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Abstract

Some electromagnetic outbursts from the nuclei of distant galaxies have been found to repeat on months-to-years
timescales, and each of these sources can putatively arise from the accretion flares generated through the repeated
tidal stripping of a star on a bound orbit about a supermassive black hole (SMBH), i.e., a repeating partial tidal
disruption event (rpTDE). Here, we test the rpTDE model through analytical estimates and hydrodynamical
simulations of the interaction between a range of stars, which differ from one another in mass and age, and an
SMBH. We show that higher-mass (1Me), evolved stars can survive many (10−100) encounters with an
SMBH while simultaneously losing few× 0.01Me, resulting in accretion flares that are approximately evenly
spaced in time with nearly the same amplitude, quantitatively reproducing ASASSN-14ko. We also show that the
energy imparted to the star via tides can lead to a change in its orbital period that is comparable to the observed
decay in the recurrence time of ASASSN-14ko’s flares, P 0.0026  - . Contrarily, lower-mass and less-evolved
stars lose progressively more mass and produce brighter accretion flares on subsequent encounters for the same
pericenter distances, leading to the rapid destruction of the star and cessation of flares. Such systems cannot
reproduce ASASSN-14ko-like transients, but are promising candidates for recreating events such as AT2020vdq,
which displayed a second and much brighter outburst compared to the first. Our results imply that the lightcurves
of repeating transients are tightly coupled with stellar type.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Black hole physics (159); Hydrodynamics
(1963); Supermassive black holes (1663); Tidal disruption (1696); Transient sources (1851)

1. Introduction

Observations suggest that the centers of almost all galaxies
contain supermassive black holes (SMBHs; Kormendy &
Ho 2013). When a star in a galactic nucleus is placed onto a
low angular momentum orbit about an SMBH and passes
within a critical distance of it, the tidal forces of the SMBH
can either partially or completely disrupt the star. Such a
destructive encounter between a star and an SMBH is known as
a tidal disruption event (TDE; e.g., Rees 1988; Gezari 2021).
The accretion of the tidally disrupted debris from the star onto
the SMBH generates a luminous flare. With the increased
cadence and depth of time-domain surveys, such as the All Sky
Automated Survey for Supernovae (ASAS-SN; Shappee et al.
2014), the Zwicky transient facility (Bellm 2014), and the Dark
Energy Survey (DESI Collaboration et al. 2016), tens of TDEs
are being observed every year (e.g., Arcavi et al. 2014; Holoien
et al. 2014; van Velzen et al. 2016, 2021; Gezari et al. 2017;
Pasham & van Velzen 2018; Payne et al. 2021; Wevers et al.
2021, 2023; Lin et al. 2022; Nicholl et al. 2022; Hammerstein
et al. 2023; Pasham et al. 2023; Yao et al. 2023; Guolo et al.
2024a), a number that is anticipated to increase by at least an
order of magnitude in the coming 1–2 yr, when the Vera Rubin
Observatory becomes operational (Ivezić et al. 2019; Bricman
& Gomboc 2020).

The standard TDE lightcurve is predicted to rise, peak, and
decay monotonically with time t, and while the initial rise and

peak are dependent on a number of factors involving the
structure of the star (e.g., Lodato et al. 2009; Guillochon &
Ramirez-Ruiz 2013; Golightly et al. 2019a; Law-Smith et al.
2020; Jankovič & Gomboc 2023), the asymptotic decline of the
accretion rate with time scales either as ∝t−5/3 if the disruption
is complete (Rees 1988; Phinney 1989) or as ∝t−9/4 if the
disruption is partial (Coughlin & Nixon 2019). Recently,
however, there have been TDE flares4—including ASASSN-
14ko (Payne et al. 2021), AT2018fyk (Wevers et al. 2023),
eRASSt-J045650 (Liu et al. 2024b), and AT2020vdq (Somal-
war et al. 2023)—that rebrighten on timescales of months to
years following the initial peak, thus challenging this classic
picture. One interpretation is that these sources represent
repeating partial TDEs (rpTDEs), in which a star is orbiting an
SMBH on a highly eccentric orbit, the pericenter distance of
which is comparable to the partial disruption radius of the star;
the latter is ∼2rt, where ( )r R M Mt •

1 3
 = is the standard tidal

disruption radius (Hills 1975) with Rå as the stellar radius and
M• and Må as the SMBH and stellar mass, respectively.
Among the few rpTDE candidates, the longest-known and

most heavily studied candidate is ASASSN-14ko, which has
flared 20 times since its initial detection (Holoien et al. 2017;
Kochanek et al. 2017; Payne et al. 2021). The energetics of the
outbursts are consistent with the stripping of a star in which
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4 Quasiperiodic eruptions (e.g., Miniutti et al. 2019; Giustini et al. 2020;
Arcodia et al. 2021, 2024; Chakraborty et al. 2021; Quintin et al. 2023; Pasham
et al. 2024b) are qualitatively similar in terms of their highly cyclic behavior
but are exclusively seen in the X-ray and have significantly shorter timescales
(but see Evans et al. 2023; Guolo et al. 2024b), and while there may be
similarities in their physical origin that are related to TDEs, we restrict our
phenomenological focus to longer-duration repeating events.
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∼few× 0.01Me of mass is liberated—and subsequently
accreted—during each pericenter passage if the luminosity is
L Mc0.1 2= (Cufari et al. 2022a). If ASASSN-14ko formed
approximately contemporaneously with the first detection,
meaning that there were no outbursts prior to the original
detection (which must be the case if the star is near-solar, as it
will only survive 100 encounters if the per-encounter stripped
mass is ∼0.01Me), then the orbital period of the star of
∼115 days can be explained if the star was tidally captured
from a tight binary (Cufari et al. 2022a). However, if the star
loses ∼0.001Me on each encounter, with the mass stripped per
encounter increasing gradually with time, then the system
could have existed for many more orbital periods prior to the
original detection, and there are a number of mechanisms,
including gravitational-wave inspiral and the interaction with a
disk (Linial & Quataert 2024), that can then explain its current
orbital period, although another mechanism must then be
responsible for perturbing its pericenter distance to within ∼2rt.

While the rpTDE model has been adopted to explain
periodic nuclear transients, it has yet to be rigorously tested
with hydrodynamical simulations. Antonini et al. (2011)
performed smoothed particle hydrodynamics (SPH) simula-
tions to study the repeated partial disruption of stars as one of
the possible outcomes of three-body interactions between
SMBHs and stellar binaries. However, the detailed hydro-
dynamical modeling of lightcurves from these sources, which
includes resolving the rate of return of tidally disrupted debris
to the SMBH after many encounters, has not been explored.
One of the potential issues of this model is the spin imparted to
the star: the star is torqued in a prograde sense following its
interaction with the SMBH, which renders it more susceptible
to disruption (Golightly et al. 2019a). If net angular momentum
is imparted to the star with each pericenter passage, it may only
be able to survive a few encounters before being completely
destroyed, thus precluding the model from describing events—
such as ASASSN-14ko—that have flared many times.

Here, we study the hydrodynamical evolution of a star that is
being repeatedly stripped of mass by an SMBH, both to
understand the stellar survivability and the viability of the
rpTDE model. In Section 2, we construct a simple Lagrangian
toy model to estimate the angular momentum imparted to the
star through tidal interactions with the SMBH, and we derive
the induced change in the orbital period and pericenter distance
of the star. In Section 3, we present the results of
hydrodynamical simulations of the repeated partial disruption
of stars by an SMBH. We show that an ideal candidate for
producing repeated flares, the strength and recurrence of which
are comparable to the ASASSN-14ko event, is a massive
(1Me) and evolved star, on an orbit having its pericenter
distance roughly equal to the tidal radius of the star, rp∼ rt. We
show that this type of star can lose ∼0.01Me at each pericenter
passage, and survive multiple encounters, giving rise to
ASASSN-14ko-like flares. We also show that, by varying the
stellar type and the impact parameter characterizing the
distance of the closest approach between the star and the
SMBH, the rpTDE model can be used to qualitatively
reproduce the lightcurves of other transients, including
AT2018fyk and AT2020vdq. We discuss our main results
and implications in the context of observations in Section 4
before summarizing in Section 5.

