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Evidence of universal conformal invariance 
in living biological matter

 

Benjamin H. Andersen1, Francisco M. R. Safara    2,3, Valeriia Grudtsyna    1, 

Oliver J. Meacock    4,5, Simon G. Andersen    1, William M. Durham    5 , 

Nuno A. M. Araujo    2,3  & Amin Doostmohammadi    1 

The emergent dynamics of collective cellular movement are typically 

thought to depend on how cells interact with one another and the 

mechanisms used to drive motility, both of which exhibit remarkable 

diversity across different biological systems. Here we report experimental 

evidence of a universal feature in the patterns of flow that spontaneously 

emerge in groups of collectively moving cells. Specifically, we demonstrate 

that the flows generated by collectively moving dog kidney cells, human 

breast cancer cells and two different strains of pathogenic bacteria 

exhibit robust conformal invariance. We also show that the precise form 

of invariance in all four systems is described by the Schramm–Loewner 

evolution—a family of planar curves defined by a single parameter—and 

belongs to the percolation universality class. The presence of universal 

conformal invariance reveals that the macroscopic features of living 

biological matter exhibit universal translational, rotational and scale 

symmetries that are independent of the microscopic properties of its 

constituents. Our results show that flow patterns generated by different 

systems are highly conserved and that biological systems can be used to 

experimentally test predictions from the theories for conformally invariant 

structures.

Understanding the collective movement of large populations, and 

how it arises from its constituents, is a central problem in biology, 

ecology, materials science and physics1–4. In these living systems, work 

is produced at the level of an individual constituent, and this ‘activ-

ity’ is translated into patterns of collective motion at larger length 

scales through interactions between them1,5. However, many of the 

processes involved in collective movement, including the mechanisms 

that individual constituents use to propel themselves, the processes 

that give rise to interactions and the behavioural responses to stimuli, 

are incredibly diverse in different biological systems and are often 

difficult to decode6,7. Although many different models have been pro-

posed to reproduce the specific pattern of collective movement made 

by particular organisms, we lack a general unifying theory or set of 

principles that unite the collective movement observed across distinct 

biological systems.

In contrast, the study of complex interactions between the compo-

nents that make up certain inanimate materials, like metals and alloys, 

has led to the discovery of universal behaviour near the so-called critical 

regimes. In these conditions, the global macroscopic properties no 

longer depend on the specific properties of the individual constituents, 

but rather exhibit ‘universal’ behaviour8. The principles that give rise 

to this universality in inanimate materials have been described using 

the framework of conformal field theory9,10, which predicts how shapes 

and angles of structures are locally conserved across different systems, 
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To compare how the flow structure varies across the four different 

experimental systems, we first measure the fractal dimension of the 

vorticity contours by plotting the perimeter of closed contours as a 

function of their radius of gyration. Surprisingly, without any fitting, 

special scaling or free parameters, the results for all four different 

experiments collapse on the same line and exhibit the same power-law 

behaviour (Fig. 2a). This provides concrete evidence of scale invari-

ance and indicates that the flows generated by these diverse cellular 

systems share the same generic features. Interestingly, the slope of 

the perimeter–gyration radius plot, or fractal dimension, is D = 7/4 for 

the complete perimeter and D* = 4/3 for the accessible external peri-

meter (Extended Data Fig. 3), and satisfies the duality relation 4(D – 1)

(D* – 1) = 1, conjectured for conformally invariant curves24. This finding 

suggests that these biological flow structures, in addition to being scale 

invariant, could exhibit much richer conformal symmetries25.

To test whether our experimental data demonstrate conformal 

invariance, we calculated the winding angle of the vorticity contours 

across the four different experimental systems. The winding angle is 

defined as the angle between two points on a contour that are separated 

by a given distance measured along the contour (Methods). The wind-

ing angle measures how much a curve turns as one proceeds along its 

length, characterizing the rotational behaviour of the curve, which is 

critical to understand the geometry of fractal structures. In addition, 

the winding angle is used to test whether a curve is conformally invari-

ant, which occurs when its statistical properties remain unchanged 

under conformal transformations. For conformally invariant curves, (1) 

the winding angles are Gaussian distributed and (2) the variance in the 

distribution of winding angles increases logarithmically with the length 

of the curve26. Our experimental data are in close agreement with both 

predictions for conformal invariance—with both metrics collapsing the 

data from the vorticity contours of the four cellular systems onto the 

same line (Fig. 2b and Extended Data Fig. 5). Moreover, the rate at which 

the variance of the winding angle increases with the logarithm of the 

length is predicted to scale as α = 2(D – 1)/D for conformally invariant 

curves26. Thus, for the fractal dimension of D = 7/4 that we measured in 

Fig. 2a, we would predict that α = 6/7, which is supported by our direct 

measurements of variance (Fig. 2b).

