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Abstract—Dementia poses a significant global challenge, with
profound personal, societal, and economic impacts. Although it
is incurable, early detection is crucial for ensuring appropriate
care and support. Dementia can impair a person’s speech and
language abilities, and studies have demonstrated promising re-
sults in using spoken language for automatic dementia detection.
Recently, deep learning-based self-supervised learning models,
such as wav2vec2.0 (w2v) and BERT, have shown success in
extracting acoustic and linguistic information. However, most
studies have relied on single datasets and relatively straight-
forward methods for extracting and combining acoustic and
linguistic modalities. This paper presents an in-depth exploration
of the application of SSL models in this context by proposing the
Two-Step Attention-based Feature Combination Cross-attention
system (TSAC-ATT) for speech-based dementia detection. The
contributions of this paper are as follows: i) we explore and
analyse acoustic and linguistic feature extraction pipelines using
SSL models, including the proposed TSAC framework to create
high-performing acoustic features from w2v’s contextual layers;
ii) we demonstrate that these features, when fused using cross-
attention, outperform various feature combination approaches;
iii) all experimental work is conducted on two publicly available
datasets (DementiaBank and ADReSS), as well as the IVA dataset
collected by the Royal Hallamshire Hospital, which includes
recordings of the standard Cookie Theft task. We present state-of-
the-art results, highlighting that acoustic-only features based on
the w2v model can achieve very high performance across multiple
datasets. Furthermore, we show that the upstream performance
of the automatic speech recognition module does not always
predict downstream classification performance.

Index Terms—Dementia detection, wav2vec2.0, BERT, feature
fusion, cross-attention.

I. INTRODUCTION

W ITH an ageing society, the number of people living

with dementia is rapidly increasing worldwide. An

estimated 55 million individuals were living with dementia

Yilin Pan is with the College of Artificial Intelligence, Dalian Maritime
University, China, and with the Department of Computer Science, University
of Sheffield, United Kingdom.

Bahman Mirheidari is with the Department of Computer Science, University
of Sheffield, United Kingdom.

Heidi Christensen is with the Department of Computer Science, University
of Sheffield, United Kingdom; and Centre for Assistive Technology and Con-
nected Health (CATCH), University of Sheffield, Sheffield, United Kingdom,
(e-mail: heidi.christensen@sheffield.ac.uk).

Daniel Blackburn is with the Academic Neurology Unit, University of
Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom.

in 2020, and this number is expected to rise to nearly dou-

ble every 20 years, reaching 139 million by 2050 [1]. The

term dementia encompasses a range of symptoms associated

with the loss of cognitive functioning, including memory,

speech and language, visual perception, problem-solving, self-

management, attention, and behavioural abilities, all of which

can interfere with daily life and activities [2]. The most

common cause of dementia is Alzheimer’s Disease (AD).

Common to most causes of dementia, individuals living with

AD experience a decline in their speech and language abilities,

even in the early stages [3]–[6]. Currently, clinicians use non-

invasive manual pen-and-paper assessment tools and invasive

diagnostic procedures, such as blood tests [7], to diagnose

dementia. However, the accuracy of simpler assessment tools

is often unsatisfactory, and further invasive methods, like

scans [8], require expert knowledge, are time-consuming, and

costly. This places health services under pressure and results

in frustratingly long waiting times for patients. Consequently,

there is a significant need for automatic, easy-to-use, accurate,

and affordable assessments that patients can undertake in

clinics or at home to alleviate current bottlenecks and resource

demands.

In the past decade, mainstream speech and language pro-

cessing techniques have seen substantial improvements in

performance and robustness, primarily due to increased access

to data and advancements in deep learning technologies [9],

[10]. Researchers have shown great promise in detecting early

signs of cognitive decline that may lead to dementia [11]–

[18]. The data used are mostly audio recordings of individuals

undertaking various assessments [19], [20]; notably, the picture

description task has been the focus of several studies [16],

[21]–[23]. The conventional spoken language-based dementia

detection system typically consists of a pipeline system that

includes a front-end feature extraction module and a back-end

classification module [24], [25]. Recently, however, end-to-end

systems based on self-supervised learning (SSL) models have

shown promising results in modelling dementia-related infor-

mation in spoken language across various datasets collected

from the picture description task [16], [26], [27].

The two main types of features utilised are acoustic and

linguistic features. For extracting linguistic information, Bidi-

rectional Encoder Representations from Transformers (BERT)

[9], a multi-layer bidirectional transformer encoder, has
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achieved excellent performance in multiple natural language

processing tasks, including linguistic-based dementia detection

[23], [26], [28], [29]. For the acoustic component, wav2vec2.0

(w2v), an SSL end-to-end automatic speech recognition (ASR)

system, has been employed to extract embedded acoustic

information for various classification tasks, such as speaker

verification [30], speech emotion recognition [31], and de-

mentia detection [23], [26], [27]. We further explore BERT

and w2v, both of which have previously demonstrated state-of-

the-art performance in dementia detection [26], [29], [32], to

evaluate their effectiveness in extracting acoustic and linguistic

information before designing an acoustic-linguistic feature

fusion system.

When constructing an automatic linguistic-based dementia

detection system, an ASR system is essential for transcribing

audio recordings into transcripts [16], [33]. Conventional mod-

ular ASR systems have been utilised for audio transcription

in dementia detection research, yielding promising results.

More recent studies have employed the pre-trained w2v system

[10], which has also shown promise in generating automatic

transcripts [26], [27], [34], [35]. Despite automatic transcripts

often containing errors that may lead to ambiguity, previous

research indicates that linguistic-based systems generally out-

perform acoustic-based systems [24], [33], [36]–[38], a trend

attributed to the greater informativeness of linguistic features

[39]. This paper first evaluates both the classic ASR system

and w2v ASR system for audio transcription, then revisits the

acoustic and linguistic features within the framework of state-

of-the-art SSL models, demonstrating that conclusions may

shift when assessed on larger datasets.

