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Abstract 

Variance-based Sobol’ sensitivity is one of the most well-known measures in global 
sensitivity analysis (GSA). However, uncertainties with certain distributions, such as highly 
skewed distributions or those with a heavy tail, cannot be adequately characterised using the 
second central moment only. Entropy-based GSA can consider the entire probability density 
function, but its application has been limited because it is difficult to estimate. Here we 
present a novel derivative-based upper bound for conditional entropies, to efficiently rank 
uncertain variables and to work as a proxy for entropy-based total effect indices. To 
overcome the non-desirable issue of negativity for differential entropies as sensitivity indices, 
we discuss an exponentiation of the total effect entropy and its proxy. Numerical verifications 
demonstrate that the upper bound is tight for monotonic functions and it provides the same 
input variable ranking as the entropy-based indices for about three-quarters of the 1000 
random functions tested. We found that the new entropy proxy performs similarly to the 
variance-based proxies for a river flood physics model with 8 inputs of different distributions, 
and these two proxies are equivalent in the special case of linear functions with Gaussian 
inputs. We expect the new entropy proxy to increase the variable screening power of 
derivative-based GSA and to complement Sobol’-indices proxy for a more diverse type of 
distributions. 

 

Keywords: sensitivity proxy; sensitivity inequality; conditional entropy; exponential entropy; 
entropy power; derivative-based GSA 
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1 Introduction 

This research is motivated by applications of global sensitivity analysis (GSA) towards 
mathematical models. The uncertain inputs of a mathematical model induce uncertainties in 
the output. GSA helps to identify the influential inputs and is becoming an integral part of 
mathematical modelling. 

The most common GSA approach examines variability using the output variance. Variance-
based methods, also called Sobol’ indices, decompose the function output into a linear 
combination of input and interaction of increasing dimensionality, and estimate the 
contribution of each input factor to the variance of the output (Soboĺ, 1993; Saltelli, 2008). 
As only the 2nd-order moments are considered, it was pointed out that the variance-based 
sensitivity measure is not well suited for heavy-tailed or multimodal distributions (Auder and 
Iooss, 2008; Pianosi and Wagener, 2015; Liu et al., 2006). Entropy is a measure of 
uncertainty similar to variance: higher entropy tends to indicate higher variance (for 
Gaussian, entropy is proportional to log variance). Nevertheless, entropy is moment-
independent as it is based on the entire probability density function of the model output. It 
was shown in Auder and Iooss (2008) that entropy-based methods and variance-based 
methods can sometimes produce significantly different results. 

Both variance-based and entropy-based global sensitivity analysis (GSA) can provide 
quantitative contributions of each input variable to the output quantity of interest. However, 
the estimation of variance and entropy based sensitivity indices can become expensive in 
terms of the number of model evaluations. For example, the computational cost using 
sampling based estimation for variance-based total effect indices is ( 1)N d   (Saltelli, 2008; 

Puy et al., 2020), where N is the base sample number and d is the input dimension. Large 
values of N, normally in the order of thousands or tenths of thousands, are needed for more 
accurate estimate, and the computational cost has been noted as one of the main drawbacks of 
the variance-based GSA in Saltelli (2008). In addition, it was noted in Auder and Iooss 
(2008) that although both variance-based and entropy-based sensitivity analysis take long 
computational time, the convergence for entropy-based indices is even slower. 

In contrast, for a differentiable function, derivative-based methods can be more efficient. For 
example, Morris’ method (Morris, 1991) constructs a global sensitivity measure by 
computing a weighted mean of the finite difference approximation to the partial derivatives, 
and it requires only a few model evaluations. The computational time required can be many 
orders of magnitude lower than that for estimation of Sobol’ sensitivity indices as 
demonstrated by Kucherenko et al. (2009) and it is thus often used for screening a large 
number of input variables. 

Previous studies have found a link between the derivative-based measures and variance-based 
total effect indices. In Campolongo et al. (2007), a sensitivity measure *  is proposed based 

on the absolute values of the partial derivatives. It is empirically demonstrated that for some 
practical problems, *  is similar to the variance-based total indices. In Wainwright et al. 

(2014), the variance-based sensitivity indices are interpreted as difference-based measures, 
where the total sensitivity index is equivalent to taking a difference in the output when 
perturbing one of the parameters with the other parameters fixed. The similarity to partial 
derivatives helps to explain why the mean of absolute elementary effects from Morris’ 
method can be a good proxy for the total sensitivity index for detecting unessential variables.  
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Observing the empirical success of the modified Morris’ measure, Sobol’ and Kucherenko 
(2009) have proposed the so-called derivative-based global sensitivity measures (DGSM). 
This importance criterion is similar to the modified Morris’ measure, except that the squared 
partial derivatives are used instead of their absolute values. In addition, an inequality link 
between variance-based global sensitivity indices and the DGSM is established in the case of 
independent Uniform or Gaussian input variables. This inequality between DGSM and 
variance-based GSA has been extended to input variables belonging to the large class of 
Boltzmann probability measures in Lamboni et al. (2013). This link is via the Poincaré 
inequality and an optimal value for the scaling Poincaré constant has been developed in 
Roustant et al. (2017). 

Inspired by the success of derivative-based proxies for Sobol’ indices, in this paper, we 
present a novel derivative-based upper bound for entropy-based total effect indices. The key 
idea here is to make use of a well-known inequality between the entropy of a continuous 
random variable and its deterministic transformation. This inequality can be seen as a version 
of the information processing inequality and is shown here to provide an upper bound for the 
total effect entropy sensitivity measure. The entropy upper bounds are demonstrated to 
efficiently rank uncertain variables and can thus potentially be used as a proxy for entropy-
based total effect indices for screening purposes. And that is the main contribution of this 
paper. 

