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Abstract
Objectives: Inflammatory arthritis (IA) is considered the last stage of a disease continuum, where features of systemic autoimmunity can appear
years before clinical synovitis. Time to progression to IA varies considerably between at-risk individuals, therefore the identification of biomarkers
predictive of progression is of major importance. We previously reported on the value of three CD4þT cell subsets as biomarkers of progression.
Here, we aim to establish the value of 18 lymphocyte subsets (LS) for predicting progression to IA.

Methods: Participants were recruited based on a new musculoskeletal complaint and being positive for anti-citrullinated-peptide antibody.
Progression (over 10 years) was defined as the development of clinical synovitis. LS analysis was performed for lymphocyte lineages, naive/
memory subsets, inflammation-related cells (IRC) and regulatory cells (Treg/B-reg). Modelling used logistic/Cox regressions.

Results: Of 210 patients included, 93 (44%) progressed to IA, 41/93 (44%) within 12months (rapid progressors). A total of 5/18 LS were associ-
ated with progression [Treg/CD4-naı̈ve/IRC (adjusted P<0.0001), CD8 (P¼0.021), B-reg (P¼0.015)] and three trends (NK-cells/memory-B-cells/
plasmablasts). Unsupervised hierarchical clustering using these eight subsets segregated three clusters of patients, one cluster being enriched
[63/109(58%)] and one poor [10/45(22%)] in progressors. Combining all clinical and LS variables, forward logistic regression predicted progres-
sion with accuracy¼85.7% and AUC¼0.911, selecting smoking/rheumatoid-factor/HLA-shared-epitope/tender-joint-count-78 and Treg/CD4-
naive/CD8/NK-cells/B-reg/plasmablasts. To predict rapid progression, a Cox regression was performed resulting in a model combining smoking/
rheumatoid factor and IRC/CD4-naive/Treg/NK-cells/CD8þT cells (AUC¼0.794).

Conclusion: Overall, progression was predicted by specific LS, suggesting potential triggers for events leading to the development of IA, while
rapid progression was associated with a different set of subsets.
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Introduction

RA is a chronic autoimmune, inflammatory joint disease. A
pre-clinical phase of RA has been identified, also known as
the at-risk phase of the inflammatory arthritis continuum (IAC)
[1, 2]. The at-risk phase can last up to 15 years, during which ge-
netic and environmental factors contribute to the progression in-
cluding a break in tolerance and the development of systemic
autoimmunity manifested by the presence of autoantibodies
(particularly, anti-citrullinated peptide antibodies-ACPA). The

development of pain and other musculoskeletal symptoms in the
absence of synovitis precedes a final stage when synovitis devel-
ops. Treatment is conventionally initiated upon the detection of
clinical synovitis.

Given the success of treatment for early RA [3], predicting
an individual’s progression to IA/RA may enable preventive
interventions. However, the rate of progression to IA is �30–
40% depending on the criteria used to identify at-risk individ-
uals [4, 5]. ACPA and/or rheumatoid factor (RF) are widely
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used to identify such individuals, and various prediction mod-
els were established by combining demographic/genetic/clini-
cal/imaging data [6, 7].

The involvement of immune cells in RA pathogenesis has
been extensively described (T/B/NK-cells, monocytes [8–13]).
We established the predictive value of the frequencies of circu-
lating naive CD4þT cells, regulatory T cells (Tregs), and a
subset of naive cells (CD62L-) able to enter IL6-expressing tis-
sues (called inflammation-related cells IRC) for RA diagnosis,
for the induction of remission at first treatment, flares in
patients in clinical remission and ability to safely discontinue
anti-TNF [14–16]. In ACPAþ at-risk individuals, these three
CD4þT-cell subsets showed good predictive value as bio-
markers for progression to IA, both individually and when
combined with clinical variables [15, 17].

The specific cellular and molecular events that influence
progression to the next stage of the IAC [18] remain unclear.
Here, we test the hypothesis that the dysregulation of other
lymphocyte subsets (LS), in addition to the three CD4þT-cell
subsets previously reported [15, 17], may provide mechanistic
clues as to the cellular events underpinning the progression to
IA. Furthermore, we proposed to investigate whether an ex-
tended LS analysis (performed by hospital services on fresh
blood over a few hours), can provide an improvement of the
performances of current prediction models [15, 17] that are
using only three CD4þT-cell subsets in combination with de-
mographic and clinical data.

Patients and methods

Study cohort

Patients have been recruited in the Coordinated Programme
to Prevent Arthritis register since 2008. Ethical approval was
obtained (REC approval: 06/Q1205/169) and all participants
provided informed written consent.

Recruitment and follow-up have been described in a previ-
ous publication [6]. To sum up, recruitment criteria were a
new non-specific musculoskeletal complaint and ACPA
(detected by a routine hospital test) or RF positivity or as a rel-
ative to patients with RA, but in the absence of clinical synovi-
tis. Participants were followed until IA occurred. Progression is
defined by the development of inflammatory arthritis (clinical
synovitis) i.e. �1 swollen joint and evaluated by a senior rheu-
matologist. Patients with non-progression were included only if
they had >12 months of follow-up (details in supplementary
material, available at Rheumatology online). Data collected in-
cluded demographic (age, gender), lifestyle (smoking, alcohol),
genetic (shared epitope, HLA-SE), physical assessment (78 joint
tenderness, early morning stiffness), serology (RF) and inflam-
matory markers (erythrocyte sedimentation rate, C-reactive
protein).

Patients were selected from the register (which recruited
over 500 participants) if they had flow cytometry performed
(see below) and if they were ACPA-positivity by a second gen-
eration CCP-2 test (Immuno-CAP, Phadia, Sweden, positivity
cut-off at 10 OD), performed in our research lab as false posi-
tivity with the hospital test was recently described [19], and ir-
respective of positivity for RF.