The contributions of this paper are summarised as follows:

Firstly, we explore and analyse acoustic and linguistic feature

extraction pipelines using w2v and BERT-based model [40],

including the proposed TSAC framework to create high-

performing acoustic features from w2v’s contextual layers.

Secondly, we demonstrate that these features, when fused

using cross-attention (TSAC-ATT), outperform various feature

combination approaches. Thirdly, all experiments are con-

ducted on two publicly available datasets (DementiaBank and

ADReSS [36]) as well as our own in-house dataset (IVA),

demonstrating the superior performance of the TSAC-ATT

system across all datasets. By designing these experiments,

we revisit inconsistent conclusions from previous research

to establish a more consistent understanding of spoken lan-

guage dementia detection system construction. The impact

of upstream performance from ASR systems is further ex-

plored, specifically comparing the classic ASR system with

the w2v ASR system, and how these affect the downstream

performance of dementia classifiers. The code to replicate

the results of this paper will soon be available at https:

//github.com/YilinSpeechandNLP/TSAC-ATTention.

II. RELATED WORK

The current mainstream spoken language-based dementia

detection features can be categorised into acoustic-based,

linguistic-based, and acoustic-linguistic fused approaches. The

remainder of this section introduces the typical linguistic and

acoustic features used for dementia detection in the literature,

followed by the acoustic-linguistic feature fusion strategies.

A. Linguistic-based Features

As dementia progresses, almost all aspects of language can

be affected [3]. To represent the changes caused by dementia,

researchers have proposed a bank of linguistic features to cap-

ture this, like Part-of-Speech-based [41], Type-Token-Ratio,

hesitation-related features, vocabulary variation and syntactic

complexity evaluation features. In recent years, deep neural

networks have started to be used for extracting linguistic

information directly from the transcripts. In 2019, we proposed

a hierarchical attention-based system for extracting both word-

level and sentence-level information for dementia detection

and achieved, at the time, state-of-the-art results (74.37% F-

score on automatic transcripts) on the DementiaBank (DB)

dataset [16]. In the next couple of years, BERT was shown to

provide superior performance for the dementia detection task.

The ADReSS [42] and ADReSSo [43] challenges, organ-

ised as part of Interspeech, aimed to provide researchers

with a benchmark dataset for linguistic- and acoustic-based

dementia detection tasks. In the thirteen papers published

in the Interspeech-2020 ADReSS special session [36], seven

papers used BERT for modelling the linguistic information

[28], [29], [44]–[47]. Similarly, among all the accepted papers

in the Interspeech-2021 ADReSSo special session, eight out

of eleven papers employing linguistic features used BERT.

Specifically, in [26], we used the BERT-based model for

extracting linguistic information from the ASR hypotheses

and confidence scores, which showed superior performance.

In our follow-up research [48], the BERT-based model was

successfully ported to the dementia regression task. Consider-

ing the superior performance of BERT in previous research,

here, BERT-based system is also adopted for modelling the

linguistic information embedded in the transcripts in this paper.

B. Acoustic-based Features

A person's voice (and therefore the acoustic aspects of their

speech) is also affected by dementia, and the changes can

often be seen many years before diagnosis [49], [50]. The most

popular speech-based features include the Mel Frequency Cep-

stral Coefficient (MFCC) [51], fundamental frequency (F0)

[52], the articulation rate, speech rate, disfluency, pause and

speech rhythm features [53]–[56]. In the ICASSP 2023 Signal

Processing Grand Challenge [57], a novel complementary and

simultaneous ensemble algorithm on acoustic and disfluency

features is proposed for acoustic feature extraction [58]. Usu-

ally, the extracted features have a relatively high dimension

to ensure that symptoms are described comprehensively, such

as the eGeMAPs feature set [59]. In addition to these hand-

crafted features, SSL deep neural networks, like w2v, started

to be used for extracting acoustic features and have shown

promising results.

In the eleven papers published in the Interspeech-2021

ADReSSo special session, the pre-trained w2v system [10]

was used by four papers [26], [27], [34], [35]. The w2v model
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Fig. 1: Diagram of the proposed two-step attention-based feature combination (TSAC) framework for combining the multiple

acoustic vectors into one single acoustic feature set.

is comprised of three parts: a Convolutional Neural Network-

based (CNN-based) local encoder, multiple contextualised

representations with transformers (contextual layers), and a

quantisation module. The vectors output by the contextual lay-

ers have been used as the acoustic representation. a layer-wise

method was proposed for selecting the vector output, among

the multiple contextual layers, as the layer that performs the

best on a development set [26]. Leonardo et al [31] proposed

to combine the output of different w2v's contextual layers by

using trainable weights learned jointly with the classification

task. In this paper, both of these two methods are replicated to

explore how to select the acoustic features generated by w2v.

C. Acoustic-linguistic Feature Fusion

In evaluating both acoustic and linguistic features, it is

crucial to consider the method of fusion, as previous research

has yielded inconsistent conclusions. Some studies suggest

that integrating acoustic and linguistic information may not be

necessary [32], [60], while others advocate for joint modelling

of these modalities [36], [37], [47], [61]–[64]. This paper will

explore whether integrating acoustic and linguistic information

is necessary and how the two types of features should be

integrated. Early fusion, which involves concatenating features

from both modalities before classification, is a prevalent

approach [39], [65]. However, its impact on classification

performance is variable and does not always surpass the

use of single modalities [26], [47]. To address this, cross-

attention has been proposed to balance modalities by using

an attention mask to emphasise features from one modality

in another before fusion [66]–[68]. This paper investigates the

application of cross-attention in the TSAC-ATT system for

dementia detection, focusing on the fusion of acoustic and

linguistic information.