In addition, via exponentiation, we extend the upper bound to the widely used DGSM for a 
total sensitivity measure based on entropy power (also known as effective variance). In the 
special case with Gaussian inputs and linear functions, the proposed new proxy for entropy 
GSA is found to be equivalent to the proxy for variance-based total effect sensitivity. 
Furthermore, unlike the variance proxy, the inequality link between derivatives and entropy 
does not require the random inputs to be independent. The new entropy proxy is thus 
expected to not only increase the variable screening power of derivative-based GSA, but can 
also complement variance proxies for a more diverse type of distributions. 

Note that we focus on the standard derivative-based sensitivity measures in this paper. A 
closely related derivative-based sensitivity analysis technique is active subspace, which 
makes use of the leading eigenspaces of the second moment matrix of the function partial 
derivatives. DGSM indices are the diagonal of this second moment matrix. Sensitivity indices 
based on active subspace have been found to bound DGSM and Sobol’ total effect indices for 
scalar-valued outputs (Constantine and Diaz, 2017), and a generalization to vector-valued 
functions with Gaussian inputs has been discussed by Zahm et al. (2020). Instead of the 
function derivatives, active sensitivity directions can also be obtained from the derivatives of 
the output distributions using the leading eigenvectors the Fisher Information Matrix (FIM) 
(Yang, 2023). Use of the leading symplectic eigenspace of the FIM has also been proposed 
for decision oriented sensitivity analysis (Yang, 2024). 

It should also be noted that, in addition to entropy-based measures, there are many other 
moment-independent sensitivity measures, such as the  -indicator (Borgonovo, 2007), 
maximum mean discrepancy (Da Veiga, 2021), Kolmogorov–Smirnov statistic (Pianosi and 
Wagener, 2015) and Kullback–Leibler (KL) divergence (Krzykacz-Hausmann, 2001; Liu et 
al., 2006). More discussions can be found in (Borgonovo and Plischke, 2016). 

Many of the above mentioned measures can be seen as special cases of the Csiszar f-
divergence between the conditional and unconditional output densities (Borgonovo and 
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Plischke, 2016; Da Veiga, 2015). The expected f-divergence can be re-expressed in terms of 
the joint probability density function (PDF) of the input and output distributions and the 
product of their marginals. This reformulation enables a more general framework in which a 
“distance” between the joint PDF and the product of the marginal PDFs is considered. Such a 
framework serves as a foundation for deriving certain dependence measures for sensitivity 
analysis, such as the Distance Correlation based on characteristic functions and the Hilbert–
Schmidt Independence Criterion (HSIC) that generalizes the notion of covariance between 
two random variables (Da Veiga, 2015). 

In what follows, we will first review global sensitivity measures in Section 2, where the 
motivation for the entropy-based measure and its proxy is discussed with an example. In 
Section 3, we first establish the inequality relationship between the total effect entropy 
measure and the partial derivatives of the function of interest, where mathematical proofs are 
provided. An exponential version of the inequality link is further proposed in Section 3. In 
Section 4, we provide numerical illustrations with analytical functions. Additional numerical 
tests using a randomised meta-function is given in the Supplementary Material. In Section 5, 
a river flood physics model is used to demonstrate the effectiveness of the new entropy 
proxy. Concluding remarks are given in Section 6. 

2 Global sensitivity measures 

In our context, an important question for GSA is: ‘Which model inputs can be fixed 
anywhere over its range of variability without affecting the output?’ (Saltelli, 2008). In this 
section, we first review both variance-based and derivative-based sensitivity measures, which 
can provide answers to the above ‘screening’ question. We then use a simple example to 
motivate the use of entropy-based sensitivity indices. 

2.1 Total variance effect and its link with derivative-based GSA 

The variance-based total effect measure accounts for the total contribution of an input to the 
output variation, and is often a preferred approach due to its intuitive interpretation and 
quantitative nature. 

Let us denote 1 2( , , , )dx x x x  as independent random input variables, and y being the 

output of our computational model represented by a function g, such that ( )y g x .  

The variance-based GSA decompose the output variance ( )V Y  into conditional terms 

(Hoeffding, 1948; Soboĺ, 1993): 

1,2, ,( ) i ij d

i i i j

V Y V V V 


      (1) 

where 

[ ( | )]; [ ( | , )] [ ( | )] [ ( | )]i i ij i j i jV V Y X V V Y X X V Y X V Y X     

and so on for the higher interaction terms. iV  measures the first order effect variance and ijV  

for a second order effect variance, where their contributions to the unconditional model 
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output variance can be quantified as / ( )iV V Y  and / ( )ijV V Y  respectively. Analogous 

formulas can be written for higher-order terms, enabling the analyst to quantify the higher-
order interactions. 

The total order sensitivity index is then defined as: 

~[ ( | )]

( ) ( )
i

i

Ti

T

VV Y
S

V Y V Y
 

X
 (2) 

where ~iX  is the set of all inputs except iX , and ~ ~[ ( | )] ( ) [ ( | )]i iV Y V Y V Y X X  is the 

remaining variance if the true values of ~iX  can be determined. The total order sensitivity 

index measures the total contribution of the input iX  to the output variance, including its first 

order effect and its interactions of any order with other inputs. 