Our results strongly suggest that the flows spontaneously gener-

ated by diverse cellular genotypes exhibit robust conformal invariance, 

indicating that very different biological systems might be character-

ized by a common set of scaling laws. We next sought to ascertain if we 

could resolve which universality class these biological flows belong to. 

but not necessarily their length scales or curvatures. Although the 

techniques used to describe conformally invariant structures have long 

been used to make theoretical predictions in statistical mechanics and 

condensed-matter physics9,10 and to establish the universality of critical 

phenomena (for example, using numerical studies of turbulence11–13 

and rigidity percolation14,15), the direct experimental observation of 

conformal invariance and robust universal critical behaviour in living 

matter remains elusive.

In this paper, we experimentally demonstrate that the patterns of 

collective movement observed in different types of living matter exhibit 

universal characteristics that transcend the particular properties of the 

cells from which they are composed. We show that vastly different sys-

tems, including colonies of pathogenic bacteria, groups of collectively 

moving dog kidney cells and human breast cancer cells, spontaneously 

generate flows that exhibit a universal conformal invariance that can be 

described by the percolation universality class. This finding suggests 

that collective cellular movement, which plays an important role in 

many biological systems3,16,17, could potentially serve as a fundamental 

test bed for theories that are based on conformal symmetry.

We made high-resolution measurements of monolayers composed 

of four different cellular genotypes, including both prokaryotes and 

eukaryotes, to resolve whether we could identify common features in 

their collective motility. For prokaryotes, we studied the opportun-

istic pathogen Pseudomonas aeruginosa, which uses tiny grappling 

hooks called pili to pull itself along solid surfaces, a process known 

as twitching motility18. We considered two different strains of this 

rod-shaped bacteria—wild-type (WT) PAO1 and a deletion mutant ΔpilH 

lacking one of the response regulators in the Pil-Chp system, which 

causes it to become hyperpiliated, move faster and form longer cells 

than its parental WT18–20. For the eukaryotic cells, we considered the 

commonly studied Madin–Darby canine kidney (MDCK) cells21 and 

aggressive human breast cancer cells (MCF-7)22. Each of these geno-

types forms monolayers through in situ growth. Although complex 

three-dimensional structures can emerge at later times18, all of the 

systems studied here exhibit two-dimensional (2D) collective patterns 

of motion. Vortical flow structures, a characteristic feature of the 

disordered flows observed in wide diversity of different systems23, are 

observed in all four of the cellular genotypes investigated here (Fig. 1 

shows examples). Each vortex exhibits either clockwise or counter-

clockwise rotation, and the line that sits at the boundary between flows 

that rotate in opposite directions—the zero-vorticity contour—provides 

a measure of the underlying structure of the flow.
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Fig. 1 | High-resolution measurements of the coherent flows from collectives 

of eukaryotic and prokaryotic cells. a,b, Representative velocity and vorticity 

fields observed in monolayers of eukaryotic MDCK cells (a) and prokaryotic 

WT P. aeruginosa cells (b). The colour map shows the local vorticity and the 

zero-vorticity contours are marked with black lines. The vorticity is normalized 

by its maximum value. The insets show a subset of cells within a single field of 

view, which have been overlaid with green arrows showing the local velocity. Here 

we have quantified movement using single-cell tracking (PIV), but we have also 

verified our results using PTV (Methods and Table 2).
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One of the central mathematical breakthroughs of the last few decades 

was to demonstrate that certain systems with conformal invariance 

and domain Markov property can be described, in the scaling limit of 

interfaces, by a family of planar curves defined by a single parameter κ. 

This formalism is known as the Schramm–Loewner evolution (SLE)27,28. 