2. Toy Problem

One of the main potential issues with the rpTDE model is the
imparted rotation to the stellar core: upon initially and strongly
interacting tidally with the SMBH, the star will be spun up to a
rotational velocity that can—depending on the depth of the
encounter and the properties of the star—be a substantial
fraction of the stellar breakup velocity, GM R 3 2  W . If
the star is spun up by a similar amount on each encounter, it
will be rapidly (i.e., after only a few encounters) destroyed,
precluding the possibility of producing, e.g., ASASSN-14ko,
which has now flared N≈ 20 times.
However, the notion that the star is spun up repeatedly is

generally not correct,5 because the star needs to be rotating at a
rate that is smaller than the rotational velocity at the pericenter
in order to be efficiently torqued by the SMBH. Once the star
achieves an angular velocity that is comparable to

( )GM e r1p • p
3 2W + , where rp; few× rt is the pericen-

ter distance, the SMBH appears stationary (near pericenter) in
the corotating frame of the star. In this case, then, there is no
relative motion between the stellar surface and the speed with
which the SMBH moves in the local frame of the star, thus
preventing successive and efficient gravitational torques on the
stellar body.
Once the star is spun up to ∼Ωp and if there is no viscous

decay of the oscillatory quadrupole moment of the star, we
expect there to be a pseudorandom change in the angular
velocity of the star during successive encounters, owing simply
to the fact that there is a time-dependent (on the timescale of
the dynamical time of the star, modulo the eigenvalue
appropriate to roughly the f-mode of the progenitor, which
predominantly contributes to the tidal excitation of the star;
e.g., Press & Teukolsky 1977) phase of the ℓ= 2 oscillation of
the star. Thus, if the oscillatory modes of the progenitor do not
damp radiatively (or viscously, in the presence of another form
of viscosity that could arise from, e.g., magnetic effects) by the
time of the next pericenter passage, there will be an inherent
and stochastic coupling between the tidal field of the black hole
and the ℓ= 2 mode of the star, resulting in small changes to the
angular velocity about the mean value of Ωp (modulo the point
raised in footnote 5).
To illustrate this effect—that the star can only be efficiently

spun up to Ωp—consider the very simple toy model of two
objects, each of mass Må/2, connected by a rigid rod of length
2Rå that approach a black hole of mass M•?Må. Denote the
distance of the center of mass (COM) of this “dumbbell” by rc,
the angle that the COM makes with the pericenter (of the
COM) to the SMBH by fc, and the angle that one of the objects
makes about the COM by j, and further assume that the plane
of rotation of the dumbbell is coincident with the plane
occupied by the COM. Then, the Lagrangian describing the
dynamics of the system is

( [ ])

( [ ])
( )

r r r r

r r

1 2 cos

1 2 cos .

1

c
2

c
2

c
2 2

c
2

c c
1 2

c
2

c c
1 2

  f j f j

f j

= + + + + - -

+ + + -

-

-

L

5 A secular increase in the rotational velocity could be achieved if the
frequency of one of the stellar eigenmodes occurs in resonance with the orbital
frequency, but it is difficult to see how changes in the stellar structure (induced
by the rotation itself) would not cause the star to move off this resonance after
only a few repeated encounters.
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Here, dots denote differentiation with respect to τ, where
t GM R•

3 2
t = , and rc is measured in units of Rå, i.e., we

have let rc→ rc/Rå. From this, the Euler–Lagrange equations
can be constructed that describe the motion of the dumbbell;
we can also make the tidal approximation and expand the
radicals in Equation (1) to the quadrupole order in 1/rc.
However, the full form given in Equation (1) must strictly
conserve the total energy of the system, and also accounts for
the back-reaction of the imparted rotational energy to the
dumbbell on the energy of the COM. Therefore, it is simpler
(and more accurate) to deal with the exact Lagrangian
(Equation (1)) rather than the tidally approximated one.

Figure 1 shows the angular velocity of the dumbbell,
Ω= dj/dt, relative to the orbital angular velocity of a
Keplerian orbit at the pericenter, ( )GM e r1p • p

3 2W = + ,
as a function of time relative to the Keplerian orbital period,
T a GM2 3 2

•p= , for rp= 300Rå and e= 0.9. More speci-
fically, the latter two quantities establish the initial conditions
for rc and c

f , which are derived from the Keplerian relations for
rc and fc (i.e., the initial COM velocities are calculated
assuming that the dumbbell is a point mass in the Keplerian
potential of the black hole). The initial position is set to 2rp and
fc=−π/2, so that fc= 0 coincides with the Keplerian
pericenter, and the different curves coincide with the initial
angular phases of the dumbbell that are shown in the legend
(the initial angular velocity was set to zero). We see that each
pericenter passage of the object coincides with a nearly
impulsive “kick” to its angular velocity, such that the dumbbell

is spun up to a phase-dependent fraction of Ωp on the first
pericenter passage, and on each subsequent passage, it suffers
an effectively instantaneous change to its angular velocity.
However, the value of Ω/Ωp never exceeds ∼2 over the course
of 10 orbital periods, demonstrating that the evolution of Ω is a
sequence of sporadic oscillations about Ωp. We also see that the
three curves initially display similar evolution owing to the
small difference in the initial phase of the dumbbell, but after
∼6 orbits, this similarity is no longer apparent.
The kinetic energy and angular momentum of the dumbbell

are small fractions of those appropriate to the COM orbit, and
hence, the change in the orbital period and pericenter distance
of the COM are small. Specifically, since the angular velocity
of the dumbbell is on the order of ( )GM e r1p • p

3 2W = + , it
follows that the reduction in the orbital period and the
pericenter distance are, to a leading order in the ratio of the
dumbbell radius Rå to the pericenter distance rp,

( )⎛
⎝

⎞
⎠

T

T

e

e

R

r

r

r

R

r

3

2

1

1
,

2
. 2

2

p
2

p

p

2

p
2

  D +
-

D

For TDEs on bound orbits with r few rp t ´ = few ´
( )R M M•

1 3
  , the relative changes in these quantities scale

with the mass ratio as ( )M M 1•
2 3 

- . The contribution from
the factor (1+ e)/(1− e) becomes increasingly significant in
the limit e→ 1. For the specific case considered here, with
e=0.9 and rp= 300Rå, we have ΔT/T; 3.2× 10−4 and
Δrp/rp; 2.2× 10−5. These numbers are in good agreement

Figure 1. The angular velocity of the dumbbell relative to ( )GM e r1p • p
3 2W = + as a function of time in units of the Keplerian orbital period, T. The different

curves correspond to the initial phase of the dumbbell with respect to the argument of pericenter. This figure demonstrates that the dumbbell is originally spun up to an
angular velocity that is comparable to Ωp, and on each successive pericenter passage, the dumbbell receives a pseudorandom kick to its angular velocity, resulting in a
scatter about the mean value of 1.
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with Figure 2, the left panel of which shows the relative
difference of the time between pericenter passages N and N− 1
to the Keplerian orbital period T, ΔTN,N−1, e.g., the value at
N= 2 gives the time between the second and first pericenter
passage, minus and divided by the Keplerian orbital period.
The right panel shows the relative difference between the
pericenter distance of the Nth pericenter passage and the
Keplerian pericenter distance. These data are appropriate to the
orange curve in Figure 1; note that—in agreement with
expectations—the largest changes in the orbital period and
pericenter correspond to the largest angular velocities of the
dumbbell.

The expression above for ΔT/T assumes that the energy
imparted to the star is small compared to the binding energy of
the COM orbit, but this will only be valid for eccentricities that
are not close to unity; indeed, in the limit that the eccentricity is
exactly 1, the energy of the new orbit is due exclusively to the
energy imparted to the object via tides, and Equation (2) cannot
be used to calculate the change in the orbital period. By
comparing the binding energy of the original orbit to the
rotational energy of the star, we see that the above expression is
only valid for eccentricities that satisfy

( )
( )e

R

e r
1

1
, 3

2

p
2

-
+

which, for numbers appropriate to typical TDEs, is of the order
1− e 10−5. When the eccentricity is above this value, a
lower bound on the orbital time of the (captured, in this case)
object is the object’s dynamical time multiplied by the mass
ratio of the black hole to the mass of the object, which amounts
to thousands of years for typical numbers; see Cufari et al.
(2022a, 2023) for additional discussion of this case, the latter of
which demonstrates that the orbital period is orders of
magnitude longer than this lower bound.