When the function (·)g  is differentiable, local sensitivity can be measured using the square 

integrable partial derivatives /
ix ig g x    which can be seen as a limiting version of Morris’ 

elementary effect when the incremental step tends to zeros (Sobol’ and Kucherenko, 2009). 
The partial derivative depends on a nominal point. For global sensitivity analysis, an average 
of the partial derivatives can be taken over the input parameter space:  

( ) ( )
( )i X

i i

g g
f d

x x


  
    


X x

x x  (3) 

for 1,2, ,i d   and ( )Xf x  is the PDF of x . As pointed out by Sobol’ and Kucherenko 
(2009), for uniformly distributed inputs, the measure i  can be seen as a limiting version of 

the modified Morris’ index * . 

Based on that observation, the Derivative-based Global Sensitivity Measure (DGSM): 

2 2

( ) ( )
( )i X

i i

g g
f d

x x


     
           


X x

x x  (4) 

has been proposed to be used as a proxy for 
iTS  (Sobol’ and Kucherenko, 2009) to detect un-

influential input variables. In particular, the total sensitivity variance ~[ ( | )]
iT iV V Y X  is 

upper bounded by DGSM via the following inequality: 

iT i iV C   (5) 

based on Poincaré inequality and the Poincaré constants were found to be optimal for iC  

(Lamboni et al., 2013; Roustant et al., 2017). Note that independent input variables are 
required for the DGSM-based upper bound as it is based on variance decomposition. 
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Eq 5 thus provides a screening method using the upper bound, which is typically 
computationally faster compared to a direct estimation of the Sobol’ indices. Tighter the 
upper bound, more effective the low cost screening is. 

Divide Eq 5 by the output variance ( )V Y  from both sides, we then have the upper bound 

/ ( )
iT i iS C V Y  which can be used as a proxy for 

iTS  for variable screening. For Gaussian 

inputs with variance 2
i , 2

i iC   and the inequality in Eq 5 becomes 2 / ( )
iT i iS V Y   as 

given in Sobol’ and Kucherenko (2009). 

2.2 A motivating example and entropy-based sensitivity 

Pianosi and Wagener (2015) pointed out that a major limitation of variance-based sensitivity 
indices is that they implicitly assume that output variance is a sensible measure of the output 
uncertainty. However, if the output distribution is multi-modal or if it is highly skewed, using 
variance as a proxy of uncertainty may lead to contradictory results. 

To illustrate this point, we look at the simple function 1 2/y x x . In this case, the two inputs 

both follow the chi-squared 2  distribution with 2
1 ~ (10)x   and 2

2 ~ (13.978)x  , and are 

assumed to be independent. This results in a positively skewed distribution of Y with a heavy 
tail. This example has been used by Liu et al. (2006) to demonstrate the limitation of 
variance-based sensitivity indices, where they propose a Kullback-Leibler (KL) divergence 
based metric: 

1 1
1 1

0 1

( ( , , , , ))
( ( , , , , )) ln

( ( , , , , ))i

i d

T i d

i d

f y x x x
KL f y x x x dy

f y x x x

 
  

   (6) 

In Eq 6, 1( )f y  and 0 ( )f y  are the PDFs of the output, depending on whether ix  is fixed, 

usually at its mean. The larger the 
iTKL , the more important iX  is. It was found in Liu et al. 

(2006) that the effect of 1X  is higher in terms of divergence of the output distribution, but the 

variance-based total index shows that 1X  and 2X  are equally important. The higher influence 

of 1X  has also been confirmed in Pianosi and Wagener (2015) where the sensitivity is 

characterised by the change of cumulative distribution function of the output.  

We reproduce the sensitivity results of 
iTS  and 

iTKL  in Table 1 from Liu et al. (2006). In 

addition, we also compare the results with the entropy-based total sensitivity index (ETSI) 
(Kala, 2021): 

~[ ( | )]

( )
i

i

Ti

T

Y

HH Y

H Y H
  

X
 (7) 

which measures the remaining entropy of Y if the true values of ~iX  can be determined, in 

analogy to the variance-based total effect index 
iTS . H is the differential entropy, that is: 
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( ) ( ) ln ( )YH H Y f y f y dy    

and the conditional differential entropy is defined accordingly as: 

~ ~ ~ ~[ ( | )] ( , ) ln ( | )i i i iH Y f y f y dyd X x x x  

where the integral is with respect to the support set of the random variables and where ~ i  
indicates the index ranges from 1 to d excluding i. The conditional PDF can in general be 

written as ~ ~( | ) ( , ) / ( )i if y f y f yx x , except for cases where the differential entropy 

becomes infinite. 

The total effect entropy 
iTH  is a global measure of uncertainty as the expectation is with 

respect to all possible values of ~iX . 1
iT   because ~[ ( | )] ( )

iT iH H Y H Y X  with 

equality if and only if ~iX  and Y are independent (Cover, 1999). However, 
iT  can be 

negative as it is defined using differential entropy. This is undesirable as sensitivity indices 
and later in Section 3 we propose an exponentiation to overcome this issue. 

iT  has been estimated numerically based on the histogram method given in Supplementary 

Material: S1, where 710  samples are used. Table 1 shows that the entropy-based 
iT  is able 

to effectively identify the higher influence of 1X . Note that different from 
iTKL  which is 

conditional on the value of ix  ( ix  are set at their mean values in Table 1), 
iT  is an un-

conditional sensitivity measure as all possible values of the inputs are averaged out. 

We note in passing that analogously to the variance based sensitivity indices, a first order 

entropy index can also be defined as ( ( ) [ ( | )]) / ( ) ( , ) / ( )i i iH Y H Y X H Y I X Y H Y     

(Krzykacz-Hausmann, 2001). ( , )iI X Y  is the mutual information which measures how much 

knowing iX  reduces uncertainty of Y or vice versa. The index i  can thus be regarded as a 

measure of the expected reduction in the entropy of of Y by fixing iX . 