All patients included in this study (n¼ 210), had data for
the CD4þT cells panel (naive, IRC) the lymphocyte count
panel (LS), and the Treg panels’ missingness is described.
Some were excluded due to technical issues (poor quality of

blood due to transport delays), while for the Treg panel, a
shortage of one antibody (FoxP3) led to the panel not being
done. For the CD8 panel, delays in transport were associated
with difficulties in gating the CD8-IRC subset. The B-cell
panel was introduced late (2015), hence limiting us to 210
patients among all participants in the register. Altogether,
150/210 patients had a full dataset and we imputed data for
individual subsets in 41 patients with >15/18 LS present. We
inputted data for the B-panel in 19 patients who had complete
data for all other LS.

LS were quantified by flow cytometry using five panels for
lineage: CD4þ/CD8þ T-cell subsets (naive, memory, IRCs);
Treg; B-cell subsets (naive, memory, plasmablasts, B-reg).
Detailed methodology is described in supplementary material
(available at Rheumatology online) and previously detailed
[15]. All blood samples were processed fresh within a few
hours of the collection after transport from the clinics to the
central NHS immunology laboratory in Leeds. The gating
strategies are illustrated in Supplementary Fig. S1, available at
Rheumatology online. LS frequencies were reported as the
percentage of the parental population. Age relationships for
specific cell subsets were previously described [20] and nor-
malisation was applied [15].

Statistical analysis

A Spearman correlation-based clustering algorithm (Cluster-
3, Stanford University 1998–99) was applied after log trans-
formation to assess collinearity between LS frequencies. A
heat-map was generated using TreeView.

Exploration of data was performed for univariate analysis
using Mann–Whitney U and v2 tests, between progressors
and non-progressors groups. Correction for multiple testing
was applied in univariate analysis using Bonferroni correction
[21, 22]. Variables were assessed individually for predictive
value using the unadjusted odd ratio (OR, 95%Cl) and area
under the ROC curve (AUC, 95%Cl). Logistic and Cox re-
gression modelling was used to predict progression using a
stepwise forward method [23], selecting the best combination
of variables for significant improvement of the fit. Missing
data imputation was performed using the tool for multiple im-
putation process in SPSS setting up the boundaries of data to
be inputted and then the ‘Imputing Missing Data Values’
function over five cycles. The estimates obtained from each
dataset (five imputation datasets) were aggregated to produce
an overall imputation estimate using the same SPSS package.
The pooled dataset after imputation was compared with the
non-imputed dataset to verify that ORs were not affected by
the imputation process. Pooled analysis was performed, and
ORs were not affected by the imputation process. Sensitivity,
specificity and positive/negative predictive values (PPV/NPV)
were calculated from the classification matrix of accurately
predicted cases obtained from logistic regression. A total of
14% of cases had one or another missing data, while we con-
firmed that data were missing at random using Little’s MCAR
test (P< 0.0001). WALD tests from the regression analyses
performed were used to assess the contribution of each of our
predictor variables.

A bootstrapping technique was used (500 permutations) to
calculate a discrimination index correcting for optimism be-
tween the predicted and actual outcome for the best regres-
sion models.

We used graphical diagnostics based on the scaled
Schoenfeld residuals to examine the proportional assumption
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for the Cox regression. This allowed us to assess whether the
hazard functions remained proportional over time.

Data were then analysed using the SPSS V27, R (V4.1.3);
P-values of <0.05 were considered significant.

Results

Cohort outcome

ACPAþ patients (n¼ 210) with a minimum of 12 months (up
to 10 years) of follow-up were selected from the overall co-
hort. Clinical data were retrieved and progression to clinical
synovitis was observed in 93/210 (44%) of participants, oc-
curring under 12 months in 41 patients (rapid progression),
within 13–24 months for 18 patients, with the last 33 pro-
gressing later than 2 years post inclusion and one patient after
10 years (Supplementary Fig. S2, available at Rheumatology
online). A total of 75% of progressors met the EULAR 2010
Classification criteria for RA at the time of progression with
an average of >3.5 swollen joints (range 1–15) and were di-
rected to our early arthritis clinic for further care.

Demographic/clinical data are described in Table 1.
Association between progression and data at inclusion sug-
gested two highly significant parameters (HLA-SE/RF, MWU
P<0.0001 after correction) and another three potential asso-
ciations (smoking/EMS/TJC78, MWU P< 0.05), consistent
with published reports in this cohort [6]. AUCs were calcu-
lated suggesting high values for RF/HLA-SE (AUC> 0.650,
P<0.0001) and for smoking/TJC78/EMS (AUC> 0.600,
P<0.010). The individual contribution to the prediction was
however relatively small for all parameters with 19% for RF
(Wald test) and >8% for the other three variables. Of note,
no difference in ACPA levels were detected between progres-
sors (mean 335 OD) or non-progressors (341 OD) as well as
between rapid (355 OD) and delayed (344 OD) progressors.

Flow cytometry analysis and univariate association

with progression

The overall results of LS phenotyping (Fig. 1, Table 2) showed
significant association with progression for five subsets: lower
naive CD4þT cells, Treg (P< 0.0001) and CD8þT cells
(P¼ 0.021), and higher CD4-IRC (P< 0.0001) and B-reg
(P¼ 0.015). Three more subsets, higher NK-cells CD56bright,
higher memory B cells and lower plasmablasts showed non-

significant difference (after correction) that may nonetheless
suggest other biological events leading to progression.

AUCs were calculated and the same eight LS had signifi-
cant/possible predictive values for progression. Of note, Treg,
naive CD4þT cells and IRC showed the highest contribution
to the prediction (Table 2, Wald score 27%, 15% and 12%,
respectively) while each, >6% for CD8, CD56, Breg and plas-
mablasts. These subsets had high specificity for progression
(all >80%) but relatively low sensitivities (32–40%), except
for CD4þTreg (60%) (Supplementary Table S1, available at
Rheumatology online).

There was only one significant correlation between two sub-
sets (naive B cells/memory B cells, rho¼�0.885, P< 0.0001).