This toy problem will overestimate the angular momentum
imparted to the star in the limit that rp? rt, the reason being
that the quadrupole moment of the “dumbbell” is permanent
and maximal (compared to that of a star, which is itself excited
by tides). Nonetheless, it is illustrative in demonstrating that a
star can only be given an angular velocity comparable to ∼Ωp,
implying that—provided rp is outside the tidal radius—a star is

capable of surviving for many repeated encounters with an
SMBH, thus powering the repeated flares observed in
ASASSN-14ko.
Additionally, Equation (2) can estimate the period decay rate

of rpTDEs. For ASASSN-14ko specifically, a period of
T= 114 days and an SMBH mass of 107Me—as inferred by
Payne et al. (2023)—yield a semimajor axis of a; 1.5×
1015 cm. If the pericenter distance is comparable to the tidal
radius, then ( )r r R M M2 2p t •

1 3  ´ = (we note that high-
mass and more evolved stars can give rise to partial TDEs and
survive multiple encounters even when the pericenter distance
lies closer to the tidal radius; Coughlin & Nixon 2022a), and
the eccentricity of the orbit satisfies6
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1 2
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-

Inserting this into Equation (2) then gives
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1
0.003. 5•

2 3

 


D +
-

-

This value is in good agreement with the observed period decay
rate of ASASSN-14ko (note that this equation is taking the
absolute value; the orbital period will be reduced by this
amount, owing to the fact that energy is imparted to the star and
removed from the COM orbit). However, we recognize that this
is the period change following a single encounter, and this
energy must be efficiently lost from the system if subsequent
encounters are to continually reduce the orbital period by a
comparable amount. We return to a discussion of this point in
Section 4 below.
There are a number of effects that this simple model does not

incorporate—as we already noted, the quadrupole moment of
the “dumbbell” considered here is permanent and geometrically
maximal, whereas that of a star is produced by the tidal
interaction itself, and the net rotation of the star is the
consequence of a nonlinear coupling between the induced
quadrupole and the tidal field. The quadrupole moment of the
star will also change as a function of the spin, and the star also
has oscillatory modes and loses a fraction of its mass. While

Figure 2. Left: the relative difference of the time between pericenter passages N and N − 1 to the Keplerian orbital period, e.g., the value appropriate to N = 2
represents the time between the first and second pericenter passage, minus and subsequently divided by the Keplerian orbital period T. Right: the relative difference
between the pericenter distance on the Nth pericenter passage to the Keplerian pericenter distance rp. The values in these figures are consistent with the analytical
expressions derived here; see Equation (2). These data are appropriate to the orange curve in Figure 1, from which it is apparent that the largest changes in the
rotational velocity of the dumbbell correspond to the largest changes in both the orbital period and the pericenter, which is expected.

6 It is interesting to note that the mass of the black hole drops out of this
expression.
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one could conceivably model these additional effects through
modifications to the geometry and the Lagrangian in
Equation (1), we instead opt to numerically and hydrodynami-
cally simulate the interaction between a gravitationally self-
bound star and an SMBH. We describe our adopted numerical
methods, the simulations, and the results in the next section.

3. Hydrodynamical Simulations

3.1. Simulation Setup

We used the SPH code PHANTOM (Price et al. 2018) to
simulate the repeated partial tidal disruption of stars of different
masses and ages by a 106Me SMBH, where the latter is
modeled as a Newtonian point-mass potential. Using the stellar
evolution code MESA (Paxton et al. 2011, 2013, 2015, 2018),
we evolved stars from the zero-age main sequence (ZAMS),
when hydrogen fusion is initiated, to the terminal age main
sequence (TAMS), when the hydrogen fraction remaining in
the core is 0.1%. The MESA profiles were mapped onto a
three-dimensional particle distribution in PHANTOM, and
relaxed using the routine implemented in Golightly et al.
(2019b), which generates stable density profiles that agree well
with the original MESA profiles. We used 106 particles to model
the stars used in our simulations, which has been shown to be
an adequate resolution for partial TDEs in Miles et al. (2020)
and Nixon et al. (2021). However, we also performed a subset
of these simulations at a resolution of 107 particles to test the
numerical convergence of our results. Details of the numerical
method, such as the implementation of stellar self-gravity and
equation of state, are identical to those described in Coughlin &
Nixon (2015).

To simulate the disruption process, the relaxed star was
placed at an initial distance of 5rt from the SMBH, with the
COM on a parabolic Keplerian orbit. Upon passing through
pericenter, the tidal field of the SMBH partially disrupts the star
and strips off a fraction of its outer envelope. Approximately
half of the stripped debris is gravitationally bound to the
SMBH and accretes onto it. The surviving core in a partial TDE
reduces the hydrodynamical time step of the simulations
relative to the dynamical time of the disrupted debris. Thus, to
calculate the fallback rate of bound stellar debris, the surviving
stellar core was replaced with a point mass roughly 2 days after
the COM reached the pericenter, at which point the core had
receded to a distance of >15rt from the SMBH (for low-mass
stars, having smaller tidal radii, this distance is larger) as was
done in, e.g., Golightly et al. (2019b) and Miles et al. (2020).
The fallback rate is calculated as the rate at which particles
from the disrupted debris stream return to the accretion radius
of the SMBH, which is defined as the inner 3rt of the
computational domain for our simulations. The fallback rate of
particles from the disrupted debris stream closely tracks the
accretion rate onto the SMBH, subject to the assumption of
efficient disk circularization and negligible viscous delays (see
Mockler et al. 2019; Nicholl et al. 2022 for observational
evidence that suggests that viscous delays are small).

Simulating the subsequent encounters by evolving the star
on its highly eccentric orbit is computationally intractable,
since the orbital time of these events, which ranges from
months to years, amounts to thousands of dynamical times of
the disrupted star. To surmount this issue, we simulated each
encounter by allowing the COM of the star to evolve on its
parabolic orbit around the SMBH for ∼2 days past its

pericenter, which amounts to 100 dynamical times of the
star (but still orders of magnitude shorter than the orbital time).
The surviving core was then translated back to the initial
position of the original star (equal to 5rt) by calculating and
then subtracting the COM velocity and position from every
SPH particle, and subsequently adding back (to each particle in
the core) those of the original stellar orbit. Figure 3 shows the
density profile of the partially disrupted star for a 3Me TAMS
star, at a time when the COM has evolved for ∼2 days past its
pericenter. As seen in the figure, there is a distinct dichotomy
between the core and stream particles, with the exception of a
few particles that are situated in the intermediate region. For
each simulation, we chose a density cutoff that lies between the
tidally disrupted debris stream and the dense central structure
that we identify as the core. The core, comprised of particles
having a density greater than the threshold value, was
translated back on its orbit to simulate the subsequent
encounters. We verified that, once a distinct core had formed,
the density profile remained effectively unmodified, implying
that performing the core-translation routine a day earlier (or
later) does not have a measurable effect on the fallback rate.
The fallback rate for each successive orbit was obtained by
replacing the core with a sink particle using the procedure
described above, and tracking the rate of return of particles
from the debris stream to the SMBH.

3.2. Results for a 3Me TAMS Star

One of our primary goals in this work is to test the viability
of the rpTDE model in providing an explanation for the
repeated flares observed from ASASSN-14ko. To do this, we
describe here the results of simulating the repeated partial
disruption of a 3Me TAMS star by a 106Me SMBH, with an
impact parameter β = 1. The impact parameter β≡ rt/rp
quantifies the strength of the encounter between the star and the
SMBH. For a high-mass star at its late evolutionary stages, the
analytical prediction for the critical impact parameter βc
required for its complete disruption exceeds this value by an
appreciable amount (Coughlin & Nixon 2022a; from Figure 4
of Bandopadhyay et al. 2024, a 3Me TAMS star has a critical
impact parameter βc∼ 6, although we note that general

Figure 3. A particle plot showing the density of the disrupted 3Me TAMS star
as a function of radial distance from the black hole, at ∼2 days after the COM
of the star reaches pericenter. The density profile shows a distinct division
between particles belonging to the core (densities 10−2 g cm−3) and those
belonging to the tidally disrupted debris stream (densities 10−6 g cm−3). In
this case, the subset of particles having densities greater than 0.001 g cm−3 is
defined as the core.
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relativistic effects may reduce this value somewhat for very
massive SMBHs; e.g., Beloborodov et al. 1992; Kesden 2012;
Gafton et al. 2015; Tejeda et al. 2017; Gafton & Rosswog 2019;
Ryu et al. 2020; Jankovič & Gomboc 2023). Thus, β = 1
results in only a small amount of mass lost, and the star should
—subject to the influence of the imparted rotation discussed
above—be able to survive for many encounters while
simultaneously fueling accretion events.

Each successive pericenter passage spins up the tidally
stripped core by a small fraction of its breakup velocity.
Figure 4 shows the velocity of the fluid comprising the core in
its COM coordinates (i.e., both COM position and velocity
removed), which qualitatively demonstrates that the core is
indeed rotating following its tidal interaction with the SMBH.
In the top panel of Figure 5, we show the angular velocity Ω
imparted to the core during the first 15 pericenter passages as a
function of cylindrical radius s within the core. The primary y-
axis shows the angular velocity normalized by the breakup
angular velocity of the core, GM Rc c c

3W = . Here, Rc≈
0.2Re is the core radius for a 3Me TAMS star, defined as the
radial distance from the center of the star at which the self-
gravitational field of the star is maximized (Coughlin &
Nixon 2022a), and Mc≈ 0.3Me is the mass contained within
the core. The secondary y-axis shows the angular velocity
normalized by the angular velocity of the COM at the
pericenter, GM r2p • p

3W = . This figure demonstrates that,
while the rotation rate is comparable to Ωp, the imparted
angular velocity is a small fraction of the breakup angular
velocity of the core. The core is thus relatively unmodified, and
this allows the bulk of the star to survive many encounters as it
tidally interacts with the SMBH. The bottom panel of Figure 5
shows the corresponding linear velocity vj≡ sΩ, normalized
by GM Rc c .