2.3 Summary 

From the motivating example, it became clear that 
iTS  might not be very indicative for 

variable rankings with outputs of general distribution shapes. This is especially the case for 
highly skewed or multi-modal distributions. This limitation is overcome by the entropy-based 
measures which are applicable independent of the underlying shape of the distribution. 

However, the entropy-based ETSI from Eq 7 has limited application in practice, mainly due 
to the heavy computational burden where the knowledge of conditional probability 
distributions are required. Both histogram and kernel based estimation methods have 
computational challenges for entropy-based sensitivity indices (Pianosi and Wagener, 2015). 

Motivated by the above issues and inspired by the low-cost sensitivity screening proxy for 
variance-based measures, in the next section, we will propose a computationally efficient 
upper bound for the entropy-based total sensitivity measure. We then extend the upper bound 
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to the DGSM indices via exponentiation, and show that in the special case with Gaussian 
inputs and linear functions, the proposed new proxy for entropy GSA is equivalent to the 
proxy for variance-based total effect sensitivity. 

An overview of the above mentioned relationship between entropy and variance proxies is 
summarised in Figure 1. The sensitivity proxies are represented by the upper bounds of the 

inequalities in Figure 1, where il  and i  are derivative-based quantities. The entropy proxies 

to be developed in the next sections are highlighted in the box with dash lines.  

3 Link between the partial derivatives and the total effect entropy 
measure 

In this section we will consider a differentiable function ( )y g x . Recall that our interest 

here is for applications of global sensitivity analysis (GSA) towards mathematical models, 
where a physical phenomenon is typically studied with a complex numerical code. The 
computation of the partial derivatives can then be obtained via the companion adjoint code, 
or numerically estimated by a finite difference method. For example, the derivative-based 
DGSM can be estimated by finite difference, and this can be performed efficiently via Monte 
Carlo sampling as discussed in Kucherenko et al. (2009). 

3.1 An upper bound for the total effect entropy 

For a general vector transformation ( )Y g X , the differential entropy of the output is related 

to the input via (Papoulis and Pillai, 2002, p.660): 

( ) ( ) ( ) ln detXH H f d  Y X x x  (8) 

where  is the Jacobian matrix with /ij i jg x    and ( )Xf x  is the probability density 

function (PDF) of X . ( )g X  is assumed to be differentiable and the partial derivatives are 

assumed to be square integrable. The above inequality becomes an equality if the transform is 
a bijection, i.e. an invertible transformation. Note that there is no independence assumption 
for the inputs of the inequality above. 

As shown in Papoulis and Pillai (2002), Eq 8 can be proved substituting the transformed PDF 

( ) ( ) / detY Xf fy x  into the expression of ( ) ( ) ln ( )H f f d Y y y y  and note there will be 

a reduction of entropy if the transformation is not one-to-one. Following this line of thought, 
Eq 8 can also be seen as one version of the data processing inequality, where the 
transformation does not increase information (Geiger and Kubin, 2011). 

Given the data processing inequality in Eq 8, we have the following theorem to upper bound 
the total effect entropy: 

Theorem . 

For a differentiable deterministic function ( ) : d
y g x  with continuous random 

inputs, there exists an inequality for the total effect entropy:  
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( )
iT i iH H X l   (9) 

where 
iTH  is the total effect entropy which is an expected conditional entropy 

~[ ( | )]
iT iH H Y X , where ~ i  indicates the index ranges from 1 to d excluding i. ( )iH X  is 

the differential entropy of the input variable iX  and 
il  is the expected log-derivatives 

ln ( ) /i il g x    x .  

Proof. 

Set 1 1( ) ( )y g g x x  where 1 2( , , , )dx x x x , and introduce dummy variables 

( )i i iy g x x  with 2, ,i d  . In this setting, the Jacobian matrix from the 2nd row 

onwards, i.e. 2i  , / 1i jg x    when i j  and / 0i jg x    when i j . Therefore, the 

Jacobian matrix in this case is a triangular matrix. As a result, the Jacobian determinant is the 
product of the diagonal entries: 

1 1

1 12to

det 1 1
d

g g

x x

 
   
 

 

The information processing inequality from Eq 8 can thus be expressed as: 

1

1

( )
( ) ( ) ( ) lnX

g
H H f d

x


 


x

Y X x x  

where 2 3{ , , , , }dY X X X Y . 

On the left hand side of the above inequality, the joint entropy of Y  can be expressed using 

the conditional entropies as ~1 ~1( ) [ ( | )] ( )H H Y H Y X X  using the chain rule for 

differential entropies (Cover, 1999). On the right hand side, we have 

1 ~1( ) ( ) ( )H H X H X X  using the subadditivity property of the joint entropy of the input 

variables. The joint entropy ( )H X  becomes additive if the input variables are independent.  

Putting these together, the above inequality using the variable 1x  then becomes: 

~1 1 1[ ( | )] ( )H Y H X l X  

The reasoning above uses the first variable 1x  as an example. However, the results hold for 

any variables via simple row/column exchanges, which only affects the sign of the 
determinant but not its modulus. ▪ 

The total effect entropy ~[ ( | )]
iT iH H Y X  is a global measure of uncertainty as the 

expectation is with respect to all possible values of ~iX . It measures the remaining entropy of 

Y if the true values of ~iX  can be determined, in analogy to the total effect variance 
iTV . 
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The total effect entropy inequality from Eq 9 thus demonstrates that, for a differentiable 
function ( )y g x , the entropy-based total sensitivity is bounded by the expectation of log 

partial derivatives of the function, with the addition of the entropy of the input variable of 
interest. And this inequality becomes an equality if the input variables are independent and 
the transformation (·)g  has a unique inverse. 