The value of κ distinguishes different fundamental statistical mechan-

ics models at criticality and, thus, resolves the universality class that 

a system belongs to29–31. To determine if the vorticity contours in the 

cellular systems are SLE curves, we extracted the κ parameter from 

the four experimental systems. We used two distinct and independ-

ent methods32: (1) directly calculating the driving function33 and (2) 

measuring the left-passage probability, comparing both to the analytic 

predictions for the SLE34 (Methods). The driving function captures the 

diffusivity of the curve in the SLE process. Physically, it represents how 

the curve evolves and changes direction and helps in understanding 

the underlying stochastic processes. The left-passage probability 

measures how likely it is for the curve to pass to the left of a given point 

as one proceeds further along the curve, which provides insights into 

the spatial distribution and geometry of the curve. This is crucial for 

understanding phenomena in which the connectivity and clustering 

of components are key. These two measurements, thus, provide inde-

pendent ways of assessing if a curve can be described as an SLE curve 

and to determine the diffusivity parameter κ of the underlying SLE 

process. Although the left-passage probability indirectly measures the 
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Fig. 2 | Vorticity contours from four distinct cellular systems exhibit the same 

patterns of scale and conformal invariance, which is recapitulated using 

a continuum model of an active fluid. a, Perimeter of contours as a function 

of their radius of gyration for two prokaryotic and two eukaryotic genotypes, 

including WT P. aeruginosa bacteria (yellow circles) and a hyperpilated ΔpilH P. 

aeruginosa mutant (blue squares) that individually move faster, and MDCK cells 

(red diamonds) and MCF-7 human breast cancer cells (purple stars). Here we 

separately analysed the complete perimeter and accessible external perimeter 

of the contours (Extended Data Fig. 3). We found that the experimental data for 

all four genotypes collapsed onto lines with slopes of approximately 7/4 and 

4/3 for the two different perimeter measurements. The flow fields produced 

by a numerical model of active fluids (Methods) generated vorticity contours 

with a power-law dependency in close agreement with that observed in the 

experiments. The perimeter and radius of gyration is normalized by the radius 

of gyration of the largest vorticity cluster in their respective systems Rg,max 

(Methods). b, Variance in the distribution of the winding angle, plotted here as 

a function of distance along the curve for the four experimental systems and 

numerical model, all of which exhibit the same logarithmic scaling with a slope 

of 6/7 (dashed line). The inset shows the distribution of winding angles for a 

fixed distance along the contour, which is closely approximated by a Gaussian 

(dashed line). Both findings are consistent with that predicted for conformally 

invariant curves, which exhibit the same fractal dimension that we obtained 

for our data in a. The dashed lines correspond to a slope of 6/7 and a standard 

Gaussian distribution. The inset also shows that the winding angles are obtained 

for segments of contours with lengths of 64 (filled symbols) and 512 (empty 

symbols), and measured relative to the average angle of the contour. Here we 

show the mean (symbol) and s.d. (error bar) from n > 85 separate measurements 

of the flow field for each dataset (Methods).
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Fig. 3 | Resolving the underlying universality class of vorticity contours 

using two independent methods. a, Left-passage probability is defined as 

the probability that a point in space is on the right side of the contour for a 

given polar angle. Data from all four cellular genotypes and the results from 

the numerical model are in close agreement with Schramm’s formula for κ = 6 

(dashed black line)34. b, Time dependence of the variance of the driving function 

obtained from a unique conformal slit map33. The dashed black line shows the 

result for one-dimensional Brownian motion with κ = 6. The inset shows the 

probability distribution of the driving function, rescaled by κt, where t is the 

Loewner time. Here the data at two different times (t = 0.25 and t = 0.75) are 

shown, which collapse onto the same curve (Methods).
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diffusivity of the curve, the driving function directly measures κ. For 

all the four cellular genotypes in our experiments, both methods con-

sistently yielded κ = 6 (Fig. 3). The value of κ = 6 is also consistent with 

the estimated fractal dimension D (Fig. 2a), which, for SLE, is related 

to κ as D = 1 + κ/8 (ref. 35). This particular value of κ has an important 

physical meaning, as it has been uniquely proven that for κ = 6, the SLE 

curves correspond to the contours of critical percolation clusters and 

have the locality property (such that the properties only depend on 

the immediate neighbourhood)30,36. As such, our analyses reveal that 

the vorticity contours found in the four different cellular systems are 

not only conformally invariant but they also fall into the universality 

class of percolation.