III. TWO-STEP ATTENTION-BASED FEATURE

COMBINATION CROSS-ATTENTION SYSTEM

This section presents the SSL-based TSAC-ATT system,

which integrates vectors extracted from the contextual lay-

ers of w2v into a unified acoustic vector. This vector is

subsequently fused with the linguistic feature vector derived

from BERT outputs. The system is comprised of two com-

ponents: the TSAC feature combination framework and the

cross-attention feature fusion framework. Figure 1 illustrates

the TSAC feature combination framework, while Figure 2

depicts the complete TSAC-ATT system. The design of the

TSAC framework aims to enable the flexible integration of

multiple acoustic vectors from the w2v contextual layers into

a consolidated acoustic feature set, which incorporates learned

attention weights for subsequent feature fusion.

A. TSAC Feature Combination Framework

As illustrated in Figure 1, the proposed TSAC feature

combination framework consists of two steps. First of all,

the outputs from the multiple contextual layers of w2v form

an acoustic feature tensor of size [n,T, d], where T varies

with the length of the input audio recordings, n represents

the number of contextual layers in w2v, and d denotes the

feature dimension. For our system, n equals to 24 and d
equals to 1024. To produce fixed-length acoustic vectors

H ∈ [24, 1024], the acoustic feature tensor is averaged over

time, following the method detailed in [26]. As shown in the

figure, in STEP 1, a channel-level attention mechanism is then

applied to acoustic vectors H to calculate channel weights for

each dimension, yielding channel-weighted acoustic vectors

Ĥ ∈ [24, 1024]. For example, as illustrated in the figure, the

ninth dimension of the channel-weighted vector from the first

contextual layer (highlighted in red) is derived by multiplying

the vector from the first contextual layer by the corresponding

ninth dimension vector in the channel-level attention weights

matrix. Then, layer-level attention weights are applied to the

channel-weighted vectors to compute the learned layer weights

al. The equations describing STEP 1, as illustrated in Figure

1, are as follows:

ĥi = tanh(W chi + bc)

si = tanh(wlĥi + bl)

αi = softmax(si)

(1)
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where hi represents the ith vector extracted from the ith
contextual layer of w2v’s acoustic vectors H . The channel-

level attention weight matrix and bias are denoted by Wc

and bc, respectively, while wl and bl refer to the layer-

level attention weight vector and bias. These parameters are

initialised randomly. tanh is used as the non-linear function.

The term αi ∈ al represents the learned layer weight vector

before normalisation.

After obtaining the normalized learned layer weights α̂i ∈
âl, STEP 2 combines the acoustic vectors H with the normal-

ized learned layer weights âl to produce the layer-weighted

feature set v:

v = a
⊤

l H (2)

The proposed TSAC framework learns the 24-dimensional

layer weights by incorporating both channel-level and layer-

level information from the acoustic vector sets H for each

audio recording, which is designed to be trained in conjunction

with the cross-attention system described in Section III-B.

BERT Transformers

Feature Concatenation

Two-step Attention-based
Feature Combination

Acoustic Vectors
[24*1024]

Automatic
Transcripts

Classifier

Last Hidden Layer
Output [768]

Weighted Feature Set
[1024]

Cross-attention Mechanism

Acoustic Feature
[1024]

Linguistic Feature
[768]

Fully Connect Layer

Fig. 2: The diagram of the proposed TSAC cross-attention-

based feature fusion system (TSAC-ATT).

B. TSAC-ATT Feature Fusion System

The complete TSAC-ATT system is shown in Figure 2,

while the green block corresponds to the structure shown

in Figure 1. The acoustic vectors H are processed by the

TSAC framework shown in Figure 1 for getting the layer-

weighted acoustic feature set v, which is used for combining

with the linguistic features extracted from BERT. Similar to

[26], [48], the output feature matrix of BERT's last hidden

layer is averaged across time and used as the linguistic

feature set u. To fuse the layer-weighted feature set v with

the linguistic feature set u, the cross-attention technique is

used. Specifically, to complement the information embedded

in different modalities, cross-attention is applied by creating

query (q) xq from modality A (namely the acoustic feature

set), and key (k) xk, value (v) xv from modality B (namely

the linguistic feature set), as shown in Equation 3:

z = softmax

(

fq(xq)fk(xk)√
dk

)

fv(xv) (3)

where fq , fk, and fv denote the linear layers for the query

xq , key xk, and value xv components, respectively. The

feature dimension is represented by dk. The variable z refers

to the processed feature, which can be either the acoustic or

linguistic feature set as illustrated in Figure 2. The cross-

attention processed feature sets from the two modalities are

concatenated. All the parameters in the TSAC-ATT system,

as shown in Figure 2, are trained jointly.

IV. DATASET INFORMATION

The picture description task is a widely used method for

dementia detection, focusing on semantic knowledge and

retrieval memory [13]. The ”Cookie Theft” line drawing,

originally created for aphasia testing [69], is frequently used

as a prompt. Participants are asked to describe the picture,

and their responses are recorded for subsequent evaluation by

a neuropsychologist. This paper uses three datasets for the

experimental work, including publicly available datasets (DB

and ADReSS) and a dataset named IVA, (the abbreviation

of Intelligent Virtual Agent) collected by our collaborators at

the Royal Hallamshire Hospital (Sheffield, United Kingdom).