The inequality in Eq 9 is one of the main contributions of this paper. It establishes an upper 
bound for the total effect entropy 

iTH  for ETSI given in Eq 7 using computationally efficient 

partial-derivative based functionals. As smaller ( )i il H X  tends to indicate smaller total 

effect entropy, it can thus be used to screen un-influential variables and work as a low cost 
proxy for entropy-based indices. 

3.2 Exponential entropy based total sensitivity measure 

The use of ( )i il H X  as a screening proxy for the total effect entropy is similar to the 

DGSM-based upper bound for the variance-based 
iTS  described in Eq 5. However, there are 

two issues with the differential entropy based sensitivity measure: 1) differential entropy can 
become negative and this is undesirable for sensitivity analysis (Kala, 2021). More 
importantly, the inequality in Eq 9 is not valid when normalised by a negative ( )H Y ; 2) the 

interpretation of conditional entropy is not as intuitive as variance based sensitivity indices. 
This is partly due to the fact that variance-based methods is firmly anchored in variance 
decomposition, but also because entropy measures the average information or non-uniformity 
of a distribution as compared to variance which measures the spread of data around the mean. 
Although non-uniformity can be seen as a suitable measure for epistemic uncertainties 
(Krzykacz-Hausmann, 2001), its interpretation for GSA in a general setting is less intuitive. 

To overcome these two issues, we propose to use exponential entropy as an entropy-based 
measure for global sensitivity analysis. Although not directly investigated, studies in Auder 
and Iooss (2008) have noted that an exponentiation of the standard entropy-based sensitivity 
measures may improve its discrimination power. 

We take an exponentiation of the total effect entropy inequality in Eq 9: 

( )Ti i i
H H X l

e e e  (10) 

where we recall that ln ( ) /i il g x    x . Divide both sides of Eq 10 by ( )H Y
e : 

( )

( ) ( )

Ti i

i

i

H H X
l

T H Y H Y

e e
e

e e
    (11) 

where 
iT  can be considered as the exponential entropy based total sensitivity indices 

(eETSI), and the upper bound can then be used as a proxy for 
iT  to detect less influential 

input variables. As the total effect entropy ~[ ( | )] ( )
iT iH H Y H Y X , we then have 

0 1
iT   which is desirable as sensitivity indices. 
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eETSI 
iT , and its un-normalised Ti

H
e , have a more intuitive interpretation as GSA indices as 

compared to ETSI, because exponential entropy can be seen as a measure for the effective 
spread or extent of a distribution (Campbell, 1966). As the total effect entropy 

iTH  measures 

the remaining entropy in average if the true values of ~iX  can be determined, Ti
H

e  can thus 

be regarded as the effective remaining range of the output distribution conditioning on that 

~iX  are known. The normalised indices eETSI 
iT  then measure the ratio of the effective 

range before and after ~iX  are fixed, and larger 
iT  thus indicate a higher influence of iX . 

We provide additional discussion on its intuitive interpretation in Supplementary Material: 

S3 with several concrete examples. 

In addition to its non-negativity and a more intuitive interpretation for GSA, exponential 
entropy is also closely linked to variance-based GSA indices and their corresponding bounds. 
To demonstrate this, we first note that the three different derivative-based sensitivity indices 
are closely related as: 

il

i ie     (12) 

where we recall ln ( ) /i il g x    x , ( ) /i ig x     x  and 
2

( ) /i ig x     x . 

It is evident that i i   based on Cauchy-Schwarz inequality. In addition, we have il

ie   

using Jensen’s inequality as the exponential function is convex. So the inequality for the 
exponential entropy based eETSI from Eq 11 can be further associated with DGSM as: 

2 2 ( )
2

2 ( ) 2 ( )

Ti i

i

H H X

T iH Y H Y

e e

e e
    (13) 

where we recall that i  are the derivative-based DGSM indices. 

Eq 13 already looks remarkably similar to the variance-DGSM inequality given in Eq 5. In 

the special case with independent Gaussian inputs and a linear function, the i -based entropy 

upper bound from Eq 13 is equivalent to the i -based variance upper bound relationship 

given in Eq 5. See Supplementary Material: S4 for additional discussion. 

4 Numerical illustrations 

In this section, we first examine the special equality case with monotonic functions, and then 
provide assessment of the total effect entropy inequality with general nonlinear functions. A 
physical example will be considered in Section 5. Note that although the inequality in Eq 9 
makes no assumptions of independence, for simplicity the input variables are assumed to be 
independent in these numerical examples. 

Additional illustrations using a randomised meta-function is given in Supplementary 

Material: S6, where the derivative-based proxy provides the same input variable ranking as 
the entropy-based indices for about three-quarters of the 1000 random functions tested. The 
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upper bound (UB) can also be adjusted to work with groups of input variables, and this is 
illustrated briefly in Supplementary Material: S7. 

4.1 Analytical verifications for equality cases with monotonic functions 

In this section, we verify analytically that the total effect entropy inequality from Eq 9 is tight 

for a monotonic function. A function : d
g   is monotonically increasing if i ix x

  for 

all i implies ( ) ( )g g
x x . Based on the analytical results, we present numerical experiments 

to investigate the required sample size for the tight bound. 

Five monotonic functions are considered. These are listed in Table 2 and Figure 2 shows 
plots of examples 1 - 3 which are non-decreasing in the domain of interest. All input 
variables are assumed to have the same uniform distribution for examples 1 - 4, i.e. 

~ (0,1)ix , while Gaussian distributions are used for example 5. For verification purposes, 

all the examples in this section are chosen to have tractable expressions for both the integral 
of derivatives and the conditional entropies.  