Clusters of patients

To define groups of patients with similar LS profiles, we used
hierarchical clustering, while not specifying the outcome (unsu-
pervised). A pilot analysis using heat-map of frequencies
(Supplementary Fig. S3, available at Rheumatology online),
showed three distinct distributions of the LS. Each group con-
tained one of the highly predictive subsets, suggesting that these
were dysregulated independently of each other. The analysis
also segregated patients into three clusters with different pro-
portions of progressors (P< 0.0001) suggesting that different
LS profiles can discriminate patients with different outcomes.

We repeated this approach limiting data to the eight subsets
identified above. This analysis distributed LS in four groups
and patients in three clusters (Fig. 2). The first subset LS
group (purple) included only plasmablasts, the second (or-
ange) included naive CD4þT, B-reg and NK-CD56bright cells;
the third (pink) combined memory B cells, Treg and CD8þT
cells; the last group (blue) with IRC-CD4 alone. Cluster-I was
defined by high Treg and high naive CD4 but very low IRC-
CD4 and was mainly composed of non-progressors 47/60
(78%). Cluster-II was mainly driven by high plasmablasts
while Tregs were also high and CD4þIRC low. This profile
was associated with a mixed outcome of 17/41 (42%) pro-
gressors and 24/41 (58%) non-progressors. In the largest
cluster-III, IRC-CD4 were particularly high and all other LS
showed mixed patterns defining subgroups of patients. The
proportion of progressors in cluster III was 58% (63/109),
which was significantly different from the other two clusters
(P< 0.0001).

Table 1. Association of demographic and clinical data with progression (n¼ 210)

Progressors n¼ 93
(44.3%)

Non-progressors
n¼ 117 (55.7%)

Adjusted
P-valueb

AUROC
(95%CI) P-value

Unadjusted OR
(95%CI) P-value

Wald
test

Age (years)a 53.0 (43,63) 51.0 (42,61.) 0.292 0.542 (0.464–0.620) 0.292 1.013 (0.993–1.033) 0.217 1.5
Gender (Female) 60 (64.5%) 87 (74.4%) 0.132 0.549 (0.470–0.628) 0.221 1.595 (0.881– 0.888) 0.123 2.4
Alcohol (unit) 4.40 (0.0,10.15) 4.50 (0.0,9.80) 0.327 0.461 (0.383–0.540) 0.335 0.994 (0.974–1.014) 0.564 0.3
Smoking Never

Ever
23 (24.7%) 70 (75.3%) 53 (45.3%) 64 (54.7%) 0.002 0.603 (0.526–0.679) 0.011 2.520 (1.390–4.571) 0.002 9.3

HLA-SE [positive] 68 (73.1%) 56 (47.9%) <0.0001 0.626 (0.551–0.702) 0.002 2.963 (1.651– 5.316) <0.0001 13.3
RF [Positive] 57 (61.3%) 35 (29.9%) <0.0001 0.657 (0.582–0.732) <0.0001 3.710 (2.087–6.593) <0.0001 19.9
ESR (mm/h)a 14 (6.5,20.00) 12.0 (7.0,20.5) 0.343 0.538 (0.459–0.617) 0.344 1.019 (0.993–1.045) 0.162 1.9
CRP (mg/L)a 3.180 (0.99,6.795) 3.00 (0.57,5.76) 0.159 0.557 (0.479–0.635) 0.159 1.044 (0.995–1.096) 0.082 3.0
EMS (min)a 22 (0.,60.) 5 (0,30.) 0.007 0.604 (0.527–0.681) 0.009 1.007 (1.000–1.014) 0.044 4.0
TJC78a 1 (0,3) 1 (0,2.) 0.009 0.601 (0.524–0.678) 0.012 1.113 (0.992–1.249) 0.068 3.3

Categorical data are presented as n (% of participant).
a Numerical data are presented as median (Interquartile range values); MWU Mann-Whitney U and v2 tests for continues and categorical variables,

respectively, were used.
b Tests adjusted for 10 comparisons (adjustment of the P-value was performed by applying Bonferroni correction method for multiple comparison test).

AUROC: area under the roc curve; EMS: early morning stiffness; HLA (SE): human leucocyte antigen (shared epitope); TJC: tender joint count.
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There was no difference in any demographic or clinical
data between these three clusters of patients. We, however,
observed higher levels of ACPA (P¼ 0.012) in cluster III
(CCP2-test: mean 220 OD) compared with cluster I (158
OD,) but not with cluster II (243 OD, P¼0.177). No associa-
tion was seen between plasmablasts and ACPA (or RF) levels.

Multivariate modelling for the prediction of

progression to IA

We previously reported predictive value for three CD4þT cell
subsets (naive/IRC/Treg) [15]. Modelling using an enter ap-
proach in these 210 patients (as in previous work,

Figure 1. Frequency of lineage and lymphocytes subsets in at-risk progressors vs non-progressors. LS were analysed by flow cytometry and data

displayed as violin plots (each dot representing a patient) for Progressor (Prog, n¼ 93) and non-Progressors (Non-Prog, n¼ 117). Star (*) indicates LS that

were normalised as previously described [15]. P-value corrected for multiple testing (MWU test) are indicated when significant and # designate trends
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Table 2. Association of 18 LS with progression (n¼ 210)

Missing
data n (%)

Progressors
n¼93 (44.3%)

Non-progressors
n¼117
(55.7%)