These datasets include audio recordings of picture descrip-

tions using the Cookie Theft picture, corresponding manual

transcripts, and clinically obtained diagnostic labels.

A. DementiaBank Dataset

With a total of 551 samples, it stands as the largest publicly

available speech dataset for evaluating cognitive impairment.

As detailed in Table I, the dataset comprises 222 samples

from 89 healthy controls (HCs) and 255 samples from 168

individuals with Alzheimer’s Disease (AD). The remaining

samples are from individuals with other forms of dementia or

those who transitioned from Mild Cognitive Impairment (MCI)

to AD during the data collection period. For the purposes of

this paper, only recordings from the AD and HC groups are

utilized, totalling 477 recordings.

TABLE I: Gender, age and duration (given in seconds) statis-

tics for the DB dataset.

Patient group Gender
(M:F)

Average
Age

Average
Duration

AD 85:170 71.60±(8.41) 56.14±(23.77)
HC 79:143 64.17±(7.99) 59.28±(31.40)
Others 44:30 68.29±(9.31) 54.82±(22.97)

B. ADReSS Dataset

The ADReSS dataset, created for the Interspeech-2020

challenge, was derived from a subset of the DB dataset

to achieve better balance in diagnostic classes, age, and

gender. To address the challenging audio quality of the DB
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dataset—characterised by high levels of environmental noise

and variable microphone placements—the ADReSS organisers

improved the recordings through noise removal and volume

normalisation. The information about the ADReSS dataset [42]

is shown in Table II. As opposed to the DB and IVA datasets,

the ADReSS dataset has separate test sets. In the training

set, there are 54 recordings from the HC and AD groups,

respectively. The test set also includes a balanced number of

recordings from the HC and AD groups; 48 recordings in total.

TABLE II: Gender, age and duration (given in seconds)

statistics for the ADReSS dataset.

Subset Patient
group

Gender
(M:F)

Average
Age

Average
Duration

Training
AD 24:30 66.91±(6.52) 82.24±(43.21)
HC 24:30 66.21±(6.41) 61.46±(20.76)

Test
AD 11:13 66.13±(7.28) 90.47±(51.75)
HC 11:13 66.13±(6.94) 74.55±(31.51)

C. IVA Dataset

The IVA dataset comprises recordings of individuals re-

sponding to memory-probing questions and performing verbal

fluency tests designed to simulate those used by neurologists

in clinical settings. For consistency with the other datasets, this

paper uses only the ”Cookie Theft” picture description portion

of the IVA dataset. As detailed in Table III, the dataset includes

a total of 62 recordings from healthy controls (HCs) and 29

recordings from individuals with Neurodegenerative Disorders

(NDs), which encompass Alzheimer’s Disease (AD), Vascular

Dementia, and Parkinson’s Disease. The audio quality of the

IVA recordings is superior to that of the DB dataset [70],

primarily due to the recordings being more recent (from 2016

onwards) [71].

TABLE III: Gender, age and duration (given in seconds)

statistics for the IVA dataset; UNK is used to represent the

unknown gender.

Patient
group

Gender
(M:F:UNK)

Average
Age

Average
Duration

HC 6:10:46 70.56±(8.44) 75.12±(33.61)
ND 12:10:7 69.77±(6.62) 69.38±(40.57)

D. Data Segmentation

As shown in Table I, Table II and Table III, which is too

lengthy for direct use in fine-tuning pre-trained w2v models.

Consequently, the recordings are segmented into segments

corresponding to the length of each sentence. The total number

of sentences and their average durations are detailed in Table

IV for each dataset. For the DB dataset, segmentation is

performed using the provided start and end times for each

sentence. The sentence-level audio recordings provided by

the ADReSS dataset, which have been enhanced for speech

quality, are used directly. In contrast, the IVA dataset is

segmented manually.

TABLE IV: Number of sentences and the average durations

for the three processed datasets (duration given in seconds).

Dataset # Sentences Average Duration

DB 5972 4.53
IVA 1208 6.53
ADReSS 4077 4.59

V. EXPERIMENTAL SETUP

This section first introduces the cross-validation (CV)

methodology employed to evaluate the proposed TSAC-ATT

system. Next, the ASR systems utilised for audio transcription

are detailed. Following this, the parameters for the linguistic

feature extraction systems, acoustic feature extraction systems,

and fusion systems are outlined.

A. Cross Validation Setting

CV was employed to train the dementia detection systems,

given the relatively small size of the datasets. For the DB and

IVA datasets, a ”speaker-independent” 10-fold CV approach

was used to ensure that no speaker appeared in both the

training (8 folds), testing (1 fold), or development (1 fold) sets

simultaneously. The CV lists for the DB dataset are available

on GitHub1 and align with those used in [16], [24]. The

corresponding results reported in Section VI are the averaged

result of the 10-fold test sets. For the ADReSS dataset, the

108 speakers in the training set were divided into 9 folds of

12 speakers each, as in [37]. Since the test set is fixed, the

reported test set results in Section VI are based on majority

voting from the predictions across the 9 folds.

B. ASR Systems Setting

To transcribe the audio recordings into text, two ASR

systems were evaluated: a classic system and an end-to-end

system. The classic ASR system utilised a Kaldi Librispeech

recipe [72], which provided a pre-trained time delay neural

network acoustic model. This model was then fine-tuned using

the transfer learning technique described by [73] (transferring

all layers). The 10-fold CV methodology as described in

Section V-A was employed to fine-tune the ASR systems

across all corresponding datasets(described in Section IV),

to generate the automatic transcripts. The end-to-end ASR

system utilised was the large model of w2v, which comprises

24 transformer blocks with 16 attention heads, initialised

with the pre-trained model Facebook/wav2vec2-large-960h-

lv60-self. A 10-fold CV was used for transcribing the audio

recordings into texts. For fine-tuning, the following parameters

were used: 20 epochs, a batch size of 1, and a learning rate

of 1e-5. The audio files were segmented into sentences as

described in Section IV, and the transcribed sentences were

concatenated with period punctuation (“.”). The trained model

was selected based on the Word Error Rate (WER) obtained

on the development set across the 10 folds.