From table 2 we can see that ( )
iT i iH H X l   for the monotonic examples considered. These 

analytical results not only verify that the inequality from Eq 9 is tight for monotonic 
functions with independent inputs, but also provide benchmark for convergence test of 
numerical estimations. 

For examples 1 - 3, the total effect entropies 
iTH  are also numerically estimated using the 

method given in Supplementary Material: S1. We estimate 
iTH  with Monte Carlo sampling, 

with number of samples ranging from 310  to 810  as shown in Figure 3. Also shown are the 
standard deviations (std) from 10 repeated estimations and the analytical values from Table 2. 

It can be seen from Figure 3 that the estimation of 
iTH  converges to the exact values with 

increasing number of samples, and the relative error with 810  samples is less than 1% for all 
functions. However, large number of samples is required. 

In comparison, a smaller number of samples is sufficient for the estimation of derivative-

based sensitivity measures. Numerical error of il  with 100 samples is less than 1% for the 

low dimensional cases considered. Note that the number of samples required is case 

dependent and a typical cost of derivative-based indices is in the order 310  or 410  

(Kucherenko et al., 2009). For the estimation of il , the finite difference method for 

approximating the partial derivative is used with a fixed increment step of 510  following 

Kucherenko et al. (2009) for DGSM estimation. Note that the numerical results for il  are not 

shown in Figure 3 as it is indistinguishable from the analytical values in comparison to 
iTH . 
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4.2 Illustrations with Ishigami function and G-function 

In this section, we use Ishigami function (Figure 4a) and G-function (Figure 4b) for 
illustrations with general nonlinear functions. Both functions are commonly used test 
functions for global sensitivity analysis, due to the presence of strong interactions.  

4.2.1 Assessment of total effect entropy inequality 

These two functions, each with three input variables, are used in this section to demonstrate 
the inequality relationship derived in Eq 9. The conditional entropies are estimated 
numerically using Monte Carlo sampling as described in Supplementary Material: S1. 
Different numbers of samples are used, ranging from 1e6 to 1e8. For each estimation, the 
computation is repeated 20 times and both the mean value and the standard deviation (std) are 

reported in Table 3 and 4. For the estimation of derivative-based il , we use the finite-

difference based approach with 1000 samples. As the analytical expressions of the partial 
derivatives are readily available in this case, the derivative-based results are further verified 
with direct integration using Matlab’s inbuilt numerical integrator ”integral” with default 
tolerance setting. 

The sensitivity results for the Ishigami function are listed in Table 3, where it is clear that 
inequality from Eq 9 is satisfied. It is clear the standard deviation is small. However, the 
convergence of conditional entropy estimation is slow as large number of samples is needed, 
as we saw for monotonic functions in Figure 3.  

The sensitivity results for the G-function, in the same format as Table 3, are reported in Table 
4. It is clear that the inequality relationship in Eq 9 is also satisfied. The results in Table 4 
also highlights the issue that the differential entropy based results can be negative. The 
relative amplitudes of 

iTH  can still indicate the relative importance of the input variables for 

the output entropy, but the negative amplitudes are undesirable for sensitivity analysis.  

4.2.2 Ranking with eETSI 

In this section, we take the exponentiation of the total effect entropy, and discuss the 

exponential entropy based total sensitivity index (eETSI) 
iT  and its il -based upper bound 

(UB). 
iT  are obtained using the mean values of the total effect entropy 

iTH  from Table 3 and 

4 with 810  samples, and the corresponding ( )H Y
e  for the output. 

The results of the sensitivity indices are shown in Figure 5 for both Ishigami function and G-

function. It can be seen that il -based upper bounds provide the same variable ranking as 
iT , 

although the bound can be loose for these non-linear functions. 

In addition, we have also calculated the variance based 
iTS , using 510  samples with 20 

repetitions, where the mean values are shown in Figure 5. It can be seen that the results from 

i  are generally consistent with 
iTS , especially for G-function where the sensitivity ranking 

are similar both qualitatively and quantitatively. 

Acc
ep

te
d 

M
an

us
cr

ip
t



For the Ishigami function, both indices have successfully identified the contribution of 3X  

which is the lowest. However, the relative importance of 1X  and 2X  are opposite from 
iT  

and 
iTS . We explain in the Supplementary Material: S5 that the interaction between 1x  and 

3x  is more influential for variance due to the squaring effect, as compared to the entropy 

operation which takes logarithm of the interaction. This difference increases towards the 

boundary as the interaction between 1x  and 3x  gets stronger towards   and  . And this 

helps to explain why 1x  is the most influential variable for the variance-based 
iTS . This 

example highlights that, despite many similarities, entropy and variance are fundamentally 
different, for example, the variable interactions are processed differently between them. Note 
that the difference between variance-based and entropy-based ranking for Ishigami function 
was also noted in Auder and Iooss (2008). 

5 A flood model case study 

The numerical examples in the previous section have demonstrated that the log-derivative il  

based upper bound can be potentially used as a screening proxy for entropy-based sensitivity 
indices, but only limited types of input uncertainty distributions were considered. 

To demonstrate for practical problems with a wide range of input distributions, a simple river 
flood physics model is considered. This model has been used by Lamboni et al. (2013) and 
Roustant et al. (2017) for demonstration of the use of Poincaré inequality for factor 
prioritization with DGSM, and as an example in GSA review (Iooss and Lemaître, 2015). 