The secular increase in the imparted angular velocity Ω
arises from the fact that, unlike the “dumbbell” analyzed in the
previous section that has a permanent quadrupole moment, the
quadrupole moment of the star is raised and subsequently
torqued by the tidal interaction with the SMBH during its

pericenter passage. The imparted angular velocity is therefore a
nonlinear response in the ratio of the tidal force to the self-
gravitational force, and also depends on the angle that the tidal
bulge makes with the line joining the star to the SMBH in the
corotating frame of the star; some differences also likely arise
in part from the fact that the size of the star—and hence the size
of the lever arm that mediates the torque applied by the SMBH
—increases as a result of the imparted stellar rotation and the
structural changes in response to the mass loss. The oscillatory
modes of the star are also damped on a viscous time, which in
our simulations is numerical and small but still shorter than the
time before which the star is translated back to pericenter; if the
oscillatory modes persisted and were not damped, there would
also be a pseudorandom oscillation in the angular momentum,
akin to what is seen in Figure 1. We discuss the nature of the
imparted rotation further in Section 4.1.
Additionally, we note that, in our simulations, the thermal

energy that is dissipated viscously (numerically) is not put back
into the gas, and is instead assumed to be efficiently lost from
the system; this choice is motivated by the fact that the outer
layers of the star can be subject to excessive numerical heating
(see, e.g., Norman et al. 2021; Coughlin & Nixon 2022b).
There should, however, be some level of physical heating in
response to the dissipation of kinetic energy imparted by tides,
and depending on where the thermal energy is deposited, it
may instead be trapped within the star, leading to its more rapid
destruction. To assess the impact of viscous heating and to
demonstrate that it does not have a strong impact on our results
and corresponding conclusions, in Appendix A, we present a
detailed investigation of the effects of both numerical
resolution and the thermodynamic prescription.
The increment in the angular velocity imparted to the core

between successive pericenter passages decreases as the
number of pericenter passages, N, increases, and it converges
to a constant value in the large-N limit. To illustrate the
convergence of the angular velocity imparted to the core, in the
left panel of Figure 6, we fit the fractional change in Ω between
successive pericenter passages to a power law in N. The power-
law index obtained from the fit is ∼−1.65, thus giving

N
1 d

dN
1.65

W
µW - . Using this, we then solve for Ω(N), which is

shown in the right-hand panel of Figure 6. The asymptotic limit
of this function is ∼0.07, thus showing that the imparted
angular velocity Ω converges to a value of ∼0.07Ωc in the limit
that N→∞.
The amount of mass stripped during each encounter is

( )M0.01  , and gradually decreases over time, as shown in
Figure 7. The fallback rates of stellar debris7 onto the SMBH
for the first 15 encounters are shown in Figure 8. The fallback
rates are calculated using the binning procedure described in,
e.g., Golightly et al. (2019b) and Miles et al. (2020): at early
times and when the particle flux is relatively large, we calculate
the fallback rate using equal time bins, whereas the late-time
fallback rate is binned by particle number. All of the fallback
rates follow the late-time temporal scaling of t−9/4, conforming

Figure 4. The density of the core in the orbital plane, represented as a function
of its COM subtracted position coordinates. The vectors overlaid on the figure
represent the velocity of the core particles in the COM frame, with their length
indicating the norm of the vectors. The velocity structure shows the spin
imparted to the stellar core through tidal interactions.

7 In our simulations, the star is approximated to be on a parabolic orbit, in
which case only half of the mass that is tidally stripped from the star returns to
the SMBH, with the other half unbound. Because the star must actually be on
an elliptical orbit, a fraction of the other (usually unbound) tail can be bound to
the SMBH, and will thereby produce a second, relatively low-level (but
potentially observable) accretion event; the amount of mass in this “less bound”
tail depends on the eccentricity of the orbit, the impact parameter β, and the
SMBH mass (Hayasaki et al. 2018; Park & Hayasaki 2020; Cufari et al.
2022b).
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to the expected scaling for partials (Coughlin & Nixon 2019).
Owing to the small amount of mass stripped in these
encounters, the fallback rates obtained from the 106 particle

simulations exhibit noisy behavior. To vet the accuracy of the
fallback rates obtained, we performed higher-resolution
simulations using 107 particles for the first four encounters.

Figure 5. Results of the SPH simulation for the 3Me TAMS star. The top panel shows the angular velocity Ω imparted to the core, with the primary y-axis normalized
by the breakup angular velocity of the core, GM Rc c

3 2, and the secondary y-axis normalized by the angular velocity of the COM at pericenter. The bottom panel
shows its linear component, vj = sΩ in units of GM Rc c , as a function of cylindrical distance s from the center.

7

The Astrophysical Journal, 974:80 (18pp), 2024 October 10 Bandopadhyay et al.



The fallback rates for the high-resolution simulations are
compared against their low-resolution counterparts in Figure 9.
In general, we find good agreement between the fallback rates
for corresponding encounters at different resolutions, with the
most noticeable differences arising in the return time of the most-
bound debris; because the outer layers of the star are better
resolved at higher resolution, and the outer layers of the star
coincide with the most-bound debris, the high-resolution
simulations generally display earlier return times. The peak
timescale decreases gradually from ∼80 to ∼45 days over the
first few encounters, and settles to an almost constant value of
∼45 days beyond the first five encounters. The magnitude of the
peak of the fallback rates is nearly constant, at ∼0.04Me yr−1,
over all of the 15 encounters shown in Figure 8.

The angular momentum imparted to the core also impacts the
energy spread of the tidally disrupted debris. Treating the
rotational energy of the star as a perturbation to the Keplerian
energy of its orbit, Golightly et al. (2019a) showed that, for a
star rotating in a prograde sense with its axis of rotation aligned
with the orbital angular momentum, the leading-order correc-
tion to the energy–period relation gives the following
expression for the return time of the most-bound debris:

( ) ( )⎛
⎝

⎞
⎠

t
R M

M GM2

2
1 2 . 6mb

3 2
•

•

3 2



p
l= + -

In the above expression, M• is the mass of the SMBH, Må and
Rå are the mass and radius of the star, and λ=Ω/Ωp is the
angular velocity of the star normalized by the angular velocity
of the COM at the pericenter. Since ( )t 1 2mb

3 2lµ + - , we
expect the peak fallback timescale to shift to earlier times as the
stellar rotation rate increases. In Figure 10, we plot the peak
timescale for the fallback rates against ( )1 2l+ for the first
15 encounters. As seen in the figure, the time taken for the
fallback rates to peak decreases as the rotational velocity
imparted to the core increases, and the best-fit line for tpeak has
a power-law dependence on ( )1 2l+ with a power-law
index of −0.8. While we thus recover the general trend that
increasing Ω yields a shorter peak fallback time, the power-law
index of −0.8 is discrepant with the prediction of Golightly
et al. (2019a). This can be attributed to the fact that, for the
partial disruptions considered here, the surviving core plays an

important role in modifying the energy spread of the disrupted
debris, and thus, the frozen-in approximation—which is
invoked in the derivation of Equation (6)—is not valid.
Additionally, the prediction by Golightly et al. (2019a) is for
the return time of the most-bound debris, and the trend may not
be as strong for the peak in the fallback rate.

3.3. Other Stars

3.3.1. 1.3Me TAMS Star

The 1.3Me TAMS star has a density profile similar to the
3Me star at the same evolutionary stage. Massive stars such as
these, in their late evolutionary stages, develop a core-envelope
structure, with a high-density core surrounded by a low-density
and tenuous envelope (see Figure 9 of Golightly et al. 2019b
for a comparison of density profiles of low-mass and high-mass
stars at different ages of their main sequence). The high-density
core makes it increasingly difficult to strip off mass, leading to
a progressively declining amount of mass being lost with an
increase in the number of pericenter passages. Figure 11 shows
the fallback rates for the first seven pericenter passages of the
1.3Me TAMS star orbiting a 106Me SMBH with an impact
parameter β = 1. The evolution of the fallback rates follows a
similar trend to the 3Me star. As the surviving stellar core is

Figure 6. Left: the fractional change in the angular velocity imparted to the core between the Nth and (N − 1)th pericenter passages. The downward trend indicates
that the increment in angular velocity between consecutive pericenter passages decreases with an increase in the number of pericenter passages, N. Right: the angular

velocity imparted to the core, in units of its breakup spin GM Rc c
3 , as a function of the number of pericenter passages.