Table V shows the WER of the two ASR systems. To

assess the impact of acoustic noise reduction applied to the

1https://github.com/YilinSpeechandNLP
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TABLE V: The WER of the two ASR systems on the different

datasets.

Test set Classic w2v

DB 33.19 48.43
IVA 25.31 35.06
ADReSS 52.33 57.31
DB-subset 37.42 50.66

DB subset used in ADReSS, we separately evaluated the ASR

performance on this subset (DB-subset). The results show

that the WER of transcripts generated by w2v is consistently

higher than that from the conventional classic ASR system

across all datasets. Since we used w2v without feeding any

language models data to the network, the word error rate is

still high. As a further work we could try to use both acoustic

and linguistic information from our training dataset. Notably,

the noise-reduced files in the ADReSS dataset are the most

challenging to recognise, while the corresponding DB-subset

files achieve WERs more comparable to those of the original

DB dataset. As noted, the IVA dataset, with its superior audio

quality, results in the best WER. In this paper, the audio

recordings from the DB, ADReSS and IVA datasets are not

further denoised. In our current work [74], we are working

on designing an AD specific speech enhancement system for

improving the denoised audio recording’s performance in the

downstream dementia detection system.

C. Linguistic-only System

BERT-for-Sequence-Classification is composed of multiple

transformer layers and a two-dimension fully connected layer

(here referred to as BERT) . It has successfully been used for

modelling the linguistic information and doing classification

in previous research [26], [29]. In this paper, it is trained

to evaluate the manual transcripts and automatic transcripts

generated by the ASR systems described in Section V-B. The

BERT base model that includes twelve layers of transformers

block with a hidden size of 768 and a number of self-

attention heads as twelve was initialised by https://github.com/

huggingface/transformers. The parameters in the BERT pre-

trained model are fine-tuned with the transcripts generated

by ASR on the AD classification task with the CV settings

described in Section V-A. The parameters were set as below:

the number of epochs was set to 8, the batch size was set to

4, and the max transcript length was set to 256. Transcripts

with a longer length were chunked, and shorter transcripts

were padded. These parameters were set according to the

performance of different datasets on the development set.

D. Feature Fusion System Setting

In this paper, the dimension of feature vector equals to 1024,

which corresponds to the dimension of the w2v contextual

layers. After processing by the designed TSAC framework,

the output from 24 contextual layers results in 24 vectors.

These extracted acoustic vectors are utilised as the input

for the TSAC framework. The BERT Transformers, featuring

twelve transformer layers, a hidden size of 768, and twelve

self-attention heads, was initialised using https://github.com/

huggingface/transformers. For the cross-attention mechanism

(ATT) introduced in Section III-B, the number of multi-head

attention nodes was set to 8, and the head dimension was

set to 64. As shown in Figure 1, for the TSAC framework,

the channel-level attention matrix W c ∈ [1024, 1024] and

layer-level attention vector w l ∈ [1, 1024] were initialised

randomly. The fully connected layer was used to reduce

the 1792-dimension concatenated feature into 256 dimensions

before doing classification. To train the feature fusion system,

the batch size was set to 4, and the number of epochs was

set to 8. The maximum length of each transcript was set to

256. These parameters were set according to the performance

of the development set.

E. Baseline Systems Setting

The TSAC framework is designed to combine multiple

acoustic vectors into a feature set, to be used in the subsequent

feature fusion system. In order to evaluate the proposed

TSAC feature combination framework, five baseline feature

processing systems were implemented as well. They can

be categorised into feature combination or feature selection

approaches. These are described below:

• Random: a feature selection approach designed to select

one acoustic vector out of multiple acoustic vectors.

• Last-layer: a feature selection approach which uses the

acoustic feature output by the w2v's last hidden layer as

the acoustic feature used for feature fusion [34], [35].

• Acoustic-select: also a feature selection approach. It uses

the acoustic feature output by the w2v's that achieved the

best result in the acoustic-only system as the acoustic

feature in the feature fusion system.

• Layer-wise: The layer-wise feature fusion method selects

the vector output by contextual layers that has shown the

best performance on a development set [26].

• Weighted: A feature combination method. The 24 acous-

tic vectors are combined using Equation 2, where the αi

variables are randomly initialised.

VI. RESULTS

In this section, we present the results obtained from eval-

uating our proposed systems. Firstly, in Section VI-A, We

compare the performance of the linguistic-only model against

both manually created transcripts and transcripts generated

the two ASR systems. Then, in Section VI-B, we assess the

efficiency of both the proposed TSAC framework and the

complete TSAC-ATT system using the datasets outlined in

Section IV.

A. Results with Different Transcripts

To compare the manual transcripts and the transcripts gener-

ated by the commonly used ASR systems, namely the end-to-

end and classic ASR systems, the BERT base model described

in Section V-C is fine-tuned and utilised as the linguistic-

only system. By comparing the transcripts generated by the

two ASR systems (the first and second lines), it is found
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TABLE VI: The linguistic-only results (%) by using the

fine-tuned BERT base system on the automatic transcripts

generated by the two ASR systems and manual transcripts.