This model simulates the height of a river, and flooding occurs when the river height exceeds 
the height of a dyke that protects industrial facilities. It is based on simplification of the 1D 
hydro-dynamical equations of SaintVenant under the assumptions of uniform and constant 
flow rate and large rectangular sections. The quantity of interest in this case is the maximal 
annual overflow Y:  

0.6

with
( ) /

m d b m

s m

Q
Y Z D D C D

BK Z Z L




 
       

 (14) 

where the distributions of the independent input variables are listed in Table 5. We have also 

added the exponential entropy ( )iH X
e  value for each variable in Table 5. The analytical 

expressions for differential entropy of most probability distributions are readily available and 
well documented. A comprehensive list can be found in Lazo and Rathie (1978). 

For a truncated distribution with the interval [a, b], its differential entropy can be found as: 
(Moharana and Kayal, 2020): 

truncated

( ) ( )
( ) ln

b

a

f x f x
H X dx

F F
 

   (15) 

where ( )f x  and ( )F x  are the original probability density function (PDF) and cumulative 

distribution function (CDF) of the random variable X respectively. ( ) /f x F  is the PDF of 
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the truncated distribution where ( ) ( )F F b F a   . As both ( )f x  and ( )F x  are analytically 

known, Eq 15 can then integrated numerically for the truncated entropy.  

The results for the sensitivity indices are shown in Figure 6, where the variance-based 
iTS  are 

directly obtained from Table 5 of Lamboni et al. (2013). According to Lamboni et al. (2013), 

the variance-based index was based on 72 10  model evaluations. The total effect variance 

indices 
iTS  have upper bounds that are proportional to the derivative-based DGSM 

i . The 

i -variance upper bounds (UB) are also shown in Figure 6, where the optimal Poincaré 

constants are used as the proportional constants (Roustant et al., 2017). 

In comparison, the exponential entropy based total effect sensitivity indices (eETSI) 
iT  are 

also shown in Figure 6, together with the derivative-based upper bounds for eETSI. It can be 

seen that, similar to the upper bounds for 
iTS , both il  and i  based entropy upper bounds are 

relatively close to 
iT , thus providing an efficient proxy for entropy-based total effect 

sensitivity indices. In this case, we can see that four input variables, , , ,s dQ K Z D , have been 

identified as the most important variables for maximal annual overflow, with L and B of 
negligible influence. And this conclusion is consistent from both variance-based 

iTS  and 

entropy-based 
iT , and their upper bounds. 

Note that as it is computationally difficult to estimate 
iT  accurately for this eight 

dimensional problems, the four least influential variables , , ,m bZ C L B  have been set at their 

mean values, thus reducing the problem to four dimensions, for the estimation of 
iT . Both 

derivative-based measures have been estimated using all set of input random variables, using 

the finite difference method with 1000 samples and a fixed increment step of 510 . 

From this physics example, we can see that the derivative-based upper bounds can be used as 
a proxy for the total effect entropy sensitivity analysis for models with a variety of input 
distributions. Similar to the variance case where the optimal Poincaré constants can be 
estimated numerically using the R sensitivity package (Da Veiga et al., 2021), it is also 

straightforward to calculate the normalization constant ( )iH X
e  for entropy-bounds. Better still, 

( )iH X  can often be analytically computed as entropy of many distribution functions are 

known in closed-form. The main computational cost for estimation of the total effect 
sensitivity proxies is thus the calculation of the partial derivatives, which is much more 
affordable than a direct estimation of the conditional variance or conditional entropy. 

6 Conclusions 

A novel global sensitivity proxy for entropy-based total effect has been developed in this 
paper. We have made use of the inequality between the entropy of the model output and its 
inputs, which can be seen as an instance of data processing inequality, and established an 
upper bound for the total effect entropy. This upper bound is tight for monotonic functions. It 
also provides similar input rankings for about three quarters of the 1000 random functions 
and can thus be regarded as a proxy for entropy-based total effect measure. Applied to a 
simplified flood analysis, the new proxy shows good ranking capability for physics problems 
with a variety of input distributions. 
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The resulting log-derivative il -based proxy is computationally cheap to estimate. If the the 

derivatives are available, e.g. as the output of a computational code, the proxy would be 
readily available. Even if a Monte Carlo based approach is used, the computational cost is 

typically in the order 310  or 410 , as compared to 710  or 810  for entropy-based indices. This 
computational advantage would be even more important for high dimensional problems. 
However, the numerical assessment has been limited to low dimensional examples, because it 
becomes prohibitively inefficient to compute conditional entropies with the Monte Carlo 
based histogram approach adopted in this paper. In subsequent works, we will explore neural 
network based density estimation techniques for efficient approximation of information-
theoretic quantities and extend the numerical assessment of the upper bound to high 
dimensions. 

In many physical applications, the input variables often have a dependence structure due to 
physical constraints. Unlike DGSM-based proxy, the inequality link between derivatives and 
entropy presented in this paper does not require the random inputs to be independent. This 
point is subject to further research, where numerical assessment needs to conducted to 

explore the screening power of il -based upper bound for dependent inputs. 

Drawing on the criticism of differential entropy based sensitivity indices, we propose to use 
its natural exponentiation and the resulting sensitivity measure 

iT  possesses many desirable 

properties for GSA, such as quantitative, moment independent and easy to interpret. The G-

function example shows that 
iT  is close to one for this product function, as opposed to 

the variance-based indices where the sum of sensitivity indices is equal to one for additive 
functions. As exponential entropy can be seen as a geometric mean of the underlying 

distribution, i.e. ( ) [ ln ( )]H X f x
e e

 , one of the future research is to examine the unique 
properties of GSA indices based on exponential entropy, and explore its decomposition 
characteristics for sensitivity analysis of different interaction orders. 

Supplementary Material 

Supplementary Manuscript. 