Our experimental results indicate that diverse cellular types col-

lectively generate flows with remarkably similar patterns of scale and 

conformal invariance, implying that the physical mechanisms that 

underlie the flow structures are highly conserved. Although many 

different physical models of active matter have been developed to 

approximate specific types of cell and the processes unique to them2,5,37, 

we tested whether a generic model could recapitulate our experimental 

observations. We used a simple continuum model in which a nematic 

order parameter (corresponding to cell orientation) was coupled to an 

incompressible velocity field (Methods). The two main parameters are 

activity ζ (represented by active stress generation in the velocity equa-

tion) and elasticity (represented by the elastic constant K that penalizes 

deformations). Dimensional analysis of the governing equations yields 

a characteristic length scale of √(K/ζ), which defines the fundamental 

length scale of the flow. We find that the vorticity contours of this 

minimal model recapitulate each of the measurements observed in 

our experimental systems, including the fractal dimension D = 7/4 

(Fig. 2a), winding angle scaling α = 6/7 (Fig. 2b) and the scaling of the 

driving function and left-passage probability κ = 6 (Fig. 3 and Table 1). 

Since elastic distortions in nematic materials can be screened at lengths 

comparable to the thickness of the nematic layer, we further explored 

the limit of small elasticity by varying the orientational elasticity in 

the model. The results show that for the same activity level, each of 

the estimates of the fractal dimension, winding angle scaling and scal-

ing of the driving function change by less than 1% when we reduced 

the orientational elasticity (K) in our model by a factor of 500. This is 

because the isolines span much larger distances than the active length 

scale that is controlled by K. Although differences in cell morphology, 

intercellular adhesion, mechanotransduction and the mechanisms 

that give rise to local alignment can affect the patterns of collective 

motility7,38,39, the results of our continuum model imply that such  

idiosyncratic characteristics do not materially influence the scale and 

conformally invariant flow patterns, but rather are a generic feature of 

collective cellular flows.

The observed scaling of the vorticity contours from both experi-

ments and model are compatible with SLE with κ = 6, for more than 

two decades in range. This was confirmed using two independent 

methods (Fig. 3 and Table 1). Remarkably, this finding demonstrates 

that although the collective cellular motility spontaneously generates 

patterns of flow with length scales much larger than that of individual 

cells (Fig. 1)3,38 and, thus, exhibit long-range order40–49, the associated 

vorticity contours are local and fall into the same universality class 

as those from random percolation30. Additionally, cell monolayers 

and bacterial colonies can exhibit patterns of coherent translational 

motion, giant density fluctuations and cells can even undergo volume 

fluctuations50–52. However, the observed conformal invariance of 

the vorticity contours are expected to be robust to such translation, 

dilation or shrinkage, characterized by finite drift or divergence  

in velocity fields. This is because both translation and dilation/ 

shrinkage are angle-preserving conformal transformations, and 

conformal invariance comprises translational, rotational and scale 

invariance.

Moreover, the collective cellular motion we studied here is driven 

far from equilibrium by the motility of individual cells that continu-

ously inject energy into the system at small scales. The observation of 

conformal invariance in collective cellular flows that are continuously 

driven far from thermodynamic equilibrium presents both challenges 

and new opportunities for the development of non-equilibrium con-

formal field theories53. It is important to note that our observations of 

conformal invariance were conducted on 2D monolayers of cells and 

the output of 2D simulations, so that the contours of vorticity form 

planar curves. Indeed, the predictions of SLE only apply to curves in 

two dimensions and there is, so far, no formal extension to surfaces 

in three dimensions. Nevertheless, the extension of these ideas to 

Table 1 | Measurements of four different cellular genotypes and numerical simulations

Continuum 

model

Experimental data Percolation 

universality 

class
Bacterial cells Eukaryotic cells

WT ∆pilH MDCK MCF-7

Scale invariance Fractal dimension D 1.75 ± 0.01 1.72 ± 0.02 1.72 ± 0.04 1.74 ± 0.02 1.74 ± 0.03 7/4 = 1.75

Conformal invariance Winding angle α 0.853 ± 0.005 0.86 ± 0.01 0.87 ± 0.01 0.85 ± 0.01 0.87 ± 0.02 6/7 ≈ 0.857

SLE
Left-passage probability κ 6.02 ± 0.02 5.97 ± 0.05 5.96 ± 0.05 5.95 ± 0.03 5.95 ± 0.06 6

Driving function κ 5.96 ± 0.05 6.03 ± 0.06 5.96 ± 0.06 5.98 ± 0.04 5.93 ± 0.04 6

The values are calculated from the velocity fields obtained from PTV (Methods) and the errors represent the standard deviation about the mean.