Adjusted
P-valuea

AUROC
(95%CI) P-value

Unadjusted OR
(95%CI) P-value

Wald
test

CD4 T cells none 52.11 (46.41 56.96) 51.18 (45.98 56.35) 0.479 0.528 (0.450–0.607) 0.479 1.014 (0.982–1.048) 0.394 0.7
CD8 T cells 19 (9%) 15.34 (11.57 21.97) 17.98 (13.68 23.46) 0.021 0.407 (0.330–0.485) 0.021 0.952 (0.917–0.988) 0.009 6.8
B cells none 10.73 (7.9713.55) 11.44 (7.41 14.66) 0.503 0.473 (0.395–0.551) 0.503 0.972 (0.917–1.030) 0.337 0.9
NK cells CD56bright none 0.37 (0.27 0.53) 0.41 (0.27 0.57) 0.154 0.447 (0.369–0.524) 0.164 0.485 (0.178–1.317) 0.156 2.0
NK cells CD56dim none 9.69 (7.10 12.53) 8.61 (6.85 11.67) 0.207 0.551 (0.472–0.629) 0.205 1.052 (0.987–1.120) 0.117 2.5
NKT cells none 1.78 (1.01 4.16) 1.93 (0.96 3.87) 0.878 0.506 (0.427–0.586) 0.878 1.021 (0.943–1.106) 0.610 0.2
Naı̈ve CD4 cellsb 13 (6.5%) 0.42 (�10.10 10.58) 5.74 (�2.59 16.38) <0.0001 0.355 (0.280–0.429) <0.0001 0.956 (0.934–0.978) <0.0001 14.8
Memory CD4 cellsb 23 (11%) �6.23 (�11.34–0.38) �7.81 (�11.93–1.17) 0.327 0.539 (0.461–0.618) 0.327 1.016 (0.979–1.055) 0.407 0.7
IRC CD4 cells 13 (6.5%) 2.40 (1.00 4.50) 1.00 (0.30 2.50) <0.0001 0.658 (0.584–0.732) <0.0001 1.245 (1.098–1.411) <0.0001 11.7
Treg CD4 cellsb 20 (9.3) �1.41 (�2.71–0.13) 0.01 (�1.10 1.64) <0.0001 0.273 (0.205–0.342) <0.0001 0.651 (0.554–0.765) <0.0001 27.0
Naı̈ve CD8 cellsb 35 (16.5%) 6.16 (�2.60 14.78) 6.91 (�0.82 14.78) 0.448 0.469 (0.391–0.548) 0.448 0.992 (0.973–1.011) 0.387 0.7
Memory CD8 cellsb 36 (17%) �20.22 (�28.92–7.65) �21.32 (�30.83–9.72) 0.533 0.525 (0.477–0.603) 0.533 1.006 (0.988–1.024) 0.516 0.4
Exp-memory like CD8 cells 39 (19%) 7.60 (4.46 12.40) 8.20 (5.32 12.40) 0.296 0.458 (0.379–0.537) 0.296 0.980 (0.945–1.017) 0.281 1.2
IRC CD8 cells 37 (18%) 11.50 (5.55 25.09) 12.20 (5.60 19.90) 0.959 0.498 (0.418–0.578) 0.959 1.006 (0.986–1.027) 0.536 0.4
Naive B cellsb 19 (12.6%) �0.50 (�11.19 8.83) �3.39 (�15.106.94) 0.190 0.554 (0.476–0.632) 0.189 1.014 (0.995–1.033) 0.179 2.2
Memory B cellsb 0.10 (�7.35 12.42) 4.05 (�7.89 14.42) 0.135 0.440 (0.362–0.518) 0.138 0.986 (0.967–1.004) 0.125 2.4
Regulatory B cells 1.42 (�0.05 3.56) 0.60 (�0.47 2.05) 0.015 0.598 (0.520–0.677) 0.015 1.164 (1.021–1.325) 0.021 5.3
Plasmablasts 0.80 (0.30 1.20) 0.50 (0.30 0.95) 0.105 0.565 (0.486–0.644) 0.106 1.119 (0.873–1.432) 0.175 0.8

Data are presented as median (interquartile range values).
a MWU Mann–Whitney U test adjusted P-value for 18 comparison (adjustment of the P-value was performed by applying Bonferroni correction method for multiple comparison test).
b Normalised subsets.

AUROC: area under the roc curve; Exp-: expanded; IRC: inflammatory-related cells; NK: natural killer; NKT: natural killer-T; Treg: regulatory T cells.
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Supplementary Table S2, available at Rheumatology online)
[15], confirmed previous data with an accuracy¼ 78.6% with
an AUC¼ 0.880, although IRC did not independently con-
tribute to this model (P¼0.144).

We then used logistic regressions with a forward approach
(Table 3) to determine the predictive value of the demo-
graphic/clinical data alone (model-1), of the LS alone (model-
2) and of the combination of both datasets (model-3).

Figure 2. Unsupervised hierarchical clustering of the 8 subsets associated with progression to IA (n¼ 210). An unsupervised hierarchical clustering

algorithm was applied to log transformed frequencies for 8 LS and results are displayed as a heat-map of data. This clustering algorithm builds

relationships between LS frequencies based on spearman rank correlations, and segregated patients into 3 clusters (I, II and III), annotated with the % of

progressors. The first group of LS (plasmablasts only) shows particularly high frequencies in patient cluster-II . The 2nd group with 3 subsets (naı̈ve

CD4þT cells, B-reg, and NK CD56high) defined Cluster-II. The third group with 3 subsets (Memory B-cells, Treg and CD8þT cells) allows to define both

Cluster I and II. The last group (IRC-CD4þT only) shows exclusively high frequencies in cluster-III with lower frequencies in Cluster-I and II. The proportion

of progressors to IA in the 3 clusters was significantly different (P< 0.0001). The bar with shades of colours (right hand-side) indicated the frequency

observed for each LS from highest to the lowest
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Model-1 selected four parameters in a stepwise construc-
tion, starting with RF, then sequentially adding HLA-SE,
TJC78 and smoking. This model accurately predicted 70% of
cases, with SEN/SPE¼ 56%/81.2% and a good NPV/
PPV¼ 70%, with an AUC¼ 0.744 (Fig. 3A). However, only
25% of the variance for predicting progression was accounted
for (Nagelkerke R-square) and individual variable contribu-
tion was 17% for RF and <7% for the other three (individual
Wald score).

Model-2 excluded many subsets and retained only five:
Treg, naive CD4þT cells, CD8þT cells, B-reg and finally NK-
CD56bright cells with an overall accuracy¼77.6%. An addi-
tional step adding plasmablasts (not independently predictive)
still increased accuracy (þ7.6%) with an improvement of
AUC¼0.862 (þ12%) compared with model-1. Model-2
accounted for 50% of the variance with Treg (34%), naive
CD4þT cells (32%) and CD8 (14%) contributing with the
highest and other LS EACH for >6%.