Dataset Transcript Accuracy Precision Recall F-score

DB
Classic ASR 80.43 80.70 81.26 79.74
w2v ASR 80.04 80.34 80.04 80.06
Manual 81.76 82.64 81.76 81.76

IVA
Classic ASR 85.39 85.84 85.39 84.43
w2v ASR 86.36 86.09 86.36 86.01
Manual 84.27 83.96 84.27 83.65

ADReSS
Classic ASR 70.14 71.04 70.14 69.84
w2v ASR 77.08 77.13 77.08 77.07
Manual 77.08 77.51 77.08 76.99

DB-subset
Classic ASR 73.84 76.24 83.84 73.22
w2v ASR 82.61 82.61 82.61 82.61
Manual 77.08 77.51 77.08 76.99

that the transcripts from w2v, though having a significantly

higher WER (by referring to the results in Table V), actually

gives a marginally better performance than the transcripts from

the classic ASR system. For example, for the DB dataset,

the WER of the transcripts generated by the classic ASR

system is 33.19%, corresponding to a 79.74% F-score. In

comparison, the WER of transcripts generated by w2v is much

higher 48.43%, but the corresponding F-score is 80.06%. In

our current work [75], [76], it is demonstrated that some

information related to AD classification is embedded in the

w2v’s automatic transcripts. It is inferred that some AD-related

information embedded in the w2v’s automatic transcripts are

learned by our designed system, making the performance of

tha automatic transcripts better than the manual transcripts.

Furthermore, the manual transcripts are also used as the

input of the BERT system, as shown in the last line of

each dataset in Table VI. By comparing the results from

automatic and manual transcripts, it is found that the automatic

transcripts generated by w2v can perform better than or similar

to the manual transcripts when being used as the input of

BERT. Specifically, on the IVA dataset, the F-score is 86.01%

with automatic transcripts from the w2v system, compared

to 83.65% F-score with manual transcripts. Informed by the

results shown in Table VI, the transcripts generated by the

w2v are used in the following up experiments for evaluating

the feature fusion system.

B. Results on the TASC-ATT System

As discussed in Section III, TSAC-ATT system include two

parts: the TSAC framework and the ATT module. In this

section, the efficiency of the proposed TSAC framework is

analysed first. To this end, the TSAC framework is trained

by concatenating directly with the linguistic feature output

by BERT for feature fusion, which is similar to TSAC-ATT

but without the ATT part. The five feature combination or

selection methods described in Section V-E works as the

baseline systems. The corresponding results are shown in

Table VII. The best result for each dataset is indicated with

bold, and the second best result is indicated with underline.

As shown in Table VII, the proposed TSAC framework

performs the best or second best on all the datasets. The

TABLE VII: Results (%) using different feature combination

or selection methods for acoustic feature generation. The fused

features is generated by feature concatenation.

Dataset Method Accuracy Percision Recall F-score

DB

Random 78.57 78.60 78.57 78.58
Last-layer 72.06 72.13 72.06 72.08
Acoustic-select 80.76 80.75 80.82 80.81
Layer-wise 81.35 81.35 81.35 81.35
Weighted 77.94 77.98 77.94 77.95
TSAC 80.87 80.85 80.87 80.89

IVA

Random 86.36 86.09 86.36 86.01
Last-layer 86.52 86.28 86.52 86.19
Acoustic-select 85.63 85.57 85.59 85.64
Layer-wise 89.74 90.21 89.74 89.28
Weighted 84.09 83.68 84.09 83.68
TSAC 88.64 88.76 88.64 88.16

ADReSS

Random 77.08 77.13 77.08 77.07
Last-layer 72.45 73.72 72.45 72.62
Acoustic-select 75.41 74.98 74.40 75.43
Layer-wise 76.39 76.50 76.39 76.36
Weighted 75.00 75.17 75.00 74.96
TSAC 79.17 79.37 79.17 79.13

DB-subset

Random 79.17 79.37 79.17 79.13
Last-layer 73.15 73.47 73.15 73.19
Acoustic-select 79.30 79.30 79.30 79.30
Layer-wise 79.40 79.54 79.40 79.37
Weighted 83.33 85.57 83.33 83.30
TSAC 83.33 83.33 83.33 83.33

two feature selection methods (using the vector output by

w2v’s last layer or selecting the layer randomly), are tested

but overall showed an inferior performance to the fusion-

based approaches. In comparison, the layer-wise feature fusion

system got the best result on the IVA and DB datasets.

However, all the systems except the layer-wise feature fusion

system only need to be trained once using one acoustic vector,

whereas the layer-wise feature fusion needs to be trained 24

times by individually using 24 acoustic vectors (more analyse

provided in Section VII). The result shown in Table VII reveals

that TSAC is a superior acoustic feature processing framework

for getting a feature vector used for the feature fusion system

by considering both the performance and the time cost.

The results of using the TSAC-ATT system are presented in

Table VIII. Compared to the results that directly fuse acoustic

and linguistic features through concatenation, as shown in

Table VII, the results in Table VIII indicate that the cross-

attention mechanism contributes to the superior performance

of the proposed TSAC-ATT system. For example, the F-score

improves from 79.13% to 81.24% on the ADReSS dataset

after incorporating cross-attention into the TSAC framework.

Additionally, when compared to the linguistic-only results

presented in Table VI, our TSAC-ATT system demonstrates

superior performance across all provided datasets.

TABLE VIII: The results (%) of the TSAC-ATT system.

Dataset Accuracy Percision Recall F-score

DB 81.51 81.66 81.51 81.53
IVA 88.64 88.76 88.64 88.16
ADReSS 81.25 81.30 81.25 81.24
DB-subset 83.33 83.33 83.33 83.33
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Fig. 3: The relationship between the contextual layer depth and

F-scores using the vectors extracted from the corresponding

layer on the development set and test set. Dash line and solid

line are used to represent the result from the test set and

development set; real point and cross are used to represent

the best result in the test set and development set respectively.

