye length 

κ−1 of around 100 nm82. Since the Debye length is much less than the particle diameter, in the absence of 

an electric field, the colloids behave as nearly hard spheres74,82. While more sophisticated treatments 

may be carried out to match the interaction potential74,82, here we use a slightly soft potential in the 

computer simulations and presume this to be sufficient to match the experimental system, noting that 

the effects we seek to study are dominated by the dipolar interactions, rather than the hard core or 

precise value of the colloid volume fraction (which we determine by weighing out the samples) 80. 

 

We determine the dipolar contribution to the interaction potential between the particles by evaluating 

Eqs. 2 and 3 with the particle diameter σ, the solvent dielectric constant m = 5.683 and the measured value 

of the local electric field E. We emphasize that the resulting values of γexp have no fit parameters and are 

purely dependent on the material properties of the system. See Sec. 6 for further discussion as to the 

importance of the absence of fit parameters. 

 

 

*A value of 3.8% was obtained for the polydispersity using static light scattering, and a higher value was 

obtained using electron microscopy. Different methods are known to provide different results when 

measuring the size polydispersity 80,81. In this case, that the particles crystallize readily suggests that their 

polydispersity was around 5% or less. 
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In order to construct the sample cell to hold the colloidal suspension, two indium tin oxide glass slides 

were separated with spacer silica particles of approximately 60 µm in diameter. This created a transparent 

sample cell with electrodes top and bottom. The electrodes were connected to a signal generator to 

provide an AC electric field across the cell.  A Leica SP8 confocal microscope was used to monitor the 

system under the applied electric field. During each measurement, a stack of 3d confocal images of at least 

200 “slices” of xy images along the z direction were taken with 256×256 pixels with at least ten pixels per 

particle diameter in all directions. 3d images were acquired at least 30s apart. Following related work with 

dipolar colloids23,83, only particles at least ten diameters from the wall were analyzed, to ensure that there 

were no significant wall effects. We saw no influence from the wall proximity in any of our measurements 

and we conclude that we can treat the system as bulk, as is typical for such particle–resolved studies. It is 

worth noting that the system sizes used in this experimental technique are not huge4. The shortest 

dimension of the system (here 60 µm) is two orders of magnitude larger than that of the colloidal particles. 

 

In each measurement, the applied voltage and the thickness of the electrical cell was measured in order 

to allow electric field strength comparison across different experiments. The frequency of the electric field 

applied was 1Mhz and the field strength was up to 0.3 V µ−1 measured peak-to-peak. Before each 

measurement, the system is allowed to stabilise for at least 20 min. The Brownian time τB = (3πνσ3)/(4kBT) 

≈ 6.09 s for our system, so we consider this time quite sufficient to relax equilibrium states. Here ν is the 

solvent viscosity. At least 50 3d images each separated by 30s were taken for each state point, in the same 

place in the sample. In equilibrium, this provides sufficient statistics. However, out of equilibrium, for high 

field strengths, there will likely be some dependence on the history of the system, to which we return 

below in Secs. 4 and 6. 



10 

3.2 Particle Tracking 

Here we use a slight modification to enhance the accuracy of the coordinates that we detect84. We begin 

by carrying out a conventional centroid location85,86. This seeks the brightest pixels and weights the 

brightnesses of the surrounding pixels to obtain an estimate of the centre of the colloidal particle. Overlaps 

corresponding to multiple pixels within a single particle being identified are removed. This method works 

well in (quasi) 2d studies81, but in the case of the 3d confocal microscopy that we carry out here, overlaps 

between blurred images of particles in the z-direction can be a problem. 

 

To mitigate such blurring in the z–direction, we refine the first set of coordinates determined as described 

above as follows. Knowing the size of the particles, the algorithm predicts an image based on the set of 

particle coordinates. This predicted image is then iteratively compared with the original measured image 

and the coordinates moved following a Monte Carlo method using the difference in pixel values between 

the predicted and measured image to minimize the differences between them. Further details of our 

method, including the source code may be found in Yang 87. 

 

Colloid tracking is subject to errors in the location of the coordinates of the particles. Combined with 

polydispersity in the particle size distribution, this can influence structural measurements as we carry out 

here. In the case of 2-body correlation functions, the effect of polydispersity and tracking errors can be 

similar to a convolution88. In the case of amorphous systems, the effect of (mild) polydispersity has been 

investigated and this was found to have only a minor effect on the higher-order structure89. In Fig. A1 in 

the appendix, we show the effects of adding a range of tracking errors to coordinates of computer 

simulation data. The height of the peaks and their width broadens as the error is increased. 
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3.3 Computer Simulation 

We employed computer simulations using the LAMMPS package in the NVT ensemble90. To mimick the 

colloidal motion, we used Langevin dynamics, where the ith particle has position ri and velocity vi and the 

velocities evolve in time as 

 

where m is the mass of the particle, V is the total potential energy while µ is a friction constant and ξi a 

random noise force. The friction constant sets the time scale for the decay of velocity correlations as td = 

m/µ. For colloids, the physical situation corresponds to an overdamped limit with td very small. It has been 

found that setting td = 0.1 here is appropriate to following the dynamics of non-equilibrium colloidal 

systems and can robustly be compared with experiments91,92. 