Combining both datasets, Model-3 showed added value
(þ8.1% accuracy > model-2) using 10 steps selecting Treg
and naive CD4þT cells, then smoking/RF, followed by
CD8þT cells, TJC78/HLA-SE and finally NK- cells-
CD56bright, plasmablasts and B-reg. Model 3 had final accu-
racy¼ 85.7% and AUC¼ 0.911 (þ 4.9% compared with
model-2), altogether accounting for 62% of the variance with
again Treg (30%), naive CD4þT cells (29%), CD8 (12%)
and RF (10%) contributing the most with <7% for all other
variables.

We further applied internal validation to model-3 to correct
for optimism using a bootstrapping technique (500 permuta-
tions), resulting in an optimised Dxy-value¼0.458. We ran a
calibration and observed no overfitting of the bootstrapping
technique (slopes was close to 1; Supplementary Fig. S5, avail-
able at Rheumatology online).

The high PPV/NPV of model-3 (77%/86%) suggests that it
is possible to predict individuals who are likely to progress
while identifying those who have low risk and may be moni-
tored less often (even discharged). In this cohort, using dichot-
omisation based on the probability to progress calculated for
each patient in model-3, 65/210 could be deemed high-risk
(Fig. 3B, i.e. probability >80%) and all but six progressed
(91% accurate). Alternatively, 78/210 cases were low-risk
(i.e. probability <20%) and only six (7.7%) progressed over
10 years.

Modelling rapid progression to IA

Time to progression is widely distributed in this cohort rang-
ing from 1–120 months. Different LS associations may there-
fore be involved at different stages of the progression, and
some may be more predictive of the onset of IA symptoms
than others. A total of 41/93 (44%) of the progressors did so
rapidly and we re-analysed these progressors using a Cox
regression.

The assumption or proportional hazard was verified for all var-
iables in model 6 (Supplementary Fig. S4, available at
Rheumatology online). Cox regression models were constructed
using the same forward approach (Table 3). Un-adjusted hazard
ratio (HR) for time to progression was significant for four clinical
variables (smokers/HLA-SE/RF/EMS, CRP showing a trend) and
for six LS (Treg/naive CD4þT cells/CD4-IRC/CD8þT cells/NK-
CD56dim/B-reg).

Model-4 (demographic/clinical only) retained three varia-
bles sequentially, starting with RF, TJC78, and smokers with

an AUC¼ 0.702. Model-5 (LS only) used 4 steps and retained
Treg, naive CD4þT cells, CD8þT cells and B-reg, with an im-
proved AUC¼ 0.773. Model-6 (combined datasets) used
seven steps with Treg, RF and CD4-IRC then smokers, NK-
CD56dim, naive CD4þT cells and finally CD8 T cells, with an
AUC¼ 0.794, showing significant discrimination index X2

for the included variables, ranging from 31.0 for Treg to 0.00
for NK-CD56dim cells (Fig. 3C). The bootstrapping approach
showed that optimism corrected Dxy¼0.533. The calibration
also showed no overfitting of the bootstrapping technique
(Supplementary Fig. S5, available at Rheumatology online).

Being able to identify individuals at high risk of rapid pro-
gression would allow for the design of a clinical trial aiming
at the prevention of progression within a short trial duration
of only 12 months. In this group, 22 participants were dicho-
tomised based on a high-hazard (individual X-beta score val-
ue> 2) for rapid progression in model-6, and 20 (91%)
progressed (Fig. 3D).

Applicability for daily practice

Flow cytometry is routinely used in Leeds and worldwide. We
therefore evaluated the gain in terms of accurate stratification
of adding LS panels (cost/time/technology) over only using de-
mographic/clinical data. Individual participants’ probability
of progression was dichotomised (based on a cut-off at 80%
specificity) into high/low risk groups, for the demographic/
clinical data then sequentially adding 1–4 flow-cytometry
panels (Supplementary Table S3, available at Rheumatology
online).

The stratification showed 70% accuracy for the reference
model (Fig. 3E). Adding the Treg panel increased accuracy to
75.2%. Adding the naive CD4þT cells panel showed further
accuracy¼ 80.4% while adding CD8þ/NK-cells (lineage
panel) and then B-reg (B-cell panel) only achieved a marginal
improvement of accuracy (to 81%/81.5%, respectively). The
AUC, however, was still improving with every incremental
step and all four panels added value.

A similar analysis for imminent progression suggested that
only three panels would be needed while the performances
clearly improved with the three steps (Supplementary Table
S4, available at Rheumatology online).

Discussion

Our study demonstrated the value of extensive phenotyping
of LS to predict progression to IA in ACPAþ at-risk individu-
als. The clustering analysis suggested that progressors are as-
sociated with specific LS profiles, cluster–III dominated by
high CD4-IRC and cluster-II by high plasmablasts/Treg. Non-
progressors (cluster-I) were characterised by high Treg/CD4-
naive and low plasmablasts/CD4-IRC. These profiles were
not associated with any particular demographic/clinical data,
suggesting that they are independently regulated from any ge-
netic/environmental or inflammatory events. We, therefore,
confirmed previous data for CD4þT-cell subsets and further
identified LS associated with progression, providing clues to
the identity of cells (CD8/NK/B-cells) involved in the events
triggering or associated with progression. Importantly, differ-
ent subsets were retained in the modelling for overall com-
pared with imminent progression, suggesting a time frame for
different biological roles/triggers. Overall, our data confirm
that wider LS dysregulation precedes the development of
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Table 3. Modelling for the predicting of overall and rapid progression

Logistic regression OR (95% CI) P-value (Wald test) n¼ 210 COX regression HR (95% CI) P-value (Wald test) n¼ 158

Unadjusted Model 1 Model 2 Model 3 Unadjusted Model 4 Model 5 Model 6

Smokers (ever) 2.520 (1.390–4.571)
0.002 (9.3)

2.282 (1.1.187–4.388)
0.013 (6.1)

Not included in
the model

3.158 (1.264–7.891)
0.014 (6.1)

2.005 (1.250–3.216)
0.004 (8.3)

2.662 (1.249–5.673)
0.011 (6.5)