VII. ABLATION STUDY

In this section, we first outline the motivation behind design-

ing the TSAC framework. Next, we provide a comprehensive

comparison of related systems using various modality inputs

to illustrate the robustness of our proposed TSAC-ATT system.

Finally, we visualise the layer weights obtained through two

feature combination methods, specifically, the layer-wise and

TSAC, to enhance the interpretability of the learned parame-

ters.

A. Motivation for Designing the TSAC framework

The motivation for designing the TSAC framework arises

from the varying performance of acoustic features extracted

from the different contextual layers of w2v. To explore the

relationship between the vectors extracted from these layers

and their performance in AD detection, this section uses

the output vectors from w2v’s contextual layers as acoustic

features in a pipeline system, classified by a TB classifier, as

described in [26] (here referred to as the acoustic-only system).

The F-score results for each layer across the development and

test sets are shown in Figure 3.

In previous research, the vector extracted from the last

contextual layer has been used as input for back-end classifiers

[26], [34], [35]. However, as illustrated in the figure, relying

solely on the last contextual layer does not guarantee superior

performance in the acoustic-only dementia detection system.

Analysis of different datasets reveals a similar trend among

the DementiaBank-related datasets (DB, ADReSS, and DB-

subset), where the middle layers demonstrate higher perfor-

mance. Also, as indicated by the results in Table VII, selecting

a specific layer as the acoustic feature vector cannot ensure

optimal performance across datasets for the fusion system.

Fig. 4: The relationship of F-scores (%) achieved by the

acoustic-only and layer-wise feature fusion systems using the

vectors extracted from the w2v's contextual layers on the four

datasets' test set.

While the layer-wise feature selection method ensures com-

parable performance on the feature fusion system (as shown

in Table VII), it is time-consuming. One idea is selecting the

acoustic vector extracted from a specific layer based on its

acoustic-only result, which is more straightforward. To this

end, the relationship between the F-scores of the acoustic-

only and layer-wise feature fusion systems using the vector

extracted from the same contextual layer is shown Figure

4. Only the locations of the best acoustic-only and feature

fusion results are marked. The figure also presents the Pearson

correlation (r) and p-value between the acoustic-only and

feature fusion systems. With a significance level set at a p-

value of 0.05, no significant correlation exists between the

performance of the acoustic-only system and that of the feature

fusion system using the same acoustic vector. In other words,

selecting an acoustic vector for layer-wise feature fusion

remains challenging depending on the performance of the

acoustic-only system.

To sum up, the vectors extracted from the contextual layers

of w2v can deliver superior performance for dementia de-

tection. However, the relationship between the performance

of multiple acoustic vectors from different layers and their

depth varies across datasets varies. This variability motivates

us to design a system that incorporates and processes multiple

vectors as a consistent representation.

B. Results Comparison

Acoustic-only Comparison: The published acoustic-only

results of the datasets used in this paper are summarised in

Table IX, together with our results. Our results are the test set

results corresponding to the contextual layer that exhibits the

best performance on the development set (shown in Figure 3).

As shown, the performance of our acoustic-only system on all

the datasets is excellent. Specifically, the F-score is 82.54%

using the acoustic feature only, which is superior to previous
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research on the DB dataset that uses acoustic information only.

In comparison, an accuracy of 78.70% [77] and 68.60% [38]

was respectively achieved by using popular acoustic feature

sets. In [76], an accuracy of 79.04% was achieved by learning

the disfluency information represented by the path signature

of the acoustic features.

Compared to the previous research on the ADReSS dataset,

the best acoustic-only F-score reported by the papers accepted

by Interspeech-2020 ADReSS special session was 72.62%

using the pre-trained VGGish system [78] for acoustic in-

formation extraction [47], compared to 70.78% F-score and

81.24% F-score achieved in Table IX on the ADReSS and DB-

subset datasets, respectively. Compared to our acoustic-only

method, which utilises a simple linear classifier for classifying

the w2v features, the method proposed by [47] used not only

the pre-trained VGGish model for feature extraction, but also

more complex classifier (a modified version of Convolutional

Recurrent Neural Network) for feature classification.

TABLE IX: The acoustic-only results (%) in previous research.

PRE: Precision, REC: Recall, FS: F-score, ACC: Accuracy.

Dataset Method ACC PRE REC FS

DB Mittal et al. [38] 68.60 - - -
DB Haider et al. [77] 78.70 - - -
DB Pan et al. [76] 79.04 - - 78.91
DB Ours 82.56 82.56 82.56 82.54

ADReSS Koo et al. [47] 72.92 73.96 72.92 72.62
ADReSS Ilias et al. [79] 63.33 66.01 55.83 60.30
ADReSS Ours 70.83 70.98 70.83 70.78
DB-subset Cummins et al. [37] 63.90 - - 63.90
DB-subset Ours 81.25 81.30 81.25 81.24

Linguistic-only Comparison: The published linguistic-only

results of the datasets used in this paper are summarised in

Table X, together with our linguistic-only results, using the

w2v as the automatic transcripts, and BERT as the classi-

fier. Though the hierarchical attention approach proposed in

[16] achieved state-of-the-art results on the DB dataset when

published, this is superseded by BERT on all the datasets.

Compared to previous research, The research reported in [37]

achieved an F-score of 81.30% with automatic transcripts,

whereas our linguistic-only system obtained 82.61% F-score

on the DB-subset and 77.07% F-score on the ADReSS dataset.

Additionally, the result presented in [38] showed 74.50% F-

score using automatic transcripts on the DB dataset, compared

to 80.06% F-score in this study.