 

To reproduce the (small) polydispersity in the experimental system, we follow some previous work and use 

an equimolar five-component system75. Here we set the diameters of the particles as σ1≤i≤5 = 

(0.93675445,0.968377225,1,1.031622775,1.06324555). We do not treat the effect of polydispersity on 

the dipolar interactions, other than rescaling the interaction range with the mean of the particle diameters. 

To our knowledge, no such study has been undertaken. We therefore implement the effects of 

polydispersity through the hard core contribution which we treat as follows. 

 

To reproduce the (nearly) hard sphere behaviour of the experimental system, we use the Weeks-Chandler-

Anderson (WCA)93 potential. This takes the form: 

 

where εwca = 10kBT is the interaction energy and σij = (σi + σj)/2. 
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We added the dipole-dipole interaction shown in Eq. 1, the Ewald sum for which is implemented with the 

KSpace package in LAMMPS90. Here γ = γsim controls the strength of the dipolar interaction. The interaction 

potential for the simulations then reads 

 

 

Here we quote simulation results in reduced Lennard-Jones units, that is to say the unit of length is the 

median diameter σ3, and time is in units of pmσ3
2/wca where m is the mass of a particle. We use the Barker-

Henderson effective hard sphere diameter of the WCA component of the interaction to determine the 

effective volume fraction φeff in order to match the experiments, ie φeff = (π/6V )Σi=1,5niσi,
3

eff where V is the 

volume, ni is the number of particles and σi,eff is the effective hard sphere diameter of the ith species. Each 

simulation run includes at least 1000 particles for φ = 0.1 and 3000 for φ = 0.3. 

 

To prepare the system, the potential energy of random coordinates is minimised under Eq. 7 to remove 

overlaps between particles. Then the system is evolved according to the Langevin dynamics. To match the 

timescales to the experimental system when it is out of equilibrium, we determine the Brownian time in 

the simulations τB
sim =0.979≈1. We therefore run the system for 200 time units prior to measurement which 

matches well to the 20 minutes in the case of the experiments. For equilibrium states (γ < 10,12) for φ = 

0.1 and 0.3 respectively, we equilibrate the simulations for 100 time units. 

 

3.4 Bond order parameters for dipolar colloids 

One method to quantify the angular correlation between particles as a function of external electric field 

strength is the string fluid order parameter30. This has already been shown to be sensitive to variation in 

field strength by Li et al.30. This is calculated by finding the angle θ made by a reference particle with its 
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two nearest neighbors [see Fig. 2(c) inset]. Here we take hcos2θi as the order parameter for the string fluid. 

For a system consisting of perfect strings, hcos2θi = 1. 

 

 

Fig. 2 The colloidal dipolar system. (a-d) Representative images using confocal microscopy in the horizontal 

xy (a,b) and vertical xz (c,d). Here volume fraction φ=0.1. (a,c) No field, E=0. (b,d) Confocal microscopy 

images of a system at the same volume fraction at the maximum electric field strength corresponding to 

γ =60. (e) String fluid order parameter (hcos2θi) as a function of external electric field strength E. The inset 

indicates the angle θ. Data are shown for experiments (data points) and simulations (lines) for volume 

fractions φ =0.1 and 0.3 as indicated.  Scale bars in (a-d) are 20 µm. Error bars are the standard error. 
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3.5 Two– and three–body correlation functions 

We also calculated the two–body spatial correlation function, the radial distribution function g2(r). In 

addition to the isotropic g2(r), we consider g2xy(r) which measures correlations in the xy plane 

perpendicular to the field and g2z(z), which measures correlations in the z direction along the field. For 

g2xy(r), only pairs of particles that are perpendicular to the xy plane with a tolerance of ±5◦ were used. In 

the case of g2z(z), particle pairs that are parallel to the z-axis were chosen with a ±5◦ tolerance. 

 

We also consider the 3–body spatial correlation function g3. Now this depends on the positions of three 

particles 1,2,3, i.e. three vectors, eg g3(r12,r23,r31) with the numbers reflecting the three particles. Here we 

elect to simplify our representation to the case where we fix two of the distances (to the particle diameter 

σ) so that the 3–body correlation function is plotted as a function of angle between them g3(r12 =σ,r23 =σ,η) 

where η is the angle between r12 and r23. 

 

3.6 Topological Cluster Classification 

As discussed in the introduction, the topological cluster classification identifies local geometric motifs 

whose bond topology (defined here through a modified Voronoi decomposition) is identical to that of 

minimum energy clusters of a specific size67. These clusters are identified using the energy optimization 

algorithm GMIN which uses basin-hopping to find the local energy minimum that corresponds to a specific 

configuration for a number of particles in isolation63. Now such minimum energy clusters require an 

attractive interaction, and therefore to investigate the effect of the dipolar interaction, clusters were 

determined for a dipole added to a Lennard–Jones interaction68. That is to say, the interaction potential 

for which the minimum energy clusters were determined was 
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where ulj is the Lennard–Jones (LJ) interaction. Although the attractive Lennard–Jones contribution is not 

part of the experimental (or simulated) system we consider here, the importance of packing effects on 

the structure of liquids and dense fluids has a long history94. The seminal work of Weeks, Chandler and 

Anderson93 established the role of packing in the structure of dense fluids even in the absence of 

attractions. It has recently been shown that the higher–order structure of dense hard spheres is closely 

related to those of attractive systems 45,46. In fact, the higher– order structure of the Lennard–Jones and 

WCA systems, along with hard spheres, as determined through the topological cluster classification are 

rather similar71. We therefore expect that the use of dipolar–LJ clusters will likewise be reasonable here 

and in any case will provide a suitable measure of the change in the fluid structure under the electric 

field. 