Not included in
the model

3.688 (1.685–8.074)
0.001 (10.7)

HLA-SE positive 2.963 (1.651– 5.316)
<0.0001 (13.3)

2.527 (1.335–4.782)
0.004 (8.1)

2.871 (1.212–6.800)
0.017 (5.7)

2.039 (1.288–3.228)
0.002 (9.2)

Not retained Not retained

RF positive 3.710 (2.087–6.593)
<0.0001 (19.9)

3.600 (1.947–6.656)
<0.0001 (16.7)

3.890 (1.681–9.004)
0.002 (10.0)

2.659 (1.743–4.056)
<0.0001 (20.6)

4.767 (2.365–9.610)
<0.0001 (18.9)

4.784 (2.173–10.532)
<0.0001 (15.1)

TJC78 1.113 (0.992–1.249)
0.068 (3.3)

1.178 (11.039–1.336)
0.010 (6.6)

1.261 (1.062–1.497)
0.008 (7.0)

1.058 (0.984–1.137)
0.127 (2.3)

1.203 (1.070–1.352)
0.002 (9.5)

Not retained

CD8 T cells 0.952 (0.917–0.988)
0.009 (6.8)

Not included in
the model

0.911 (0.867–0.957)
<0.0001 (13.7)

0.908 (0.859–0.959)
<0.001 (12.0)

0.960 (0.932–0.989)
0.006 (7.4)

Not included in
the model

0.943 (0.905–0.982)
0.005 (7.9)

0.950 (0.911–0.991)
0.018 (5.6)

NK cells CD56bright 0.485 (0.178–1.317)
0.156 (2.0)

0.155 (0.038–0.631)
0.009 (6.8)

0.143 (0.027–0.751)
0.022 (5.3)

0.649 (0.294–1.434)
0.285 (1.1)

Not retained Not retained

NK cells CD56diml 1.052 (0.987–1.120)
0.117 (2.5)

Not retained Not retained 1.047 (1.005–1.090)
0.028 (4.8)

Not retained 1.065 (0.999–1.136)
0.054 (3.7)

Naı̈ve CD4 cellsa 0.956 (0.934–0.978)
<0.0001 (14.8)

0.899 (0.867–0.932)
<0.0001 (32.6)

0.892 (0.855–0.930)
<0.0001 (28.8)

0.973 (0.958–0.989)
<0.001 (11.1)

0.931 (0.906–0.956)
<0.0001 (25.8)

0.954 (0.926–0.984)
0.003 (9.1)

IRC CD4 cells 1.245 (1.098– 1.411)
<0.0001 (11.7)

Not retained Not retained 1.055 (1.021–1.090)
0.001 (10.2)

Not retained 1.113 (1.000–1.238)
0.049 (3.9)

Treg CD4 cellsa 0.651 (0.554–0.765)
<0.0001 (27.0)

0.518 (0.416–0.646)
<0.0001 (34.2)

0.489 (0.374–0.630)
<0.0001 (30.4)

0.765 (0.689–0.851)
<0.0001 (24.6)

0.638 (0.544–0.747)
<0.0001 (30.8)

0.656 (0.554–0.776)
<0.0001 (24.1)

Regulatory B cells 1.164 (1.021–1.325)
0.021 (5.3)

1.253 (1.061–1.479)
0.008 (7.0)

1.205 (1.1001–1.451)
0.049 (3.9)

1.123 (1.024–1.232)
0.013 (6.1)

1.210 (1.053–1.390)
0.007 (7.1)

Not retained

Plasma blasts 1.119 (0.873–1.432)
0.375 (0.8)

1.326 (0.962–1.826)
0.085 (2.9)

1.303 (0.979–1.735)
0.070 (3.3)

1.066 (0.927–1.226)
0.367 (0.8)

Not retained Not retained

Accuracy (%) Not applicable 70.0% 77.6% 85.7% Not applicable
AUROC

(95%Cl) P-value
0.744 (0.678–0.810)

P< 0.0001
0.862 (0.814–0.910)

P< 0.0001
0.911 (0.871–0.951)

<0.0001
Not applicable 0.702 (0.697–0.704)

P< 0.0001
0.773

(0.756–0.760)
P< 0.0001

0.794 (0.785–0.791)
P< 0.0001

Sensitivity (%) (95%Cl) 55.9 (55–66) 74.2 (64–83) 83.9 (75–91) not applicable
Specificity (%) (95%Cl) 81.2 (73–87) 80 (72–87) 80.3 (72–87)
PPV (%) (95%Cl) 70 (61–78) 75 (67–83) 77.2 (70–83)
NPV (%) (95%Cl) 70 (64–75) 80 (73–85) 86.2 (80–91)
Nagelkerke R square 25% 50% 62% Not applicable 20% 32% 42%
Hosmer& Lemeshow 0.853 0.912 0.287 Not applicable
Bias-corrected Somers DXy Not performed 0.458 Not performed 0.533

a Normalised frequency.
AUC: area under the roc curve; EMS: early morning stiffness; Exp-: expanded; HLA (SE): human leucocyte antigen (shared epitope); HR: hazard ratio; IRC: inflammatory-related cells; NK: natural killer; NKT: natural
killer-T; NPV: negative predictive value; OR: odds ratio; PPV: positive predictive value; TJC: tender joint count; Treg: regulatory T cells.
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Figure 3. Performances of the models. (A) AUROC graphical representation of the logistic regression models. Binary logistic regression models of the

occurrence of progression to inflammatory arthritis (IA) were constructed using Model 1 (Clinical data only) for 10 parameters (thin line), Model 2 (flow-

data only) for 18 subsets (dotted line) and Model 3 (clinical þ flow data, thick line). Model 1 (AUC¼ 0.744 95%CI 0.678–0.810) was inferior to Model 2

(AUC¼ 0.862, 0.814–0.910) and Model 3 still showed added value (AUC¼ 0.911, 0.871–0.951). (B) Survival curve based on classification using Model 3.