Modality Comparison: The acoustic-only, linguistic-only

and feature fusion results of this paper on all the datasets are

shown in Figure 5. As shown, under the same condition, the

performance of different systems on the DB-subset dataset is

always better than the ADReSS dataset, though the noise level

of the audio recordings in the DB-subset is higher than in the

ADReSS dataset. These results demonstrate that the acoustic

enhancement method used in [36] has a detrimental effect on

the both ASR and classification performance.

As illustrated in Figure 5, the best result on the DB dataset

is 82.54% F-score with the acoustic-only system, compared

to 80.06% for the linguistic-only system and 81.53% for the

TSAC-ATT feature fusion system. Similarly, the best result

TABLE X: The linguistic-only results (%) by using the hier-

archical attention-based system and BERT on the automatic

transcripts generated by the classic ASR system. PRE: Preci-

sion, REC: Recall, FS: F-score, ACC: Accuracy.

Dataset System ACC PRE REC FS

DB Pan et al. [16] 76.76 76.73 76.76 76.74
DB Mittal et al. [38] 75.50 - - 74.50
DB Ours 80.04 80.34 80.04 80.06

ADReSS Pan et al. [16] 68.75 69.16 69.90 68.61
ADReSS Ours 77.08 77.13 77.08 77.07
DB-subset Cummins et al. [37] 81.30 - - 81.20
DB-subset Ours 82.61 82.61 82.61 82.61

Fig. 5: The results (F-score) from the acoustic-only, linguistic-

only and feature fusion by using the acoustic features and/or

transcripts output by w2v.

on the IVA dataset is 95.45% F-score from the acoustic-only

system, while the linguistic-only system achieves 84.43% and

the layer-wise feature fusion system reaches 89.28%. The

noticeable gap between the acoustic-only and feature fusion

systems is partly due to the high quality of audio recordings

in the IVA dataset, which ensures the extraction of high-quality

acoustic features from w2v. Previous studies have shown that

feature fusion systems often struggle to match the performance

of linguistic-only systems [32], [47], [60], but this is the first

study where the acoustic-only system shows similar limita-

tions. Encouraged by these findings, future research should

investigate how high-quality acoustic information embedded

in audio recordings can be extracted directly, without relying

on ASR-generated automatic transcripts.

C. Learned Layer Weights Analysis

To understand the two acoustic vector combination meth-

ods, specifically the weighted feature combination and TSAC

feature combination, the learned layer weights extracted from
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(a) Weighted feature combination (b) TSAC feature combination

Fig. 6: The learned weights of the weighted feature fusion method proposed in [31] (left) and the learned weights from HC

and AD/ND with the proposed TSAC framework (right).

the weighted feature fusion [31] and the TSAC framework are

shown in Figure 6. The learned weights using the weighted

feature fusion method are shown in Figure 6 (a), which is

difficult to interpret. In comparison, the learned layer weights

extracted from the trained TSAC framework are plotted in

Figure 6 (b). The weights learned for each acoustic feature

set correspond to each audio recording, meaning the weights

are distinctive for each recording. The recordings’ learned

weights are averaged for the two classes (HC and AD/ND).

As shown, the layer-level attention mechanism can learn the

acoustic difference between the recordings collected from the

HC and AD/ND.

VIII. CONCLUSION AND FUTURE WORK

This paper explored the application of robust SSL models,

specifically BERT and w2v, in the context of dementia de-

tection using two publicly available datasets as well as our

own in-house dataset, all centered on Healthy Controls and

individuals with dementia describing the Cookie Theft picture.

A secondary aim of the paper was to revisit the common

conclusion drawn in similar studies that acoustic-only systems

generally perform inferiorly compared to linguistic-based or

multimodal (acoustic and linguistic) systems.

The analysis of the correlation between the 24 contextual

layers of the w2v model and dementia detection performance

revealed no clear relationship between the performance of

vectors from different layers and their effectiveness in the

layer-wise feature fusion system. Notably, the best-performing

vector in the acoustic-only system did not yield optimal results

in the layer-wise feature fusion system. This finding motivated

the development of the Two-Step Attention-based Feature

Combination (TSAC) framework and its integration with

a cross-attention-based feature fusion (TSAC-ATT) system.

Comparisons among TSAC, TSAC-ATT, and various baseline

feature fusion systems demonstrated that both the TSAC

framework and the cross-attention mechanism significantly

enhance the performance of the proposed TSAC-ATT system.

A key finding highlights the impact of ASR system perfor-

mance on downstream classifiers. Our exploration of two ASR

systems, namely the classic and the end-to-end w2v, revealed

that despite the classic system generating transcripts with a

lower WER across all datasets, the w2v system outperformed

it in dementia detection. This aligns with previous work [26],

which demonstrated that using multiple ASR hypotheses and

their confidence scores could yield superior results, even when

WER was not minimised. Thus, relying solely on WER to

evaluate ASR systems is inadequate for optimising down-

stream performance. The acoustic-only SSL-based system

achieved outstanding results across three datasets, suggesting

the potential for developing high-performance, non-ASR de-

pendent systems. Such advancements could enable the creation

of more dialect- and accent-agnostic systems, crucial for fair

application in clinical settings without bias toward language

background [80].

Future work will delve into why w2v-generated transcripts,

despite a relatively high WER, can outperform other systems

in downstream dementia detection. Additionally, we aim to

develop more straightforward SSL systems for directly extract-

ing acoustic and linguistic information from audio recordings.

Finally, although this work presents a very comprehensive

evaluation across all publicly available dementia datasets,

exploring how these may be combined would also be of

interest (cross-corpora, cross-language and cross-disease ex-

perimentation).
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