Figure 7. The amount of mass stripped ΔM, as a function of number of
pericenter passages N, for the 3Me TAMS star on an orbit having an impact
parameter β = 1.
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spun up, the peak timescale shifts to earlier times (Golightly
et al. 2019a), and we see that the magnitude of the peak
fallback rate remains almost constant over multiple encounters.
These results demonstrate that a high-mass star at its late
evolutionary stages, on a grazing orbit around an SMBH, can
survive multiple encounters, generating ASASSN-14ko-like
flares over a prolonged period.

3.3.2. 1Me ZAMS Star

Figure 12 shows the fallback rates for the first two
encounters of a 1Me ZAMS star at β = 1. The mass stripped

on the first and second pericenter passages is ∼0.1Me and
∼0.2Me respectively, yielding a much brighter peak for the
second encounter, as seen in the figure. Clearly, a 1Me ZAMS
star on an orbit having an impact parameter β = 1 cannot
survive more than a few encounters, and it thus cannot
reproduce the observed lightcurve for ASASSN-14ko.
However, the fallback rates are consistent with the observed
lightcurve of AT2020vdq, for which two flares, with the
second one having a brighter peak, have currently been
observed (Somalwar et al. 2023).
The density profile of the 1Me ZAMS star is not as centrally

concentrated as that of a high-mass and evolved star.
Consequently, the critical impact parameter βc required for
the complete disruption of the star is ∼1.8—which is

Figure 8. Fallback rates from a simulation of the repeated partial disruption of a 3Me TAMS star by a 106Me SMBH, with a resolution of 106 particles for the
disrupted star. Each encounter is labeled by a different color, as indicated by the number in the legend. The impact parameter for each encounter was β = 1. Roughly
the same amount of mass is stripped off from the star during each subsequent pericenter passage, thus giving rise to a comparable peak luminosity between pericenter
passages. The late-time evolution of the fallback rates scales as t−9/4, consistent with the expected scaling for partial disruptions.

Figure 9. Comparison of fallback rates at different resolutions for the 3Me
TAMS star. The solid curves have a higher resolution of 107 particles, and the
dashed curves represent the lower-resolution simulations with 106 particles.
The curves for corresponding encounters are in good agreement with each
other, barring slight differences in the early time fallback, which is sensitive to
the resolution.

Figure 10. The timescale on which the fallback rates reach their peak, as a
function of the imparted angular velocity Ω. The peak timescale declines as a

function of ( )GM r1 2 • p
3+ W , with a power-law index of −0.8.
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approximately a factor of 3 smaller than that required to
completely destroy a 3Me TAMS star through tidal interactions
with a 106Me SMBH. Coughlin & Nixon (2022a) estimated the
minimum value of the impact parameter β at which a star
begins to lose any mass to be βpartial; 0.6, independent of the
stellar properties. To simulate a grazing encounter between a
1Me ZAMS star and a 106Me SMBH, we chose an impact
parameter β= 0.6. The top panel of Figure 13 shows the
amount of mass stripped in these simulations as a function of
the number of pericenter passages. For this star, the lack of a
centrally concentrated core-envelope structure leads to an
increasing amount of mass being stripped at each successive
pericenter passage. The bottom panel of Figure 13 shows the
fallback rates for the first five encounters. As seen in the figure,
the peak timescale decreases as the number of pericenter
passages increases. The magnitude of the peak of the fallback
rate gradually increases, which can be attributed to the increase
in the amount of mass lost as well as the decrease in the peak
timescale. This result shows that young low-mass stars that are
on grazing orbits around an SMBH are unlikely to give rise to
repeated flares of comparable peak luminosity, as observed for
ASASSN-14ko.

Finally, to explore the other end of the spectrum of β values
pertinent to partials, we simulated two successive disruptions of

the 1Me ZAMS star at β= 1.5, for which the fallback rates are
shown in Figure 14. As noted above, the critical impact
parameter for the complete disruption of this star is βc≈ 1.8
(Golightly et al. 2019b; Coughlin & Nixon 2022a), and thus, for
β= 1.5, the star loses a significant fraction of its mass during the
first pericenter passage. From the figure, we see that the late-time
scaling of the fallback rate for the first encounter scales as
∝t−9/4, indicating that the disruption is partial. However, the star
is completely destroyed on its second pericenter passage,
yielding a fallback rate that has a lower peak magnitude relative
to the first, and that scales as ∝t−5/3 at late-times. The dimmer
second peak is consistent with the observed lightcurve for
AT2018fyk (Wevers et al. 2023). Since the second encounter
results in a complete disruption of the star, if AT2018fyk was
generated by a low-mass star on an orbit having a β value close
to that required for its complete disruption, we would not expect
to observe any more flares from this source. However, the
detection of a second prompt shutoff implies that this
explanation likely fails for AT2018fyk, and suggests a third
rebrightening in 2027 (Pasham et al. 2024a).

4. Discussion and Conclusions

4.1. Spin-up of the Stellar Core

In Section 2, we used a simple toy model of a “dumbbell”
(composed of two point masses connected by a rigid rod)

Figure 11. Fallback rates for the first seven encounters between a 1.3Me
TAMS star and a 106Me SMBH, with an impact parameter β = 1. We used a
resolution of 106 particles for these simulations. The evolution of the fallback
rates over multiple encounters follows a similar trend to the 3Me TAMS star.

Figure 12. Fallback rates for the disruption of the 1Me ZAMS star at β = 1.
The second encounter yields a brighter peak relative to the first one, as the
amount of mass stripped is roughly doubled.

Figure 13. Top: the amount of mass stripped, ΔM, as a function of the number
of pericenter passages, N, for a 1Me ZAMS star with β = 0.6 for each
encounter. The absence of a centrally concentrated core-like structure leads to a
progressive increase in the amount of mass stripped with the number of
pericenter passages. Bottom: fallback rates for the first five encounters between
the 1Me ZAMS star and a 106Me SMBH, at β = 0.6, with a resolution of 106

particles. The peak of the fallback rate increases gradually as the amount of
mass stripped increases, and the peak timescale shifts to earlier times.
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gravitationally interacting with a black hole to argue that a star
should not be torqued beyond a rotational velocity of

GM rp • p
3 2W = . While this outcome and toy model agreed

qualitatively with our hydrodynamical simulations, there were
important differences. Specifically, instead of being torqued to
∼Ωp on the first encounter with a pseudorandom oscillation in
its rotational velocity thereafter, the star was imparted a small
change (which declined with the number of pericenter
passages; see Figure 5) in Ω each time it interacted strongly
and tidally with the SMBH. This can be attributed to both an
increase in the size of the star, such that the star is more
efficiently gravitationally torqued by the SMBH, and the fact
that a renewed quadrupole moment is excited on each
encounter, the nonlinear interaction of which with the tidal
field of the SMBH is ultimately and at least partially
responsible for generating the net rotation. Our results for the
3Me TAMS star on a β = 1 orbit show that the angular velocity
imparted to the surviving stellar core over multiple encounters
with an SMBH is a small fraction of its breakup spin, and
asymptotes to a value of 0.07Ωc in the limit of a large number
of pericenter passages.

We note that, while the numerical fit to the rotational
velocity of the core implies an asymptotic rotation rate of
∼1.4Ωp, we expect the value to asymptote to only ∼Ωp. As
discussed in Section 2, the reason for this is that, once the
rotation rate of the star is ∼Ωp, the SMBH appears stationary in
the corotating frame of the star near pericenter (which is the
only location at which the tidal field is sufficiently strong to
torque the star). There is thus no misalignment between the
tidal bulge and the vector joining the COM of the star and the
SMBH in this frame, meaning that the star will not be torqued
beyond this value.

We also emphasize that, while the star should be
asymptotically torqued to Ωp if it is initially not rotating, the
outcome is qualitatively different if the star is initially rotating
faster than 2Ωp in a prograde sense or faster than Ωp in a
retrograde sense. In these cases, the SMBH makes more than
one complete rotation in the corotating frame of the star near
pericenter, meaning that the net tidal torque is much weaker,
and the star and its rotation are relatively unperturbed. This
limit of super-Keplerian rotation is applicable to rpTDEs if the
Hills mechanism is responsible for placing the star on its tightly

bound orbit, which is a viable mechanism for producing such
short-period orbits if there were not many prior encounters
(Cufari et al. 2022a; as was mentioned in Section 1, this
condition is necessary for systems such as ASASSN-14ko that
lose ∼1% of the total stellar mass per encounter). However,
even with the Hills mechanism, extremely tight binary
separations of ∼few× Re are required to produce ∼100 day
orbits about SMBHs with masses 106−7Me, such that the
binding energy of the binary is comparable to that of the
partially disrupted star. We would then expect the star to be
tidally locked at a rotation rate that can, depending on the
pericenter distance of the binary and its tidal disruption radius,
exceed Ωp, in which case the rotation of the star would be
largely unaffected. Because the binary can be randomly
oriented with respect to the orbital plane of the binary COM,
the result would be a rapidly rotating star at an inclined angle
about the SMBH.
Finally, the rotation imparted to the star is a nonlinear effect:

the tidal bulge provides the quadrupole moment, which
subsequently experiences the torque applied by the tidal field.
Additionally, Kochanek (1992) argued that the tidal interaction
excites modes that have nonzero vorticity, and the damping of
these modes establishes a bulk rotation within the star, such
that the angular momentum in the oscillatory modes and that in
the rotation of the star cancel out the net vorticity. We discuss
the development of solid-body rotation within the star in
Appendix B and show that it is insensitive to numerical
resolution, i.e., it is a physical consequence of the tidal
interaction with the SMBH. Because it is a nonlinear effect, we
would expect the net rotation per encounter to decline
extremely strongly with distance from the SMBH, similar to
the way in which the energy imparted via tides falls off with β
very rapidly (Press & Teukolsky 1977). Thus, the statement
that the star is spun up to ∼Ωp is likely only valid for
0.5 β βc, where βc is the value of β at which the star is
completely destroyed.