Table 2 | Estimates calculated using PTV and PIV measurements of the velocity fields are remarkably similar to one another

Experimental data

Bacteria Eukaryotic cell

WT ∆pilH MDCK MCF-7

Scale invariance Fractal dimension D 0% 0% 0% 0%

Conformal invariance Winding angle α 1.1% 0.0% 1.2% 2.2%

SLE
Left-passage probability κ 0.5% 0.3% 1.6% 0.8%

Driving function κ 2.5% 1.6% 1.0% 0.3%

The numbers reported here are the percentage difference between the parameters estimated using PTV data and PIV data.
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three-dimensional active matter flows would be a fascinating area to 

explore in future work.

These results suggest that the theories used to describe confor-

mally invariant structures might have a much broader range of appli-

cations than previously anticipated. SLE-6 is a hallmark of conformal 

invariance and scaling behaviour, and is typically observed in sys-

tems at critical points, such as the percolation and phase transitions 

observed in models from statistical mechanics. Although our results 

do not necessarily indicate that the collective movement we observe 

is operating at the critical point of a phase transition, many different 

biological systems are thought to be poised near these critical points 

in their respective parameter space54,55. This so-called criticality is 

hypothesized to endow biological systems with flexibility by allow-

ing them to easily switch between regimes that exhibit qualitatively 

different behaviours. Our findings, thus, indicate that the rigorous 

mathematical framework developed to study conformally invariant 

structures could potentially lead to new methods to detect and under-

stand critical phenomena in biology.

Although collective movement is observed in diverse biological 

systems, that observed in microscopic cellular systems is particularly 

amenable to experimental analysis because in situ cell division rapidly 

gives rise to large genetically identical populations, the 2D movement 

of monolayers of cells can be readily imaged and the environmental 

conditions can be carefully controlled. Similar to the collective cel-

lular motility studied here, many different living systems are formed 

of strongly interacting components driven far from thermal equi-

librium and exhibit complex vortical patterns, including subcellular 

flows56,57, synthetic active material1,58,59, animal swarms60,61 and in vitro 

reconstitutions of cytoskeletal transport systems62–64. In addition, 

emergent vortical structures also shape many important processes 

in biology including cell differentiation16, cartilage regeneration65, 

embryogenesis66, signalling waves that propagate along cell mem-

branes67 and between cells68, vortical waves associated with cardiac 

arrhythmia69 and spiral-like patterns of brain activity linked to cogni-

tive processing70. We speculate that such biological processes might 

not only serve as a novel test bed to validate predictions based on 

conformal symmetry but this robust symmetry might also lead to the 

development of new analytical techniques to identify the fundamental 

mechanisms that give rise to both function and dysfunction in complex 

biological systems.
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Methods
Experimental protocols
Eukaryotes. Cell culture and preparation of monolayer assay

MDCK-II cells stably expressing E-cadherin:red fluorescent pro-

tein were cultured in Dulbecco’s modified Eagle’s medium (low glu-

cose, GlutaMAX supplement, pyruvate) supplemented with 10% fetal 

bovine serum (Gibco), 100 U ml–1 penicillin–streptomycin (Gibco), 

1,000 μg ml–1 sodium bicarbonate and 500 μg ml–1 G-418 (Roche). 

MCF-7 cells were cultured in Dulbecco’s modified Eagle’s medium (high 

glucose, pyruvate; Gibco) supplemented with 10% fetal bovine serum 

(Gibco) and 100 U ml–1 penicillin–streptomycin (Gibco). Both cell lines 

were tested to ensure they did not contain mycoplasma and both were 

cultured at 37 °C with 5% CO2.

