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ABSTRACT
We investigate orthogonal turbulence modes in a high-speed axisymmetric jet via the S-POD algorithm. We
use S-POD as a barometer to gauge the energy content of the turbulence measured by its statistics vs. in-
stantaneous flow data. Our results show that the statistics possesses modes with uniform energy distribution
at low frequencies bounded by a ratio of modal energies much greater than unity, indicating that most of the
auto-covariance energy is contained within a short temporal neighborhood about its auto-correlation amplitude.

1. Introduction

Data-driven flow techniques are utilized nowa-
days to provide insights into the coherent features
of turbulence. In these methods, an empirical mode
basis is constructed to capture dominant flow struc-
tures. Comprehensive reviews of different forms
of Proper Orthogonal Decomposition (POD) tech-
niques as data-driven methods can be found in [1, 2].
The classical POD technique, introduced by Lum-
ley [3], remains one of the most popular techniques
for capturing coherent structures from flowfield data.
One extended version of POD is called Spectral
Proper Orthogonal Decomposition (S-POD). In the
algorithm, orthogonal modes at discrete frequencies
are provided, which are optimally ranked in terms of
energy and evolve coherently in both space and time.
The details of the mathematical description of this
technique can be found in [4].

In this paper, we aim to utilize the S-POD tech-
nique to investigate the orthogonal modes in instan-
taneous and statistical data from a high-speed ax-
isymmetric turbulent jet. We investigate the modal
structure of turbulence in high speed jets at two hi-
erarchical levels – the instantaneous flow data ob-
tained directly from a Large-Eddy Simulation (LES)
database and its statistics that continues to depend
on time through a time shift owing to temporal ho-
mogeneity of the unsteady flow. At each level we aim
to analyze the degree of modal richness (i.e., energy
disparity, spectral uniformity and spectral decay) for
both first and second order fluctuating variables and
their statistical equivalents (second & fourth order
auto-covariances).

2. Spectral Proper Orthogonal Decomposi-
tion (S-POD) Theory

In order to compute S-POD modes from dis-
cretized flow data, we follow the algorithm presented
by [5] and [6]. However, a simplification was applied
by [7]. S-POD modes are defined as the eigenvectors
of a cross spectral-density tensor at each frequency.
The cross-spectral density tensor, which represents
correlations between different spatial locations in the
difficulty of the S-POD algorithm lies in the spec-
tral computations, where Welch’s method is applied
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Fig. 1 Schematic of the S-POD algorithm (adapted
from [8, 4]

which involves dividing the time series data into over-
lapping segments and calculating the periodogram
for each segment. The theory behind the S-POD
algorithm is described in detail in [7, 9]. Here, we
briefly explain the algorithm utilized for extracting
S-POD modes from the time series data. It should
be noted that the S-POD algorithm and MATLAB
implementation presented by [9] is used throughout
this paper1.

A schematic of the S-POD algorithm is presented
in Figure 1. Initially, the time-domain flow data from
various snapshots are organized into a data matrix,
denoted as Q. This matrix comprises qk vectors, rep-
resenting the spatial state of the flow for each of the
M snapshots. The matrix is then segmented into
multiple blocks to prepare the data for the Fourier
transform. Each segment includes a subset of snap-
shots and overlaps with adjacent segments. The
resulting fast Fourier transform matrix consists of
columns q̂nk , where each q̂nk corresponds to the nth
realization of the Fourier mode at the kth specific
frequency.

1https : //github.com/SpectralPOD/spod−matlab



In the next step, at a single frequency, the cross-
spectral density tensor are constructed (see Eq (1)).

Sfk = Q̂fkQ̂
∗

fk. (1)

Finally, the eigenvalue and eigenvectoers of the
cross-spectral density matrix provides the S-POD
modes and modal energies for the discrete frequen-
cies, by solving the following eigenvalue problem,

SfkWΨfk = ΨfkΛfk (2)

at each frequency. The approximate S-POD modes
are given by the columns of Ψfk and are the ranked
according to their corresponding eigenvalues given
by the diagonal matrix Λfk .