Survival plot analysis was performed after patients were dichotomised for high-risk (black line, n¼ 65/210) and low-risk (grey line, n¼ 145/210) based on

individual probability (>0.80%) calculated from the logistic regression. (C) Variables contribution to Model 6: This showed the relative importance order of

the predictors in the model with Treg as the most discriminating biomarker for rapid progression followed by naiveCD4, smoking, CD8, RF, IRC-CD4 and

finally NK-CD56dim cells. (D) Survival curve based on the Cox regression for rapid progression. Survival plot analysis was performed after patients were

dichotomised for high-risk (black line, n¼ 22/158) and low-risk (grey line, n¼ 136/158) based on individual hazard (>2) calculated from the Cox regression.

(E) Overall performance of the prediction model using 1 to 4 flow cytometry panels. Individual participants’ probability for progression was dichotomised

into high/low-risk groups (based on 80% specificity) in five logistic regression models including the demographic/clinical data only first and then,

sequentially adding data from 1, 2, 3 and then 4 flow-cytometry panels. Numbers of patients in both risk groups are displayed against the number of

progressors (black bars) and non-progressors (open bar)
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clinical synovitis, while also providing increased accuracy
over previous models with only CD4þT-cell subsets.

Our findings showed an increase in circulating B-reg fre-
quencies paralleling a reduction in Treg, suggesting an addi-
tional role for regulatory mechanisms before the onset of
clinical synovitis. Functionally defective B-regs have been as-
sociated with homing to synovitis [24] while other studies
have associated inflammation with the expansion of B-regs
[25, 26]. In new-onset RA, the failure of B-reg to maintain a
functionally suppressive Treg population was demonstrated
[24, 27]. It is therefore conceivable that a decrease in Treg
(loss of tolerance), paralleled with an increase in B-regs (sub-
clinical inflammation) are both associated with progression to
IA. On the other hand, our findings do not exclude that B-
regs may be functionally defective [28, 29] or were excluded
from the synovium (i.e. circulating), limiting their ability to
perform their role locally. Future work will be needed to de-
termine which hypothesis may be correct.

Consistent with our original work [15, 17], a reduction in
circulating naive and Treg CD4þT cells frequencies and an
increase in IRC-CD4 predates the development of IA
(AUC¼ 0.790, n¼ 102). Since this original work, a standar-
dised normalisation procedure for the naive/memory and
Treg subsets was established [15, 17], allowing for analysis of
different phase-specific outcomes across the IAC using contin-
uous data. Applying this to this group of 210 patients pro-
vided further validation of the original three CD4þT-cell
subset model using the same logistic regression approach
based on entering all variables in the model (enter method);
however, it suggested that IRC-CD4 were no longer indepen-
dently contributing to the prediction in this larger group
(OR¼ 1.104, P¼ 0.144). Modelling using a forward method
allowing for the best predictors only (data not shown, accu-
racy¼ 78.6%, AUC¼ 0.880) confirmed that IRC were less
predictive of the overall progression over 10 years, while still
highly associated with rapid progression over 12 months, as
also observed in the clustering (Fig. 2) where most of the rapid
progressors [28/41 (68%)] were in Cluster III defined by
higher CD4þIRC.

We have associated many defects in the naive CD4þT-cell
subset with early RA pathogenesis, notably in relation to a de-
cline in thymic activity, aberrant signalling and aberrant pro-
liferation reducing their TREC (T-cell receptor excision circle)
content by >50% (1–2 cell cycle) [13], impaired IL7 respon-
siveness [30] and recently an IL6-driven network of epigenetic
modifications suggesting the development of a subpopulation
expressing more pro-inflammatory cytokines and closely re-
sembling IRCs [31, 32]. In addition, naive CD4þT-cell loss
was also shown to directly result from the differentiation of
naive cells into IRC [13], a process driven by inflammation di-
rectly related to measures of inflammation [13] with a central
role for IL6 in driving such changes and loss of IL6R expres-
sion as a result of its signaling [31]. Furthermore, IRCs are
persisting when inflammation is subclinical due to reduced ex-
pression of pro-apoptotic genes [32] and are associated with
the occurrence of flares in patients in synthetic-DMARDs-
induced remission [33]. Most importantly, IRCs remained na-
ive to an antigen challenge (hence expressing CD28) [13, 32],
and were shown to be recent progeny of naive cells with a
high content of T-cell receptor excision circles (TREC) [13].
As such, they are not to be confused with terminally differen-
tiated T-effector memory T cells (TEMRA) re-expressing
CD45RA, with controversies about high/low levels of

expression of CD45RO and expression of CCR7 (reported
negative or positive), while more consistently lacking CD62L,
CD27 and CD28 expression, and also differences between
CD4þ and CD8þ T cells [34–37] which are antigen-
experienced (with low TREC content). Although, the 5-colour
panel used here does not include all the markers that would
definitely differentiate all the various subsets of memory T
cells (notably TEMRA from IRCs), this does not alter the bio-
marker value of the IRC phenotype identified in this study.
Indeed, here, we observed that IRC-CD4 enables segregation
of a particular cluster of patients, the majority being rapid
progressors, 28 of the 41 (68%) progressors being in Cluster-
III. This further supports the hypothesis that imminent pro-
gression towards IA may be driven by an event involving or
resulting from subclinical inflammation, driving or being as-
sociated with the differentiation of naive CD4þT cells into
IRC as previously hypothesized [13, 17, 31]. Other CD4þT-
cell subsets are relevant to RA pathology, notably Th17 cells
and Tfh cells [38, 39]. However, it would have been very lim-
iting to include panels for these in 2017–19 having started
this work long before. Alternatively, the addition of a test for
the enumeration of Th17 cells using a DNA-methylation spe-
cific qPCR [40] is, however, possible and should prove infor-
mative using stored whole blood.