4.2. Effect of Stellar Structure on Survivability

Our hydrodynamical simulations show that the survivability
of a star undergoing repeated tidal interactions with an SMBH
depends on its structural properties. High-mass stars that are in
their late evolutionary stages develop a core-envelope structure
that enhances their probability of survival relative to low-mass,
less centrally concentrated stars. This is in agreement with the
results of Liu et al. (2023), where the authors concluded, based
on an adiabatic mass-loss model, that a centrally concentrated
high-mass star having a diffuse outer envelope can generate
ASASSN-14ko-like flares as it undergoes periodic mass-loss
events on a grazing orbit around an SMBH. We showed that
the 3Me TAMS star and the 1.3Me TAMS star (for which the
critical impact parameter required for their complete disruption
is βc; 6) on a β = 1 orbit can survive many encounters, losing
a small amount of mass on each pericenter passage, and
generating luminous flares for a long time. On the other hand,
for the 1Me ZAMS star, the density profile is not as centrally
concentrated, and the amount of mass stripped per encounter is
a monotonically increasing function of the number of
pericenter passages, which can be detrimental to the survival
of the star. Liu et al. (2024a) studied the hydrodynamical
evolution of the disruption of a Sun-like star with β = 0.5, 0.6,
and 1.0, and found that the star loses an increasing amount of
mass with each pericenter passage, and is destroyed in 10

Figure 14. Fallback rates for the disruption of the 1Me ZAMS star at β = 1.5.
The first encounter leads to a partial disruption, but strips of a significant
fraction of the mass of the star. The second encounter results in the complete
disruption of the star, giving rise to a fallback rate exhibiting a smaller peak
magnitude, that scales as ∝t−5/3 at late-times.
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encounters for β = 0.5, to 3 encounters for β = 1.0. While
the 1Me star studied in their simulations is more evolved than
the ZAMS star, our results for the 1Me ZAMS star are
qualitatively in agreement with their result, that a Sun-like star
loses an increasing amount of mass with each pericenter
passage, and is destroyed within a few orbits. The same authors
also note that the presence of a centrally concentrated core and
a tenuous outer envelope enables a more evolved star to survive
a greater number of tidal encounters without being completely
destroyed, which is consistent with our results for the 3Me
TAMS star.

Antonini et al. (2011) used N-body integrations and
SPH simulations to study the repeated tidal stripping of the
main sequence of stars as one of the possible outcomes of the
tidal breakup of binary star systems by SMBHs. They used N-
body integrations to evolve the binaries for 100 orbits around
the SMBH, and found that, in a Hills-capture scenario, where
one of the stars is ejected as a hypervelocity star, the bound
companion can undergo periodic mass-loss episodes for
hundreds of orbits before being completely destroyed. Their
SPH simulations, which have a maximum resolution of
∼4× 104 particles, do not explore the parameter space of
stellar and orbital parameters that we considered here, but our
results qualitatively agree with their conclusion—that main-
sequence stars on highly eccentric bound orbits around SMBHs
can undergo repeated tidal disruptions, giving rise to periodic
flares of varying intensity. We demonstrated that the strength,
duration, and periodicity of these flares are largely determined
by the structural properties of the star and the distance of the
closest approach between the star and the SMBH.

Zalamea et al. (2010) studied the feasibility of detecting
electromagnetic and gravitational-wave signals arising from an
extended period of slow mass loss in white dwarfs on
inspiralling orbits around a 105Me SMBH. While the region
of parameter space explored in their work does not directly
correlate to ours, they found that white dwarfs on highly
eccentric orbits around an SMBH, undergoing slow periodic
mass-loss episodes, can last for thousands of orbits, emitting
gravitational waves detectable in the Laser Interferometer
Space Antenna band and accretion flares with luminosities
close to the Eddington limit of the SMBH. MacLeod et al.
(2013) used a combination of hydrodynamical simulations and
a semianalytic model to study the tidal stripping of a giant star
with mass Må= 1.4Me and Rå= 50Re, on an eccentric orbit
around a 107Me SMBH. The mass-transfer process is initiated
when the star evolves up the red giant branch. They showed
that the red giant star can survive for hundreds of orbits around
the SMBH, giving rise to low-intensity flares that recur on the
orbital timescale of the star, which is 103 yr.

4.3. Evolution of the Orbital Period and the Peak Fallback
Timescale

The secular evolution of the orbital period of ASASSN-14ko
is not well understood, and various mechanisms have been
suggested for reproducing the observed period derivative of
P 0.0026 = - . Payne et al. (2021) and Cufari et al. (2022a)
concluded that gravitational-wave emission underestimates the
period derivative by several orders of magnitude. Linial &
Quataert (2024) analyzed various physical processes that could
be responsible for producing the observed period change in
ASASSN-14ko, and suggested that the hydrodynamical drag
experienced by the star as it interacts with the accretion disk of

the SMBH provides the most likely explanation for the
observed change in period. However, they noted that the
minimum disk mass required for this likely exceeds the mass of
the star, thereby necessitating the existence of an active galactic
nucleus-like disk to explain the observed evolution of the
period.
Our analytical estimates from Section 2 show that, for solar-

like stars being repeatedly tidally disrupted by an SMBH, the
angular velocity imparted to the stellar core can change the
period by a small fraction of its original value. For the specific
case of ASASSN-14ko, having a period of 114± 1 days, we
estimated the fractional change in the period to be ΔT/
T;−0.003, which is in excellent agreement with observations
(Payne et al. 2023). We note, however, that to continue to
reduce the orbit by the same fractional amount, this energy
must be lost from the star and efficiently, i.e., on a per-orbit
basis. Since the imparted angular momentum to the star results
in an angular velocity that is approximately uniform, it is
unlikely that this energy will be dissipated efficiently, meaning
that—if the imparted rotation does represent the sink of orbital
energy that leads to the period decay—one would expect a
pronounced ̈P as the star is not efficiently torqued above Ωp.
In addition to bulk rotation, one expects a comparable

amount of energy produced in oscillatory modes that is
ultimately dissipated as heat, either viscously or through
three-mode (and higher) nonlinear couplings (e.g., McMillan
et al. 1987; Kochanek 1992; Kumar & Goodman 1996;
Weinberg et al. 2012). As we discuss in Appendix A, we
expect most of the thermal energy to be concentrated in the
outer layers of the star where the amplitude of the tidal
acceleration is largest, and these layers are removed on
subsequent encounters with the SMBH. For ASASSN-14ko
(i.e., with an orbital period of 114 days and an SMBH mass of
107Me), the reduction in the orbital period would result in the
deposition of ∼1.5× 1046 erg in 0.01Me (i.e., comparable to
the amount of mass stripped from the star in our simulations),
which would require a luminosity of L≈ 3.5LEdd if this energy
were to be lost radiatively (LEdd is the Eddington luminosity of
a 3Me star, assuming κes= 0.34 cm2 g−1 for the opacity; see
the discussion in Appendix A for more details). The amount of
energy dissipated via tides and required to reproduce the
observed P therefore could not be efficiently exhausted
radiatively (see also Kumar & Quataert 1998), but the tidal
stripping of the outer layers of the star serves an alternative
outlet through which the energy can be lost mechanically and
without destroying the high-density (and thermally insulated;
again, see Appendix A) core, thus allowing periodic accretion
events to continue. While our resolution tests and the
implementation of alternative thermodynamic treatments,
discussed in detail in Appendix A, provide evidence to suggest
that this is the means by which the star can continue to survive
many tidal encounters with the SMBH, additional investiga-
tions—particularly in the context of linear tidal theory—are
required to solidify this connection.
Liu et al. (2024b) argued that the rapid evolution of the

recurrence time of the flares observed from eRASSt-J045650,
which has now flared ∼5 times, can be interpreted as a change
in the orbital period of a 1Me star undergoing repeated partial
disruptions on an orbit around a 105Me SMBH. However, they
estimated that the amount of mass that the star must lose on a
single pericenter passage is ∼0.8–0.9Me. Given that this is a
substantial fraction of the original mass of the star, it seems
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unlikely that the remnant of this interaction would survive
subsequent pericenter passages without undergoing a drastic
and unphysical change in its pericenter distance. Additionally,
as argued in Cufari et al. (2022a) and as shown here in
Section 2, reducing the period by the amount claimed in Liu
et al. (2024b) would necessitate imparting more energy into the
star than its own binding energy.