 

Those resulting clusters which are rigid68 are shown in Fig. 1. In the case of zero field, we have the minimum 

energy Lennard– Jones clusters 8B, 9B, 10B, 11C and 12B62,95. Upon application of the field, the clusters 

elongate in the z-direction. These stretched clusters are denoted S and are based on five–membered rings 

(9S, 10S, 11S and 12S). Further application of the field leads to clusters which are based on the 6A 

octahedron. These are denoted O (11O and 12O). Increasing the field still further leads to spiral clusters 

denoted P (9PAA and 10PAA). Additional minimum energy rigid clusters of particles interacting according 

to Eq. 8 exist 68, but here we focus on those we find in our experiments and simulations. In our analysis of 

the TCC clusters, we set the Voronoi parameter fc = 0.8267. Further details are of the identification of the 

clusters with basin hopping and implementation in the TCC are available in Ref.68
 

 

3.7 Orientation of anisotropic clusters 

Since the dipolar interaction is anisotropic, the clusters found by the TCC may have a preferred orientation 

with respect to the direction of the electric field. We consider clusters found in both experiments and 



16 

simulations. We calculated the principal axis by taking the eigenvector of the inertia tensor of the cluster 

with the largest eigenvalue. We then determine the angle made by the principal axis with respect to the 

direction of the electric field.  To quantify this angle distribution, we use an order parameter commonly 

used for liquid crystals, 

 

where ψ is the angle made by the principal axis of each cluster with the direction of the electric field96. In 

the isotropic case when the field is switched off, there should be no preferred orientation. In the perfectly 

aligned state, all the clusters should lie parallel to the electric field so this order parameter is 1. We note 

that alignment with the electric field assumes that the clusters are isolated and free to rotate. The system 

can exhibit a fluidbody centred tetragonal crystal phase coexistence. Some clusters (8O, 11O and 12O) are 

in fact compatible with this crystal structure and may lie perpendicular to the field, in which case P2(ψ = 

π/2) = −1/2. 

 

4 Results 

We now present both experimental and simulation results for colloidal dipolar fluids at volume fractions 

φ = 0.1 and φ = 0.3. We investigate the bond order parameters, two and three body correlation functions, 

and populations of minimum energy clusters and the orientations of these clusters. These quantities are 

considered as a function of dipole strength γ. We convert external field strength to the dipole strength γ 

using Eq. 2, which we use across experiments (Eq. 3), simulations (Eq. 7) and minimum energy clusters (Eq. 

8). 

 

4.1 Bond order parameter analysis of the string fluid 

In our study, with the string fluid order parameter hcos2θi (see Sec. 3.4), we explore slightly higher colloid 

volumes fraction (0.1 and 0.3) than some previous work30. Our results are shown in Fig. 2 and for the string 
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order parameter, we find good agreement between experiment and simulation if we scale the values of γ 

in the experiment by 1.2, which we do henceforth. The value of hcos2θi is small for both experiment and 

simulation in the case of zero field, and then shows a significant increase with field strength to a value of 

hcos2θi∼ 0.8 for φ = 0.1 and ∼ 0.65 for φ = 0.3. 

 

Upon increasing the field strength such that γ ≈12 and ≈10 for volume fraction φ = 0.1 and 0.3 respectively, 

the string fluid becomes metastable to fluid-body-centered tetragonal phase coexistence26. Since the 

system is now out of equilibrium, it is possible that small structural differences between the experiments 

and simulations may emerge, such as the small increase in hcos2θi in the experiments with respect to the 

simulations for φ = 0.1. 

 

4.2 Pair Correlation Function 

We continue our analysis by considering pair correlations in the form of the radial distribution function 

g2(r) in Fig. 3. The orientationally averaged g2(r) is shown in Figs. 3(a) and (b) for volume fraction φ = 0.1 

and 0.3 respectively for both experiment (data points) and simulation (lines). At zero field strength, in the 

hard sphere limit, we see reasonable agreement between experiment and simulation (as has been noted 

previously)81. The slightly higher first peaks of the simulation data may be attributed to the particle tracking 

errors in the experiments88. For weak field strengths (γ = 9), again we see comparable agreement between 

experiment and simulation to that of the hard sphere case. 
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Fig. 3 Pair correlations in the colloidal dipolar system. Data are shown for both experiment (points) and 

computer simulations (lines) at volume fraction (a), (c), (e) φ =0.1 and (b), (d), (f) φ =0.3. Data are taken 

for different field strengths expressed through the parameter γ as indicated. Data are offset for clarity. (a) 

and (b) show g2(r), (c) and (d) show g2xy(r) by considering correlations in the xy plane, (e) and (f) show g2z(r) 

where correlations are taken along the z axis. 
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As above in Sec. 4.1, at high field strengths when the system falls out of equilibrium, we see some 

discrepancy between experiment and simulation. In particular, we see stronger peaks, ie more ordering, 

in the simulation data for γ = 12 and 19 for φ = 0.1. We believe that this difference is too large to be 

attributed to tracking error. Interestingly, the difference between experiment and simulation is rather less 

significant in the case of φ = 0.3. We return to consider possible influences in the structure out of 

equilibrium in Sec. 6 below. 