The supplementary materials contain eight sections: S1 for numerical estimation of entropy, 
S2 for analytical derivations for monotonic examples, S3 and S4 on interpretation of 
exponential entropy and its link to variance for sensitivity analysis, S5 for interpretation of 
Ishigami results, S8 for flood model data; S6 provides additional numerical illustrations of 
the upper bound using a randomised meta-function, while S7 provides examples with 
application to group input variables. 

Supplementary Code: 

Matlab codes to reproduce Figure 3. 
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Figure 1: An overview of the relationship between entropy and variance proxies where the 
entropy proxies developed in this paper are highlighted in the box with dash lines. 

 

Figure 2: Surface plots for the monotonic functions in examples 1 – 3 
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Figure 3: Convergence of the numerical estimated total effect entropy for monotonic 
examples 1 - 3. 

 

Figure 4: Example plot for the general functions considered. a) Scatter plot for the Ishigami 

function, 2 4
1 2 3 1sin( ) 7sin ( ) 0.1 sin( )y x x x x   , ~ ( , )ix    for 1,2,3i  . ; b) Surface 

plots for the G-function (2 variable plot), 
3

1

(| 4 2 | ) / (1 )i i i

i

y x a a


    , ~ (0,1)ix  for 

1,2,3i  . In this case, ( 2) / 2ia i  , for 1,2,3i  . A lower value of ia  indicates a higher 

importance of the input variable ix , i.e., 1x  is the most important, while 3x  is the least 

important in this case 
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Figure 5: Sensitivity indices for Ishigami function and G-function 

 

Figure 6: Total effect sensitivity indices for the flood model, from both variance-based 
iTS  

and entropy-based 
iT  and their upper bounds (UB). Recall il  is the log-derivative sensitivity 

measure and i  is DGSM. Note that for entropy upper bound, we use i  for a direct 

comparison with 
iT  as seen from Eq 13. Numerical data of the results presented here can be 

found in Supplementary Material: S8. 
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Table 1: Sensitivity results for 1 2/y x x .  

 
Variance-based K-L divergence based Entropy-based 

Variable  
iTS    

iTKL    
iT   

 
2

1 ~ (10)x    0.546 0.1571 0.510 

 
2

2 ~ (13.978)x   0.547 0.0791 0.213 

 

Table 2: Analytical results for five different monotonic functions, where derivations are given 
in Supplementary Material: S2. Note that ~[ ( | )]

iT iH H Y X  is the total effect entropy and 

ln ( ) /i il g x    x   

  

 1X    2X   

Examples  
1TH    1 1( )H X l   

2TH    2 2( )H X l  

Ex-1  2

1
x

y x e   0 0 1/2 1/2 

Ex-2  1 2y x x   -1 -1 -1 -1 

Ex-3  1 23y x x   0 0  ln3    ln3   

Ex-4  1 2
r

y x x    r    r    ln r r   ln r r   

Ex-5  
1

d

i i

i

y a x


    ln | |ia   ln | |ia   for all i  
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Table 3: Total effect entropy results for the Ishigami function, which are obtained for 
different number of samples. This is repeated for 20 times and the mean and standard 

deviation (std) are given. The results from 810  samples are compared to ( )i iH X l , for 

which the inequality in Eq 9 is clearly satisfied. 

 
Ishigami function 

 
 

2 4
1 2 3 1sin( ) 7sin ( ) 0.1 sin( )y x x x x     

Number of Samples 

 
1TH    

2TH    
3TH   

mean std mean std mean std 

1.00E+06 1.3902 0.0007 1.7614 0.0006 0.9701 0.0013 

1.00E+07 1.2978 0.0003 1.7023 0.0001 0.7693 0.0004 

1.00E+08 1.2335 0.0001 1.6609 0.0001 0.6066 0.0002 

 
 1X    2X    3X   

   

 ~[ ( | )]
iT iH H Y X  1.2335 1.6609 0.6066 

   

 ( )i iH X l   1.9024 3.0906 0.6626 
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Table 4: Sensitivity results for the G-function, where the inequality in Eq 9 is clearly 
satisfied. Same key as Table 3  

 

G-function  

3

1

| 4 2 |

1
i i

i i

x a
y

a

 


  with ( 2) / 2ia i   

Number of Samples 

 
1TH    

2TH    
3TH   

mean std mean std mean std 

1.00E+06 0.3477 0.0009 -0.1376 0.0013 -0.3988 0.0015 

1.00E+07 0.3398 0.0006 -0.1737 0.0005 -0.4482 0.0006 

1.00E+08 0.3378 0.0003 -0.1917 0.0002 -0.4738 0.0002 

 
 1X    2X    3X   

   

 ~[ ( | )]
iT iH H Y X  0.3378 -0.1917 -0.4738 

   

 ( )i iH X l   1.3863 0.9808 0.6931 
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Table 5: Entropy and distribution of the flood model input variables 

 
Variable Description Distribution Function 

Exponential Entropy 
( )iH X

e   

 1x   Q  
Maximal annual flowrate 

[m
3
/s] 

Truncated Gumbel (1013,558) on 

[500,3000] 
2051 

 2x   
sK   Strickler coefficient [ - ] 

Truncated Normal (30,
28 ) on [15, 

 ] 
30 

 3x   Z   
River downstream level 

[m] 
Triangular (49,50,51) 1.65 

 3x   mZ   River upstream level [m] Triangular (54,55,56) 1.65 

 5x   dD   Dyke height [m] Uniform [7,9] 2 

 6x   bC   Bank level [m] Triangular (55,55.5,56) 0.825 

 7x   L  
Length of the river 

stretch [m] 
Triangular (4990,5000,5010) 16.5 

 8x   B  River width [m] Triangular (295,300,305) 8.24 
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