Cells were imaged in eight-well glass-bottom μ-slides (ibidi) 

that were pretreated with 10 μg ml–1 fibronectin human plasma in 

phosphate-buffered saline (pH 7.4; Gibco) and incubated for 30 min at 

37 °C before cell seeding. Cells were seeded onto the surface at a density 

of approximately 2,000 cells mm–2 for MDCK cells and 3,000 cells mm–2 

for MCF-7 cells, and were incubated for approximately 24 h to form a 

monolayer before imaging. For each eukaryotic cell type we imaged 8 

different monolayers, collecting 12 different images from each.

Live-cell imaging

Cells were stained with Hoechst 33342 (Thermo Scientific) using 

a concentration of 3 μg ml–1 for MDCK cells and 6 μg ml–1 for MCF-7 

cells in phosphate-buffered saline at 37 °C for 5 min. Cells were then 

washed three times with phosphate-buffered saline and immersed 

in fresh media before imaging. Samples were imaged using a Nikon 

ECLIPSE Ti microscope (running NIS Elements v.4.13.03) equipped 

with a H201-K-FRAME Okolab chamber, heating system (Okolab) and 

a CO2 pump (Okolab), which maintained them at 37 °C and at 5% CO2. 

The nuclei of MDCK and MCF-7 cells were imaged using wide-field 

microscopy for approximately 2–4 h with a 15 min interval between 

subsequent frames, using an Andor Neo 5.5 scientific complementary 

metal–oxide–semiconductor camera, ×4 Plan Fluor objective and 

Lumencor SOLA light engine. The time series were x–y-drift corrected 

using the Fast4DReg plug-in71,72 in Fiji. Fluorescent images of the nuclei 

were preprocessed using the smoothing, contrast enhancement and 

background subtraction tools in Fiji, in that order.

Image analysis

Particle image velocimetry (PIV) of eukaryotic monolayers was 

performed using PIVlab73. Spurious velocity vectors were identified 

and replaced via interpolation using PIVlab’s built-in in tools and  

then the velocity fields were smoothed using the ‘smooth’ function 

in MATLAB74. We then used interpolation to generate a set of vectors 

with a spacing of 10 μm.

For the particle-tracking velocimetry (PTV) analyses, we seg-

mented and tracked individual cell nuclei in the time-lapse images using 

the Python module CellSegmentationTracker (https://github.com/

simonguld/CellSegmentationTracker), which utilizes both Cellpose75 

and TrackMate76. We used the pretrained deep learning model called 

‘Nuclei’ in Cellpose to segment our images. The resulting Lagrangian 

cell trajectories were coarse grained onto a Eulerian grid with a spacing 

of 10 μm. Data points at the image boundaries were cropped to avoid 

edge artefacts.

Although we observe that our PIV and PTV measurements are highly 

correlated with one another, a perfect one-to-one agreement is not 

observed (Extended Data Fig. 2). However, our measurements of the frac-

tal dimension, winding angle and SLE diffusivity are remarkably robust 

to the method used to quantify collective cell movement (Table 2).

Prokaryotes. Cell culture and preparation of monolayer assay

The WT P. aeruginosa and the corresponding hyperpilated ΔpilH 

mutant used here were previously published and characterized18,20. 

We streaked –80 °C freezer stocks onto 1.5% (w/v) Luria broth (LB)  

agar plates and incubated them overnight at 37 °C. Single colonies  

were picked and then used to inoculate the shaken liquid cultures  

that were then incubated overnight in liquid LB at 37 °C. The next day, 

overnight cultures were diluted 30-fold in fresh LB and returned to  

the 37 °C incubator, resulting in exponential phase cells after 2 h.  

Immediately before being used in the colony experiments, the opti-

cal density at 600 nm (OD600) of these cultures was adjusted to 0.05  

using fresh LB. We then spotted 1 μl of the resulting culture onto  

a 0.8% LB agar pad and inverted it into a glass-bottom Petri dish (175 μm 

glass thickness, MatTek), as previously described18. The resulting  

subsurface colonies were then incubated overnight on the bench  

to allow them to develop a confluent monolayer at the edge of the  

subsurface colony. All assays were conducted at room temperature. 

The LB medium used here was composed of 10 g l–1 tryptone (Bacto 

brand, BD), 5 g l–1 NaCl (Fisher Scientific) and 5 g l–1 yeast extract (Bacto 

brand, BD).