 

Since our system is anisotropic due to the external field, we expect to see some corresponding differences 

in structure between the plane perpendicular xy and the direction parallel z to the field. To explore this we 

now consider the pair correlation function in the xy plane g2xy(r) and z direction g2z(z). We expect that the 

formation of the string fluid may lead to significant structuring in the field direction, while in the 

perpendicular xy plane, there is repulsion between particles exactly in plane, but out–of– plane attractions 

lead to aggregation of the strings34 and ultimately the formation of the bct crystal. In Fig. 3(c,d), we show 

the pair correlations in the perpendicular plane for volume fraction φ = 0.1 and 0.3 respectively. In the 

case of φ = 0.1 and 0.3 at zero field strength we see good agreement between experiment and simulation. 

For a weak field at low volume fraction, there is some evidence of enhanced repulsion in the experiments 

with respect to the simulations, but this is not seen at higher volume fraction. Upon increasing the field 

strength such that γ =35, we see a reasonable agreement between experiment and simulation. This is 

echoed in the higher volume fraction case (γ = 35) with again stronger peaks in the experiment. At the 

highest field strength, γ = 60 and 54 for φ = 0.1 and 0.3 respectively, the agreement between experiment 

and simulation is rather good. 

 

Turning to the case of the correlations along the field direction, g2z(z) [Figs. 3(e) and (f)], for zero field 

strength, we recall that we may expect to see evidence of significant ordering upon application of the 
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electric field, as the string fluid develops. At zero and low field strength, correlations are comparatively 

weak for both φ = 0.1 and 0.3 [though note the scale on the y-axis in Figs. 3(e) and (f)] and experiment and 

simulation are well matched. At higher field strength we find significantly stronger peaks in the case of the 

simulations for both volume fractions. This may be due to tracking errors, where we note the the resolution 

of the confocal microscope is reduced in the z direction and thus tracking errors may be more severe here. 

 

Summarising the behaviour we have uncovered through our analysis of the pair correlations, we find 

overall reasonably good agreement between experiment and simulation We suggest that discrepancies 

between experiment and simulation may be attributed to particle tracking errors (particularly in the case 

of g2z(z) at higher field strength) 81,88. 

 

4.3 Three-body Correlations 

As noted above, particle–resolved studies lends itself to analysis of higher–order correlations35,37–39,81 and 

here we begin with the three–body correlation function g3. This may be represented in a variety of ways 

and here we chose to show the dependence of g3 upon the angle η between two particles with respect to 

a particle of interest as shown in Fig. 4(a). We set the distance between the two particles and the particle 

of interest to be the diameter, so that the quantity plotted is g3(η). 

 

For both φ = 0.1 and 0.3, at zero and low field strength, a large and broad peak appears at η ≈ 60◦ which is 

consistent with an isotropic system where the interaction is angle independent97. This is more prevalent in 

our experiments than in the simulations. Upon applying the field, a peak at η ≈ 180◦ emerges, relating 

presumably to the development of the string fluid. For φ = 0.1,γ = 12, This is more prevalent in the 

simulations than in the experiments, whereas at the slightly weaker field γ = 9 for φ = 0.3, the experiments 

exhibit a higher peak. When the system falls out of equilibrium, for both volume fractions, for we see 
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rather enhanced ordering in the simulations for γ = 35 with a much stronger peak around η ≈ 120◦ . This 

may be related to a more rapid demixing towards a bct crystal. The peak towards η ≈ 180◦ is in fact weaker 

in the simulations than the experiments. For φ = 0.1, this is consistent with a slightly higher development 

of string-like structure in the experiments. At the highest field strength, both experiments and simulations 

show an increased degree of ordering, as evidenced in the peaks at η ≈ 60◦, 120◦ and 180◦. Again, the peaks 

seem somewhat more pronounced in the simulations. 

 

4.4 Populations of minimum energy clusters 

We now move to still higher–order spatial correlations and consider the dipolar–Lennard–Jones minimum 

energy clusters identified by the topological cluster classification (Fig. 1)68. In Fig. 5, to give an overview of 

the response of the cluster population to the electric field, we render two example state points. These are 

φ = 0.3,γ = 0 in Fig. 5(a) and φ = 0.3,γ = 54. We see some Lennard-Jones clusters in the case of zero field 

(8B, 9B and 11C). For the higher field strength, we see an organisation into columns (related to the gradual 

demixing towards the bct crystal). These are dominated by 8O and 12O clusters. We now proceed to 

analyse the cluster population in our system in more detail. 