While the change in orbital period induced by the spin-up of
the stellar core can only be an extremely small fraction of the
original period, the peak timescale for the fallback rate of tidally
stripped stellar debris can exhibit greater variation due to the
imparted rotation. We found from the simulation of the partial
disruption of a 3Me TAMS star by a 106Me SMBH that the
peak fallback time scales with the imparted angular velocity Ω

approximately as ( )GM r1 2 • p
3 0.8+ W - . From Figure 10,

we see that if an rpTDE is observed during the first few
pericenter passages of the star, the peak timescale could show
significant variation between successive flares, but as the angular
momentum imparted to the stellar core converges to a nearly
constant value over multiple encounters, the variation in the peak
timescale would be less prominent for later pericenter passages.

4.4. Connecting ASASSN-14ko’s Outbursts to Orbital and
Stellar Properties

The fallback rates obtained from our hydrodynamical
simulations for high-mass stars qualitatively reproduce the
nature of the observed flares from ASASSN-14ko, for which
the peak magnitude of the flares shows very little variation over
the 10 yr period for which this event has now been
observed (Payne et al. 2021, 2022, 2023). However, the
eccentricity of the bound orbit will have imprints on the
morphology of the fallback rates that are not captured in our
simulations, for which we assumed the COM of the star to be
on a parabolic orbit. The hydrodynamical evolution of stellar
TDEs on eccentric orbits and the fallback rates of the bound
stellar debris have been studied in, e.g., Hayasaki et al. (2013),
Park & Hayasaki (2020), and Cufari et al. (2022b). In
particular, features such as the peak timescale and the late-
time scaling of the fallback rates will differ for an e; 0.98
orbit, relative to its parabolic counterpart. Also, since we did
not self-consistently evolve the star on its elliptic orbit, we
cannot directly constrain the orbital period of the star or the
time between successive peaks from our simulations. Thus, we
do not attempt to translate the fallback rates for successive
encounters along the time axis to depict their chronology of
occurrence, but instead overlay them on top of one another,
demonstrating the relative intensity of the peak magnitudes
between successive pericenter passages. For any given fallback
rate, the time axis represents the lapse of time since the
corresponding pericenter passage of the star. The peak
timescales for the high-mass stars that we simulated at β = 1
range from ∼40 to 80 days. The SMBH mass used in our
simulations was 106Me, whereas the inferred SMBH mass for
the host galaxy of ASASSN-14ko is estimated to be ∼107Me
(Payne et al. 2021). The peak timescale for TDEs scales with
the mass of the SMBH as M•

1 2µ (Lacy et al. 1982), and so, the
expected peak timescale for ASASSN-14ko’s flares should be
longer, based on its SMBH mass estimate. Since the observed
UV lightcurve rises to its peak on a timescale of
∼2 days (Payne et al. 2022), much of the early time accretion
rate is presumably not observed.

For observed events, the recurrence timescale is generally
defined as the time between successive peaks in the lightcurve.
This timescale does not directly correlate with the orbital or
stellar parameters. Our ability to constrain these parameters
depends on the presence or absence of certain features in the
observed lightcurve. Specifically, there will be some time-lapse
between the sequence of events that constitute the process of
disruption and the ensuing accretion onto the SMBH, namely,
the star reaching pericenter, the initiation of accretion, the
rising phase of the lightcurve, and its subsequent decay. If the
timescale on which the fallback rate rises and decays is
comparable to or longer than the time between successive
peaks, then the returning of the stellar core to the pericenter
would be associated with a prompt shutoff of the fallback
rate (Liu et al. 2023; Wevers et al. 2023), allowing us to
constrain the orbital period of the star. Such a prompt shutoff
was observed in the X-ray lightcurves of transients such as
AT2018fyk and eRASSt-J045650 (Wevers et al. 2023; Liu
et al. 2024b). On the other hand if, as is the case for ASASSN-
14ko, the lightcurve decays on a timescale that is much shorter
than the time between successive peaks, then the orbital period
of the star cannot be constrained from the observed lightcurves
of the events. In addition to orbital parameters, rpTDE
lightcurves can also allow us to constrain the properties of
the disrupted star. As we showed here, ASASSN-14ko’s
outbursts are consistent with the partial disruption of a high-
mass star with a centrally concentrated core and a diffuse outer
envelope, on a grazing orbit around an SMBH, losing
∼0.01Me on each pericenter passage, and surviving multiple
encounters to give rise to the observed outbursts.

5. Summary

We used analytical estimates based on a simplified toy
model, and hydrodynamical simulations of the repeated partial
tidal disruption of stars by an SMBH, to analyze the feasibility
of the rpTDE model for generating repeating nuclear transients.
The key findings of our work are as follows:

1. A high-mass star in its late evolutionary stages can
undergo repeated mass-transfer events on a bound orbit
around an SMBH, losing a small fraction of its outer
envelope on successive pericenter passages, giving rise to
ASASSN-14ko-like flares over a sustained period.

2. The relative brightness between successive peaks of
observed lightcurves is determined, to a large extent, by
the type of star and the impact parameter characterizing
the orbit. This can be used to constrain the properties of
the disrupted star from the observed lightcurves of
rpTDEs.

3. Using the energy–period relation for the Keplerian orbit,
we showed that the rotational velocity imparted to the
surviving stellar core can lead to changes in its period that
are comparable to the observed period derivative of
P 0.0016 = - for ASASSN-14ko, provided the star is
spun up to a rotational velocity comparable to ∼Ωp in one
orbit. Our simulations show (see Figure 5), however, that
it takes several pericenter passages to spin up the star by
this amount, and thus, the rotational energy of the core
does not act as an efficient sink for the dissipated orbital
energy (at least as concerns the observed P for ASASSN-
14ko). Moreover, the per-orbit increment in Ω declines
with time, and the star cannot be spun up beyond ∼Ωp,
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implying that there would be a significant ̈P if this were
the primary source of dissipation. Instead, it is likely (and
consistent with the results in Appendix A) that tidal
dissipation deposits thermal energy (at the expense of the
binding energy of the orbit) in the outer layers of the star
that are tidally stripped on subsequent encounters, i.e., the
energy is lost mechanically instead of radiatively, while
the core is relatively unmodified and survives many more
encounters.

4. The timescale on which the fallback rate rises and peaks
decreases as a power law in the imparted angular velocity
( ( )t 1 2peak p

0.8µ + W W - ). It shows greater variation
for earlier orbits, and eventually converges to an almost
constant value. Thus, if an rpTDE is observed during the
first few pericenter passages of the star on its orbit around
an SMBH, the timescale on which the lightcurve rises
and peaks should show a significant change between
successive flares.

5. A nonrotating star is spun up to ∼Ωp upon interacting
many times with the SMBH. If the star is initially rotating
faster than∼2Ωp in a prograde sense, or faster than∼Ωp in
a retrograde sense, which could arise if the star is captured
by the black hole through a three-body exchange (i.e., the
Hills mechanism), the same conclusion does not hold, and
the stellar rotation will be relatively unperturbed.
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Appendix A
Effects of Tidal Heating

To assess the impact of tidal heating on the survivability of
the star, we performed simulations for the 3Me TAMS star that
are identical to those presented in Section 3.2, except that the
thermal energy that is generated as a byproduct of viscous
dissipation (i.e., due to the numerical implementation of an
artificial viscosity; see Price et al. 2018 for details in the context
of PHANTOM specifically) is retained within the fluid. In
contrast, the simulations presented in Section 3.2 assume that
this heat is lost from the system; which of these scenarios is
closer to reality depends on where the energy is deposited in
the star, the rate at which the kinetic energy imparted via tides
is viscously and radiatively (or nonlinearly; e.g., McMillan
et al. 1987; Kochanek 1992; Kumar & Goodman 1996;
Weinberg et al. 2012) damped, and the photon mean free path,
but in general, we expect the numerical heating to be artificially
large in the outer layers of the star where the resolution is
lowest (see Norman et al. 2021; Coughlin & Nixon 2022b
specifically in the context of TDEs).