2.1 LES Data

The details and validations for S-POD analysis
of various flow problems can be found in [10]. In
order to compute S-POD modes for the statistical
and instantaneous data, we use the LES database,
SP07 with Mach number, M = 0.9. Advanced
acoustic analogies of the type presented in [11] use
self-consistent asymptotic analysis to show that only
the R1212 component enters the peak jet noise ob-
served at low frequencies. Here, (1, 2) refer to ve-
locity fluctuation in the streamwise and radial direc-
tions respectively In the present work, however, we
compare the S-POD analysis for second and fourth-
order auto-covariances components; i.e., R11, R12

versus R1111, and R1212. We obtain the unsteady
flow/statistical data for the standard test case for
aero-acoustic model testing: i.e., an axi-symmetric
round jet with acoustic Mach number M = 0.9. The
time co-ordinate enters the arguments for Rij/Rijkl

via time-delay τ . The spatial co-ordinates η1 and η2
represent streamwise/radial components of a separa-
tion vector between two spatial field points in the jet
(y & y +η). The location y = (y1, r, ψ) is fixed at
an axial/radial position at the end of potential core
(y1/Dj = 6.5) at the jet shear layer (r/Dj = 0.5) for
the ψ = 0◦ azimuthal plane. The Rij/Rijkl tensors
are defined in the usual way

Rij(y, η, τ) = lim
T→∞

1

2T

∫ T

−T

v′′i (y, τ)v
′′

j (y+η, τ+τ0)dτ

(3)
and

Rijkl(y, η, τ) = lim
T→∞

1

2T

∫ T

−T

e′′ij(y, τ)e
′′

kl(y+η, τ+τ0)dτ

(4)
where v′′i is the velocity fluctuation about the Favre-
average mean flow [11] and e′′ij is the fluctuating
Reynolds stress tensor. Figure 2 illustrates the
(η1, η2) spatial variation of (R11, R1111) at the first
time-delay snapshot, τ). Both correlations possess
their maxima at this point representing the ampli-
tude of their respective auto-correlations with the
fourth order R1111 smaller than second order by ap-
proximately one order of magnitude.

R12/R1212 (Figure 3) behave similarly in terms of
the space/time location of the maximum correlation
and second versus fourth order correlation.

(a)

(b)

Fig. 2 Correlation function component for the axi-
symmetric round jet with M = 0.9. a) Second order
correlation (R11) for the first snapshot τ , b) Fourth
order correlation (R1111) for the first snapshot τ

(a)

(b)

Fig. 3 Correlation function component for the axi-
symmetric round jet with M = 0.9. a) Second order
correlation (R12) for the first snapshot τ , b) Fourth
order correlation (R1212) for the first snapshot τ

3. S-POD Analysis and Interpretation

Any three dimensional dataset (two space× time)
can be decomposed into a set of statistically orthog-
onal modes (see summary in §.2). Hence we now
construct a graphical representation for the modal
energy content of the S-POD modes as a function of
frequency. Thus the spatial coordinates are η1 and



η2, with time-delay at 51 snapshots. Consequently,
we can construct the data matrix as required for the
S-POD calculations. This means we obtain the S-
POD eigenvalues at each mode k, i.e., λk(St) where
St is the Strouhal number. We refer to the result-
ing curves as the S-POD eigenvalue spectra. As dis-
cussed in Section 2.1, we use a statistical dataset
with the variation of the correlation function compo-
nents of the flow field. Figure 4 indicates the S-POD
eigenvalue spectra of the statistical data of an axi-
symmetric jet described in Section 2.1. Figure 4.a
indicates the SPOD eigenvalue spectra of the second
order correlation R11, and Figure 4.b represents the
S-POD eigenvalue spectra for the fourth order coun-
terpart R1111. In Figure 4, we highlighted first three
S-POD modes, shown by solid lines and the others
are shown by dashed lines.

(a)

(b)

Fig. 4 SPOD mode energy for a) second order corre-
lations R11 and b) for fourth order correlation R1111

respect to Strouhal number.

The S-POD eigenvalue spectra for both R11 and
R1111 illustrate a relatively constant energy region
at low Strouhal numbers. The spectral elbow at
St = 0.85 marks the point of spectral decay where
there is a decrease in modal energy. This occurs for
both correlations. However, the first and second S-
POD modes will reach to the same energy level at
the higher frequencies, while the third S-POD modes
still exhibit a different energy level. The slope of the
first three S-POD modes after the elbow frequency
is calculated. The detailed comparison of the prop-
erties obtained from the S-POD eigenvalue spectra
are shown in Table 1.