 

To facilitate comparison between experiment and simulation, in each figure we fix the number of particles 

in the cluster in question. Now the topology of the minimum energy cluster changes upon increasing the 

dipolar contribution68. In Fig. 6, we consider 8 and 9–membered clusters for volume fraction φ = 0.1 and 

0.3. For larger clusters, there are fewer statistics at lower volume fraction and therefore, we focus on φ = 

0.3 in Fig. 7. In line with the discussion in Sec. 3.6, and previous work45,69,82, despite the lack of attraction 

between the hard spheres in the case for zero field strength, we nevertheless expect to find some clusters 

due to packing effects. 
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Naively, one might expect that zero and low field strength would correspond to minimum energy clusters 

for the Lennard– Jones interaction as shown in Fig. 1 and known from studies with hard spheres46,75,81,82, 

and that increasing the field strength might lead to a cascade of clusters of increasing elongation as 

indicated in Fig. 1(b). This turns out to be the case. 

 

Fig. 4 The three–body correlation function g3(η). (a) Schematic indications of geometries of interest, with 

values of the bond angle η =60◦.120◦ and 180◦ (b) g3(η) is plotted for volume fraction φ =0.1. (c) g3(η) for 

volume fraction φ =0.1. In (b) and (c), data points are experimental data and lines are simulation data. 

 

 

Fig. 5 Rendering of TCC clusters using experimental coordinate data. Key indicates the particular cluster a 

particle is in. Particles are rendered in the largest cluster in which they are identified. Small grey particles 

are not identified in any of the clusters considered. (a) φ =0.3,γ =0. (b) φ =0.3,γ =54. 
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Fig. 6 Populations of smaller minimum energy clusters detected by the topological cluster classification 

as a function of dipole strength. The number of particles detected in a given cluster Nc is scaled by the 

number of particles in a cluster of that size, Nm. Data points denote experiment and lines are computer 

simulation. Shading denotes the change in cluster topology which minimizes the energy at different 

values of the dipole strength γ as indicated68. White regions of graphs denote values of γ where the 

minimum energy clusters are not rigid, that is to say, single-particle or two-particle wide strings are 

formed, or other non-rigid structures68. Data are shown for different cluster sizes m and volume fractions 

as follows. (a) Cluster size m =8, volume fraction φ =0.1. (b) m =8, φ =0.3. (c) m =9, φ =0.1. (d) m =9, φ 

=0.3. 

 

For the smallest size of cluster we consider, m = 8, indeed we see this trend with the Lennard–Jones 

minimum energy cluster 8B giving way to the 8O which minimises the potential energy for the dipolar 
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system for both volume fractions [Fig. 6(a,b)]. Notably, experiment and simulation appear reasonably well–

matched in the lower field case that the system is in equilibrium (γ ≤ 12,φ = 0.1 and γ ≤ 10,φ = 0.3). By this 

we mean that discrepancies are well within an order of magnitude (note that, for an 8-membered cluster 

to be successfully identified, failure to identify only one of the 8 particles will lead to the cluster not being 

identified, so “agreement” between experiment here is inevitably rather less stringent than in the case of 

pair correlations, say). The more significant discrepancy between the experiments and simulations 

emerges. At higher field strength, γ >30 in both volume fractions φ = 0.1 and 0.3, we see an increase in the 

8B modified pentagonal bipyramid population in the experiments compared to the simulations. Now this 

structure exhibits fivefold symmetry, and as such, is associated with non–crystalline ordering61. We have 

noted above that, in the non-equilibrium conditions at higher field strength, the simulations appear more 

ordered. If the ordering in the simulations is crystalline, then a lack of five-fold symmetry with respect to 

the experiments would seem to be reasonable. 

 

In the case of 9-particle clusters, the situation is more complex, as we consider three clusters, 9B, 9S and 

9PAA. We find it instructive to start our analysis with φ = 0.3 Fig. 6(d)]. At low field strength, γ = 0 and 9, 

there is a rather high population of 9S and 9PAA in both experiment and simulation. This dominates over 

the minimum energy cluster for the Lennard-Jones system, 9B which has two five–membered rings67. At 

higher field strengths, the population of 9B drops rather precipitously in the simulations, but less so in the 

experiments. This is consistent with the case of m = 8 above, where the 8B cluster which, like the 9B, has 

a degree a fivefold symmetry is preferred. Notably though, the 9PAA dominates at all field strengths, which 

is not expected from energy considerations as it is the minimum energy cluster only for 12 . γ . 21. Now 

the 9PAA cluster is polytetrahedral in structure, and is enlongated with respect to the 9B. This is consistent 

with it being intermediate between the compact 9B in the case of zero field and strings of particles in the 

case of a strong field. From a structural perspective the 9S stretched polytetrahedron is intermediate 
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between 9B and 9PAA in that it is the minimum energy structure for 7 . γ . 12. Its population is also 

intermediate between 9B and 9PAA for both experiments and simulations. For φ = 0.1 [Fig. 6(c)], there are 

rather fewer clusters identified, and none at all at low field strength. It is often the case that there are 

fewer (larger) clusters at lower volume fraction70,72,81,98, so this in itself is reasonable. Like the case of φ = 

0.3, the 9PAA dominates at all field strengths. At high field strength, we see more of the clusters with five–

membered rings, 9B and 9S in the experiments than in the simulations. 