The fallback rates for the first six encounters for the 1M
particle simulations, with and without “shock heating” (the
term we adopt for numerical heating, which is due to the
increased importance of viscosity in enforcing the smoothness
of the flow, but is not necessarily due to the presence of a
shock), are shown in Figure 15. While the fallback rates for
N= 1 are almost indistinguishable, the retention of heat within
the star causes the outer layers of the star to inflate, and mass is
lost more easily from these layers relative to the case where the
heat is dissipated. This causes an increased amount of mass loss
in the second and third pericenter passages, and the fallback
rates for these two encounters lie systematically above the
corresponding fallback rates from the simulations in which
shock heating is ignored. Table 1 shows the amount of mass
lost by the star and that is accreted onto the SMBH for the first
six pericenter passages. Once the tidally heated outermost
layers of the star are stripped, shock heating is no longer
significant, and the fallback rates are again indistinguishable.
To test the effect of resolution on our results, we also

simulated the first pericenter passage of the star with the
inclusion of shock heating at 10M particles. Figure 16 shows
the fallback rates with and without shock heating, at the two
different resolutions. Aside from differences at the noise level,
the curves are identical. We also compared the fallback rates
for the 1Me ZAMS star with β= 0.6 and β = 1, and found no
significant differences between the shock heating included and
shock heating excluded simulations during the first encounter.
Finally, Figure 17 shows the fluid column density projected
onto (x–y) and perpendicular to (x–z) the orbital plane. While
the highest-density regions remain unaltered, the retention of
heat causes the outer layers of the star to inflate, which are
removed on subsequent encounters.
Taken together, these tests and the overall insensitivity of our

results to the adopted thermodynamic prescription suggest that
the star loses the excess heat from tidal dissipation mechanically:
it is within the outer layers of the star that most of the thermal
energy is deposited, and these layers are subsequently stripped
by the black hole. The mechanical (as opposed to radiative) loss
of energy is likely required for systems in which the orbital
period is as short as ASASSN-14ko’s, because the rate at
which energy would need to be radiated—and still yield the
observed P—would likely be above the Eddington limit of the
star. Specifically, from the relationship between the orbital
period T and specific energy ò of a Keplerian orbit, we have
ΔT/T= 3Δò/(2ò), where ΔT (Δò) is the per-orbit change in
the orbital period (specific energy). For T= 114 days and

Table 1
Amount of Mass Lost per Encounter by the 3Me TAMS Star Orbiting a 106Me
on a β = 1 Orbit, and Mass Accreted onto the SMBH, with and without the

Inclusion of Shock Heating

Pericenter
Passages Mass Stripped ( )M Mass Accreted ( )M

Without
Shock
Heating

With Shock
Heating

Without
Shock
Heating

With Shock
Heating

1 1.65 × 10−2 1.74 × 10−2 8.46 × 10−3 8.53 × 10−3

2 1.47 × 10−2 2.06 × 10−2 7.54 × 10−3 1.06 × 10−2

3 1.31 × 10−2 1.89 × 10−2 6.45 × 10−3 9.44 × 10−3

4 1.19 × 10−2 1.43 × 10−2 5.95 × 10−3 8.46 × 10−3

5 1.12 × 10−2 1.23 × 10−2 5.55 × 10−3 6.27 × 10−3

6 1.07 × 10−2 1.12 × 10−2 5.37 × 10−3 5.71 × 10−3
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M•= 107Me, ò; 5× 10−4c2, and with ΔT/T= 0.001, we have
Δò; 8.6× 10−7c2. If this energy is placed into the outer
0.01Me of the star, then the rate at which the energy would
need to be lost over the orbital period of the star is
E M T0.01 1.5 1039  = ´ D ´ erg s−1 ; 3.5LEdd, where
LEdd= 4πGMåc/κ is the Eddington luminosity with Må= 3Me
and κ= κes= 0.34 cm2 g−1 for solar abundances. Since the
thermal diffusion timescale is∼Rå/(c/τ)? 114 days, where τ is
the optical depth over the stellar radius, the tidal energy can be
deposited and stored in the outer layers of the star (which is also
where the amplitude of the tidal force is largest and hence where
we expect most of the kinetic energy to be nonlinearly and/or
viscously damped), thus allowing the core of the star to survive
and giving rise to ASASSN-14o-like flares over a prolonged
period.

Finally, we note that the degree to which tidal dissipation
modifies the orbital period of the star is a nontrivial and
nonmonotonic function of the energy. In particular, while tides
dissipate orbital energy and further bind the star to the black
hole for sufficiently small β, higher-order moments in the black
hole’s gravitational field can impart a positive energy to the
surviving core once the star loses a sufficiently large amount of
mass, as shown by Manukian et al. (2013), Gafton et al. (2015),
and Cufari et al. (2023; see Kremer et al. 2022 for an analysis
of this phenomenon for stellar-mass black hole encounters).
However, these investigations were specific to the case where
the star was originally on a parabolic orbit, was not rotating,
and had a simple (i.e., polytropic) density profile, none of
which apply to the tidal encounters considered here. While we
find—by following the same procedure as outlined in Cufari

Figure 15. Fallback rates onto a 106Me SMBH from the partial disruption of the 3Me TAMS star on its first six pericenter passages, with (pink) and without shock
heating (purple). With the inclusion of shock heating, the outer layers of the star puff-up, leading to an increased amount of mass loss as compared to the case without
shock heating. The fallback rates for the second and third encounters show the maximum deviation from the ones for which shock heating is excluded. Once the outer
layers of the star are removed, subsequent pericenter passages lead to a comparable amount of mass being lost from the surviving core, and almost indistinguishable
fallback rates with and without heating.
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Figure 16. The fallback rates for the first pericenter passage of the 3Me TAMS star, with and without shock heating. The solid curves are for a higher resolution of
10M particles, whereas the dashed curves are for a resolution of 1M particles.

Figure 17. The column density profile of the 3Me TAMS star at ∼1 day past pericenter passage, with (right) and without (left) shock heating, at a resolution of 10M
particles. The top panel shows a comparison of the density profile in x–y coordinates, and the bottom panel shows the density profile in x–z coordinates. The outer
layers of the star are inflated in the simulation including shock heating, but structure of the core is largely unaffected, thus preventing the star from being completely
disrupted in a few orbits.

16

The Astrophysical Journal, 974:80 (18pp), 2024 October 10 Bandopadhyay et al.



et al. (2023)—that the 3Me TAMS star on a β = 1 orbit
experiences a reduction in its orbital energy at the level of
0.01GMå/Rå, such that its orbital period would be reduced by
an amount that is in rough agreement with the P exhibited by
ASASSN-14ko (see the preceding paragraph, but we empha-
size that our orbit was parabolic, and it is not clear how an
initially bound orbit would modify this result), we defer a
detailed investigation of this aspect of this problem to
future work.

Appendix B
Development of Solid-body Rotation in the Core

To address the temporal evolution and resolution depend-
ence of the angular velocity of the partially disrupted star,
Figure 18 shows the angular velocity of the stellar core as a
function of time. Here, tpericenter is the time taken for a
Keplerian orbit to reach pericenter from the initial location of
the stellar COM (equal to 5rt). The angular velocity Ω is
calculated as an average over every particle present within a
radius Rc∼ 0.2Re from the center of the star, i.e., within the
“core” as defined by Coughlin & Nixon (2022a). As seen from
the figure, the star is spun up to approximately its asymptotic
value on ∼the stellar dynamical time upon reaching pericenter,
although there is some temporal evolution on longer timescales

that likely arises from the reaccretion (by the core) of a fraction
of the tidally stripped tails. This figure also shows the angular
velocity from the 10M particle simulation to ∼1 day past
pericenter, which is in good agreement with the lower-
resolution simulation. The solid-body rotation that is induced
in the star is therefore resolved and physical.
The emergence of bulk rotation as a consequence of the

excitation of quadrupolar modes was studied by Kochanek
(1992), who pointed out that the quadrupolar ℓ= 2, m=−2
mode is tidally excited with a higher amplitude compared to
other oscillatory modes, and the conservation of circulation
within the star requires that the damping of this mode (which
possesses both angular momentum and vorticity) generates a
bulk rotation within the star at an angular frequency that is much
smaller than the mode frequency (see the discussion in Section 3
of Kochanek 1992). Our simulations show that tidal interactions
spin up the star to a uniform angular velocity, which is a small
fraction of Ωp. The rotational energy thus imparted to the core
does not exceed its binding energy, and also does not account for
the dissipation of orbital energy (as we show in Appendix A
above, the energy imparted through tides heats up the outer
layers of the star, which are mechanically removed on
subsequent encounters with the SMBH).

Figure 18. Rotational velocity Ω imparted to the core of the 3Me TAMS star, in units of its breakup spin, as a function of time measured relative to when the COM of
the star reaches pericenter. The initially nonrotating star is spun up near pericenter, and continues to rotate with a roughly constant angular velocity beyond ∼2 days
past pericenter.
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