Although CD8þT cells share some of the pathways geneti-
cally associated with CD4þT cells in RA [41], they have not
been reported for their potential biomarker value to our
knowledge, with one report presenting an association with ar-
thralgia [42]. In preclinical IA, reports, however, suggest that
CD8þT cells make up �40% of the total T cells infiltrating
the synovium [43, 44]. Following prolonged/chronic exposure
to infectious agents, alterations in homing molecules
expressed by CD8þT cells occur [45], resulting in enhanced/
altered migration. Here, we indeed demonstrated a reduced
frequency of circulating CD8þT cells, predictive of progres-
sion that could be reflecting migration/accumulation into the
joint. Alternatively, this reduction could reflect a contraction
of the CD8þT-cell pool following an infection (post activa-
tion cell death), suggesting a role for subclinical infections as
additional environmental risk for RA, as proposed in the past
[46]. Furthermore, cell death causes the release of inflamma-
tory mediators that might also serve as triggers of cascades of
events, particularly netosis [47]. In our study, NK-cells
CD56dim were also predictive of progression suggesting that
dysregulation of NK cells may have a significant biological
role, further fuelling an inflammatory cascade leading to dis-
ease progression. Several studies have indeed supported a role
for NK cells in RA pathology [48, 49] and at the onset of dis-
ease in ACPAþ RA and in pre-RA (arthralgia), although this
observation was not directly related to progression [50].

The clinical predictors in the models developed in this study
were slightly at variance with those from a previously pub-
lished model [6] probably because different patients and
parameters were used (notably 78-TJC rather than hands
small TJC and importantly, ACPA-positivity based on a
CCP2 test). Model-1 notably only explains 25% of the vari-
ance in predicting IA. Modelling using combined data
(model-3) showed that six LS and the same four clinical
parameters had superior value over model-2 and clearly over
model-1 (þ15.7% accuracy). Nonetheless, only 62% of the
variance can be explained by model-3, leaving room for addi-
tional makers to be added, possibly using imaging and cyto-
kines or epigenetic modification as recently evidenced in early
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RA [31]. Further comparison with other models [6, 7] is diffi-
cult as they did not use the same statistical approach (also not
providing AUC) but our model 3 showed high performance
(AUC¼ 0.911) for the overall prediction, while rapid progres-
sion is slightly less good but still high (AUC¼0.794). On the
other hand, we observed similar findings in RFþ only patients
(4/13 progressors, data not shown) which also confer risk for
IA development in patients with arthralgia [19]. This was ver-
ified for naive, Treg, IRC and CD8 but not for NK and the B-
cell subsets (possibly due to small numbers). This nonetheless
suggests potential predictive value for these LS across at least
two risk-related autoantibodies. Further work would be
needed to evaluate these with respect to other risk factors [4,
5]; however, here we already showed higher value for LS than
for known risk factors such as genetic (HLA-DR SE) and/or
lifestyle (smoking).

Another major clinical benefit of being able to predict rapid
progression would be for patients to access treatment at the
critical very early IA/RA stage (i.e. 1–2 weeks of detectable sy-
novitis) and to assess whether this can affect the long-term out-
come/prognostic of these patients compared with routine early
arthritis referrals (up to 2 years symptom duration). These are
all studies currently ongoing in Leeds which we hope to report
in the future. Although few RA prevention trials have been
reported (many being in progress/planned), it remains unclear
whether IA development can be prevented in at-risk individuals
and which drug/regimen would be most appropriate. Recent
trials nonetheless suggest this may be possible: the APIPRRA
study (ISRCTN-46017566 using abatacept [51]) showed a sus-
tained preventive effect at 2 years (data presented at EWRR
and EULAR 2023); the PRAIRI study (using rituximab) [52]
also showed delayed progression. Our data add valuable infor-
mation that could contribute to risk stratification (as well as
understanding of the biology of the at-risk phase), but do not
in themselves justify treatment for the time being. Different LS
being indicative of the imminence of IA, our data may therefore
find their best utility in selecting possible interventions target-
ing these cells/subsets/events, supporting personalised clinical
decision making, and guiding the selection of patients best
suited for such preventive intervention.

The limitations of our work include the relatively low num-
ber of subjects with all flow panels and the selection of
ACPAþ participants with a highly specific CCP-2 test. We
also recognise the limitation of the statistical modelling
approaches and performed the optimism correction to ac-
count for this in models 3 and 6, while the model with only
the three CD4þT-cell subset reproduced previous data [15,
17]. A second (external) cohort would be critical to fully vali-
date these findings, the main hurdle in any biomarker re-
search programme being that it can only be replicated if the
selection criteria of the study population are the same. There
are many cohorts of at-risk individuals worldwide [5] but
they all use different criteria to define individuals at risk of
RA, preventing the generalisation of any findings as previ-
ously discussed [5]. The data presented here nonetheless repli-
cate previous models, while the final model using more
subsets showed clear improvement.

On the practical side, although we transferred this technol-
ogy to NHS services (back in 2013, based on the use of fresh
whole blood samples), currently these specific panels are only
available in Leeds, while the technology itself is used world-
wide and can provide data for clinical use in about 3–5 h.
Protocol that would allow for frozen blood samples (using

SmartTubesTM) [13] could facilitate the use of these panels in
a single flow centre (i.e. for retrospective analysis of trials
samples for example). Alternatively, the technology can be
replicated as recently shown in a collaborative work between
Leeds and France [53]. A careful planning of the number of
antibodies/panels could be rationalised to suit local technical
flow machine capacity (using SSC/CD4 gating for example).
Novel technical development such as the use of dry tubes,
whereby antibodies are pre-coated on flow plastic tubes
would also considerably help reduce procedure time (no
pipetting) and increase adherence to SOP.

In conclusion, our study suggests that LS homeostasis is dysre-
gulated at the early stage of the RA disease continuum before
clinical synovitis occurs. We have demonstrated the additional
predictive value of CD8þ T cells B-reg and NK-cells besides the
previously established CD4þT-cell subsets. We demonstrated
that perturbations in different subsets are associated with
progression to arthritis, including rapid progression within
12 months, suggesting that additional time-dependent cell-based
events are necessary for the progression to IA, while the develop-
ment of systemic autoimmunity is not sufficient alone. In addi-
tion, these panels are simple to perform routinely offering new
tools to manage and stratify the risk of developing IA in
ACPAþ at-risk individuals.
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