 

We now consider larger clusters in Fig. 7(a,b,c). The statistics for larger clusters at the lower volume fraction 

are rather poor and therefore here we focus on a volume fraction φ = 0.3 respectively. Turning to 10-

membered clusters [Fig. 7(a)], we see a somewhat similar behaviour to the m = 9 case. For both 

experiments and simulations, we see some of the Lennard–Jones minimum energy cluster, the defective 

icosahedron 10B at low field strength as one might expect. Like the 9-membered clusters, the 10B is 

present only in small quantities with the 10PAA dominant at all field strengths and 10S intermediate. In 

experiments the population of 10B (which exhibits some fivefold symmetry) is higher in the experiments 

than in the simulations, echoing the case for 8B in Figs. 6(a) and (b). Meanwhile the populations of 10S 

and 10PAA are comparable between experiments and simulations. 

 

For 11-membered clusters, at low field strength, in experiment, we find 11S, 11SB and 11O dominating 

with rather less 11C, the latter being the minimum energy Lennard–Jones cluster, like the smaller Lennard-

Jones clusters the 11C has a number of five-membered rings which may underly its small population. At 

higher field strength 11O dominates, similar to the case for 8O in m=8. However for m=11 the additional 

two structures 11S and 11SB seem to lie between 11C and 11O in population, and their population falls 

away at higher field strength. This is broadly consistent with expectations of 11O dominating at higher field 

strength (it is the minimum energy cluster for 27 < γ < 38. 
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Finally, the 12-membered clusters are shown in Fig. 7(b). Here in the experimental data, 12O, which is the 

minimum energy cluster for 19<γ <31 is the most popular cluster at all field strengths. We see some 12B 

and 12SB at weak field strengths, but these vanish for field strengths greater than γ =15. The simulations 

exhibit the same qualitative trend, of 12O dominating. 

 

4.5 Cluster Orientation 

We have observed that even at zero dipole strength, some of the minimum energy dipolar clusters (such 

as 10PAA at φ = 0.3) are present in our system [Fig. 6(f)]. Now the dipolar–Lennard–Jones clusters that we 

consider (Fig. 1) are aligned with the dipolar interactions, and thus with the electric field. It is therefore 

reasonable to suppose that the clusters might exhibit some alignment with the field, and that this would 

increase as a function of field strength. 

 

We therefore probe the orientation of some dipolar–Lennard– Jones clusters using our method described 

above in Sec. 3.7. The principle is illustrated in Fig. 8(a) and (b). Here, renderings of experimental data 

where clusters identified as 10PAA for volume fraction φ = 0.3 are shown. In the case of zero field strength 

[Fig. 8(a)], no preference in cluster orientation is seen. For γ =54 [Fig. 8(b)], we see that the clusters have 

oriented with the field. We now explore this phenomenon quantitatively. In Fig. 8(c) and (d), for volume 

fractions φ = 0.1 and 0.3 we plot the degree of alignment with the field for experimental data (data points) 

and simulation (lines). 

 

We begin our analysis with φ = 0.1 [Fig. 8(c)]. As exemplified by 8O (for which we have the best statistics), 

there is a trend towards more alignment with the field as its strength is increased. The experimental data 

in general shows an increase in alignment, while for the simulations, 9PAA, 10PAA and 12O show some 
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nonmonotonicity in their response to the field. Turning to the case of higher volume fraction, in Fig. 8(d), 

we see a similar behaviour. Experimental data all show an increase in alignment with the field. Contrasting 

with this, in the simulations, 11O even seems to approach to hP2(cosψ)i = −1/2, the case for alignment in 

the xy plane. This may be due to the cluster being identified in the bct crystal in which it may lie 

perpendicular to the field. 

 

Fig. 7 Populations of larger minimum energy clusters detected by the topological cluster classification as a 

function of dipole strength. As in Fig. 7, the number of particles detected in a given cluster Nc is scaled by 

the number of particles in a cluster of that size, Nm. Data points denote experiment and lines are computer 

simulation. Shading denotes the change in cluster topology which minimizes the energy at different values 

of the dipole strength γ as indicated68. White regions of graphs denote values of γ where the minimum 

energy clusters are not rigid. Data are shown for different cluster sizes m. (a) Cluster size m =11, (b) m =12. 

Here volume fraction φ =0.3. 

 

5 Time-Evolution 

We have remarked that in the regime that γ > 10,12 for φ = 0.1,0.3, the system becomes metastable to a 

phase separated fluid-bct crystal state26. As an outlook, we briefly consider the consequences of time-

evolution for our analysis. To this end, we run a longer simulation of 1000 time units that we analysed this 

from the beginning (without applying any equilibration time after the initial energy minimisation). We 
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consider the φ = 0.3,γ = 32 state point. In Fig. 9(a), we plot the radial distribution function, and also 

reproduce the experimental data for this state point from Fig. 3(b). The time-evolution of the g2(r,t) does 

show some changes, notably a split second peak can be detected longer times. This is compatible with 

increased ordering99. The changes in the pair-correlations are, however, rather small. 

 

We now turn to the higher-order correlations and in particular plot the time-evolution of certain TCC 

clusters as a function of time in Fig. 9(b). These show rather clear trends following their geometry. We have 

remarked that the clusters incorporating octahedra, in particular 8O and 12O are compatible with the bct 

crystal and these are indeed found at high field strength [Fig. 5(b)]. The population of these clusters 

increases with time here which is consistent with the system moving towards the fluid-bct state. 