As shown in Table 1, for R11 the gradient of the
first S-POD mode after the elbow frequency decays
faster than the second and third S-POD modes. Fur-
thermore, it is evident that as the frequency increases
the separation between S-POD modes is smaller
(physically representing less energetic modes) and

Table 1 Properties of R11 extracted from S-POD
eigenvalue spectra.

R11
SPOD1 SPOD2 SPOD3

Elbow St 0.85 0.85 0.85

Decay gradient 1.3 × 10−4 4.3 × 10−5 3.5 × 10−6

Max. energy 1.6 × 10−4 5.6 × 10−5 1.2 × 10−5

Max/Min 8.9 × 104 3.1 × 104 6.4 × 103

R1111
SPOD1 SPOD2 SPOD3

Elbow St 0.85 0.85 0.85

Decay gradient 3.5 × 10−8 1.2 × 10−8 4.6 × 10−9

Max. energy 4.4 × 10−8 1.6 × 10−8 5.2 × 10−9

Max/Min 1.1 × 104 3.9 × 103 1.3 × 103

the system exhibits low-rank behaviour. Commensu-
rate with the actual amplitude of the auto-covariance
components in Fig. 2 and 3, the maximum S-POD
energy for the fourth order correlation is smaller than
the second order. It is also clear from Table 1 that
at higher St, the modal decomposition for R1111 does
not appear to approach a low-rank (single dominant
energy mode) condition. But note that this could be
because of the limited temporal snapshots also.

We repeat the S-POD calculations for the R12

and R1212 shown in Figure 5.a and Figure 5.b respec-
tively. Similarly, we presented the main properties in
Table 2. Again, three S-POD modes are highlighted.
Similar to Figure 4, the separation between S-POD
modes at the lower frequencies are pronounced.

(a)

(b)

Fig. 5 SPOD mode energy for a) second order corre-
lation R12 and b) for fourth order correlation R1212

respect to Strouhal number.

4. Concluding Remarks

In this work, we have set out to use the Spectral-
Proper Orthogonal Decomposition (S-POD) algo-
rithm to extract the modal energy from a statisti-
cal dataset of an axisymmetric, high-speed jet with
a Mach number of M = 0.9. To achieve this, we



Table 2 Properties of R12 and R1212 extracted from
the S-POD eigenvalue spectra.

R12
SPOD1 SPOD2 SPOD3

Elbow St 0.85 0.85 0.85

Decay gradient 2.5 × 10−5 1.1 × 10−5 3.3 × 10−6

Max. energy 1.6 × 10−4 5.6 × 10−5 1.2 × 10−5

Max/Min 1.7 × 104 7.8 × 103 2.2 × 103

R1212
SPOD1 SPOD2 SPOD3

Elbow St 0.85 0.85 0.85

Decay gradient 3.9 × 10−9 1.3 × 10−9 6.7 × 10−10

Max. energy 4.3 × 10−9 1.5 × 10−9 7.8 × 10−10

Max/Min 4.7 × 103 1.6 × 103 8.5 × 102

considered both the second and fourth-order correla-
tion function components of the flow data. Various
properties related to the energy distribution within
the SPOD modes were analyzed. Our findings in-
dicate that, at low Strouhal numbers, the energy
contained within these modes remains relatively con-
stant. However, by its nature, the temporal resolu-
tion is limited because of the rapid de-correlation at
large time delays, which occurs faster at high-order
turbulence correlations (Rijkl versus Rij).

Our results, as shown in Figure 4 and 5 , illus-
trate that the orthogonal mode decomposition re-
veals a significant disparity between the high and
low S-POD eigenvalues. This indicates that the ma-
jority of the energy content is concentrated within
the first three S-POD modes. The natural next step
is to compare statistical to the more traditional use
of S-POD, that uses the instantaneous flow field data
(i.e. v′′(y, τ) with a resolution of 6000 time files.)

Based on the previous work by [12], where 5000
temporal snapshots were shown to a richer eigen
structure for S-POD modes across frequency range.
Figure 6 illustrates this comparison. Note that, a re-
duced number of snapshots with this dataset gives
spectral results comparable to the statistical data
analysed in the paper. In Figure 6.a, the complete
set of 5000 snapshots is used, while Figure 6.b shows
the case where the number of snapshots is reduced
to 51.

a b

Fig. 6 SPOD mode energy for a jet turbulence pre-
sented in [12]. a) full sets of snapshots (5000) b)
limited number of snapshots (51).
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