Conversely the Lennard-Jones cluster 8B and 9S which also exhibits some five-fold symmetry find their 

population falling, presumably their symmetry is incompatible with the fluidbct state. Finally, clusters 

which are ground states at intermediate field strength, 9PAA and 10PAA68 exhibit relatively little change in 

their population. This suggests that the TCC maybe a suitable means to probe the time-evolution of the 

dipolar colloids. A more extensive investigation we leave for the future. 

 

6 Discussion 

We now discuss our findings figure by figure. 

(i) Figure 2 shows confocal microscopy images of our system at volume fraction φ=0.1, taken along 

the xy plane (perpendicular to the direction of the electric field) and yz plane (along the direction of field) 

for both zero dipole strength and at maximum dipole strength at γ=45. We see string formation along the 

direction of the field at γ=45. 

Now our system becomes metastable to fluid-bct crystal phase coexistence at γ ≥ 10 and 12 for volume 

fraction φ = 0.1 and φ = 0.3 respectively. Under these conditions, given that throughout most of this work, 
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we do not treat the time–evolution of the system discrepancies between the experiments and simulations 

are possible due to each taking a different route through the energy landscape. However, our analysis in 

Fig. 9 suggests that for two-point correlation functions, effect of the time-evolution is quite weak. For the 

TCC clusters, we do see some changes, and we discuss this in more detail below. 

 

Figure 2(c) shows a plot of bond order parameters of the string fluid from both our experiment and 

simulation results, similar to the study published by Li et al.30. Here, our simulations (line) and experiments 

(data points) show good agreement. As the field strength increases, the bond angle θ tends towards 180◦. 

As indicated in Fig. 2(c), the degree of string formation increases which is consistent with the string 

formation is continuous rather than a sharp transition. 

 

In Fig. 3 we plot g2(r). This is generally in reasonable agreement between computer simulations and 

experiments for both φ=0.1 and φ=0.3. We can therefore be fairly confident that the simulation model 

used in our work is a reasonable reflection of our experimental system. We see the emergence of long 

range order as field strength is increased. This is expected since the con- focal images show that as the 

fluid becomes more structured as the colloids aligned along the field when it is switched on. The pair 

correlation function g2 does however show significant discrepancies emerge at high field strength. The 

increased ordering in the simulations may be due to the system being further down the path to forming a 

bct crystal than is the case in experiment. 

 

(ii) The results of g2xy(r) and g2z(z) are both consistent with that of g2(r) where the height of the first 

peak increases as field strength is switched on. The significant differences in peak positions and shapes 

between g2xy(r) and g2z(z) show the fluid structure across the xy-plane differs from fluid structure along 

the z-axis. We also observe peak splitting (g2xy(r)) from a broad peak into two distinct peaks as field 
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strength increases from γ=35 to γ=60/54, showing increase in ordering of fluids across the xy-plane. 

Whereas ordering in the fluid along the z-axis occurs above γ=12/9. However, fluid structures still show 

little difference at low field strength, except that the first peak in particular is stronger in the case of the 

simulations, which we attribute to particle tracking errors. At higher field strengths as the system falls out 

of equilibrium and starts to order, larger discrepancies emerge, notably in the higher first peak in g2xy(r) 

and much higher peaks in gz(z). The latter we attribute to tracking errors. 

 

Fig. 8 Orientation of anisotropic clusters with the electric field. (a) shows a 3d plot of the clusters (10PAA) 

found in the experiments at φ =0.3 at zero field, where the principal axis (indicated as the black line) of 

each cluster does not align with the electric field. Whereas in (b) these 10PAA clusters showed a higher 

degree of alignment along the field (z-axis) as the field takes a value of γ =40. (c,d) hP2(cosψ)i of the 

principal axis is plotted as a function of reduced field strength, for the anisotropic clusters 8O, 9PAA, 9S , 

10PAA, 11O and 12O. for the two volume fractions under consideration. (c) φ =0.1 and (d) φ =0.3. Data 

points are experimental data and lines are computer simulation. Shading denotes the system falling out of 

equilibrium26. 
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Fig. 9 Aging in the phase separation regime. Here we consider the state point φ =0.3,γ =32. (a) Radial 

distribution functions g2(r) are plotted for the times indicated. These are compared with experimental data 

(for a waiting time around 200 τB). Experimental data [plotted in Fig. 3(a)] and simulations data taken for t 

=0,30,100,300,900 time units. (b) Time-evolution of selected TCC clusters for the simulation. Here time is 

in Lennard-Jones time units. 

 

(iii) We now consider three–body correlations in Fig. 4. As the dipolar strength increases, the peak at 

180◦ increases as expected since more dipolar colloids form strings. However, we also observe peaks at 60◦ 

and 120◦ increasing with respect to field strength. The triplet correlations in the simulations show 

increasing structure at higher field strength with respect to the experiments. 

 

(iv) The renderings in Fig. 5 and the plots in Figs. 6 and 7 show the population of dipolar clusters of 

different geometries and sizes analysed with the TCC. Overall, we find that the clusters we observe in our 

system follow reasonably those of the dipolar– Lennard–Jones clusters (Fig. 1). That is to say, we see more 

elongated clusters at higher field strengths. In all cases, at high field strength it is the LJ–dipolar cluster 

that corresponds to the highest dipolar interaction that we find in both experiment and simulation. We 

find this to be a significant outcome of this work, providing strong evidence in support of modelling colloids 

in an AC electric field with dipolar interactions. 
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Minimum energy dipolar clusters by definition imply zero temperature, and are determined by the 

interaction energy. However, at finite temperature, entropy plays a role. The fact that the cluster 

population trends largely follow the minimum energy clusters indicates that the behavior of dipolar 

colloids is is strongly influenced by energetics. This is in stark – and surprising – contrast to earlier work 

which suggested that energy plays only a very limited role in observed cluster populations71. That work 

investigated Frank’s well–known conjecture that icosahedra “will be a very common grouping in liquids”61. 

In fact, at the triple point of the Lennard–Jones system, only one particle in 1000 was found to be in an 

icosahedron and other 13–membered clusters dominate71, quite unlike the findings here in which the 

minimum energy structure dominates at high field strengths. Presumably the strength of the dipolar 

interactions (which are much larger than eg interactions in the Lennard–Jones system when it is in the 

liquid state71) is important here. At high field strength, for m = 8,9,10 clusters we find more clusters with 

five–membered rings in the experiments than in the simulations. This we attribute to geometric frustration 

as the system falls out of equilibrium, with experimental and simulated realisations of the system taking 

different paths in the energy landscape (see below). 

 

(v) Figure 8 shows that some anisotropic dipolar clusters tend to align along the z-axis (parallel with 

direction of the field) while others in fact orient perpendicular to the field. This is a surprising result and 

we attribute it to incipient crystallisation in the system. Inspection of Fig. 5 shows ordering and a structure 

dominated by 8O and 12O. While in the experiments the 8O and 12O rich regions are oriented vertically, 

it is possible that in simulation a somewhat different path through the energy landscape is followed. 

 

(vi) Figure 9 provides an indication of how the time-evolution of the system may be monitored. We 

see that changes in the radial distribution function are limited, but the time-evolution of the TCC clusters 
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is very much more marked. This suggests that this sort of analysis may be useful to probe kinetic pathways 

in the dipolar colloidal system. 

 

We now wish to discuss the relevance of our results with higher order structure. Higher-order structure is 

sensitive to changes in structure in a way the two-point correlation function are not. For example, at low 

volume fraction, even relatively weak field strengths (γ = 12) cause a dramatic change in the population of, 

for example the 8O cluster [Fig. 6(a)] while g2(r) exhibits rather little change. We can therefore conclude 

that higher order analysis such as that presented here is much more sensitive to small variation in structure 

and interactions. Comparing our study with other previously published work which used a TCC analysis of 

gels and glasses38,89,100,100–103, we can conclude that such higher order structural analysis is better at 

capturing the onset of structural changes in amorphous systems than pair correlations g2(r), as may be 

inferred from other work37,39,104,105. What is new here is that we have considered a system with anisotropic 

interactions.  

 

The more significant discrepancies that we find are in the regime in which the system departs from 

equilibrium. That is to say, at high field strengths, the system becomes metastable to fluid-bct crystal phase 

coexistence. Now the early stages of this transition have been investigated recently34. However, in related 

phenomena, such as the condensation of colloids with an effective attraction to form a gel network, the 

role of hydrodynamic interactions was found to be very important. Hydrodynamics control not only the 

timescale for the condensation106, but also the higher–order structure of the resulting nonequilibrium gel 

network48,107. In (non–equilibrium) gelation of particles with spherically symmetric attractions, 

experiments exhibit many fewer clusters with fivefold symmetry than do Brownian dynamics computer 

simulations48, quite the opposite trend of what is observed here in Figs. 6 and Figs. 7. We suggest that 

careful study, using simulations with hydrodynamic interactions and time–resolved experimental 
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observation along the lines of Ref.48 may enable an analysis of the time–evolution of this system more 

closely matched to the experiments than we have been able to perform here. This would be very 

interesting to probe in the future. 

 

7 Conclusion 

We have performed a detailed analysis of the string fluid structure in an anisotropic system of dipolar 

colloids and found reasonable agreement between our experiments and computer simulation data across 

a wide range of interactions tuned with the electric field. We found both bond–order parameter analysis 

of strings and the three–body correlation function g3 to be suitable to quantify the degree of string 

formation in dipolar colloids but with g3 offering more detailed information and can be used as a form of 

“colloidal finger-print”. Using the topological cluster classification, we find that our experiments and 

simulations broadly agree with expectations from minimum energy clusters of a dipolar-Lennard-Jones 

system68. That is to say, structural transformations predicted at zero temperature for a Lennard– Jones–

Dipolar system are rather effective in their prediction of higher–order structure in the nearly–hard sphere–

dipolar experiments and simulations. At high field strength, the cluster population in both our experiments 

and simulations is dominated by the minimum energy clusters for all sizes 8 ≤ m ≤ 12. Finally, not only can 

we identify clusters relevant to the dipolar system but also to investigate their orientation with respect to 

field strength. 
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Fig. A1 The effects of adding errors to the coordinates on the radial distribution function g(r). Shown is the 

data for a volume fraction φ =0.1 and field strength γeff =50. Experimental data (circles) and data without 

errors added to the simulated coordinates (red line) are reproduced from Fig. ??(a). Errors are added to 

the simulated coordinates using a Gaussian with standard deviation 0.05 (pink line) 0.1 (grey line) and 0.2 

(black line). 
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