Live-cell imaging

Time series of bacterial motility were captured using bright-field 

microscopy with a Nikon Ti-E inverted microscope outfitted with a 

Perfect Focus System, a Plan Apochromat ×100 objective, a Hamamatsu 

Flash 4.0 v2 camera and NIS-Elements software (v.4.51.01). We used 

the ×1.5 zoom feature on the microscope’s body, which increased the 

overall magnification to ×150. For each bacterial strain we collected 600 

images of a single monolayer of cells at a rate of one frame per second. 

We then used PIV/PTV to measure cell velocities between subsequent 

images. We then subsampled these so that we processed every sixth 

velocity profile through our analysis pipelines.

Image analysis

PIV was performed on the bacterial data using a similar approach 

to the epithelial data. We used PIVlab73 to quantify the collective move-

ment with a final vector spacing of ~1 μm. Occasionally (<2.5% of total), 

we observed very large spurious velocity vectors that were typically 

associated with regions with low cell density. These vectors were iden-

tified using a 0.75 μm s−1 velocity filter and were replaced using the 

PIVlab’s built-in interpolation tools.

PTV of bacterial data was performed using the feature-assisted 

segmenter/tracker (FAST)77, which enables the segmentation and 

tracking of individual bacteria within densely packed P. aeruginosa  

monolayers (further methodological details are provided else-

where18). This yielded >100,000 cell trajectories for both WT and  

ΔpilH datasets. These were then coarse grained by overlaying  

a lattice on top of the imaged region and averaging the instantane-

ous movement vectors of all the cells within each lattice site, which 

was then repeated for each time step resulting in a time-varying 

flow field.

A comparison of the scale and conformal invariance measure-

ments from PIV and PTV analyses is shown in Extended Data Fig. 1, 

demonstrating strong agreement between the two methods.

Continuum model
We use a minimal, coarse-grained continuum model of suspended 

active nematogens that extends the Beris–Edwards equations78 for pas-

sive nematic liquid-crystal hydrodynamics, which are solved here using 

a hybrid lattice Boltzmann and finite difference method79. Relevant 

variables are the velocity field ui as the slow variable, and the 2D, trace-

less and symmetric nematic order parameter Qij = 2S(ninj – δij/2). This 

second-rank tensor represents orientational order. The scalar order 

parameter S and director ni are its largest eigenvalue and corresponding 

eigenvector, which encode the magnitude and direction of the nematic 

ordering, respectively. The governing dynamics consist of three  

coupled continuum equations describing an incompressible Stokes 

flow (at zero Reynolds number), which applies to cellular systems80, 
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and the spatiotemporal evolution of the nematic order-parameter 

field, respectively:
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In equation (2), the generalized advection term Sij = (λEik + Ωik)

(Qkj + δkj/2) + (Qik + δik/2)(λEkj – Ωkj) – 2λ(Qij + δij/2)(Qkl∂kul) is a co- 

rotational term, expressing the response of the nematic ordering to 

flow gradients (that is, any shear flow will either turn or tumble the 

nematogens) described by the strain rate tensor Eij = (∂iuj + ∂jui)/2  

and the vorticity tensor Ωij = (∂iuj – ∂jui)/2. The alignment parameter λ 

regulates whether this collective response of the nematogens to  

shear flow is domi nated by strain or vorticity. The sign of λ denotes  

the shape of the nematogens, with λ > 0 and λ < 0 corresponding to  

a rod-like and disc-like shape, respectively. The molecular field 
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and active stress Πactive

ij

= −ζQ

ij

. Here P is the pressure and ζ sets both 

strength and nature of the activity, with ζ > 0 and ζ < 0 characterizing 

extensile and contractile nematogens, respectively. The elastic stress 

introduces backflow and the active stress implies that any gradient in 

the nematic ordering generates flows81,82.

The simulations shown here were conducted on a 2D square 

domain having dimensions of 4,096 × 4,096 with periodic boundary 

conditions. The lattice spacing and time step are taken as unity and  

the additional parameters are listed in the following table:

Rotational 

diffusion, Γ

Elasticity, K Viscosity, µ Alignment, λ Activity, ζ

0.05 0.05 1.0 1.0 0.1

Note that to keep the model as minimal as possible, no Landau– 

de Gennes bulk free energy is included in the definition of the free  

energy density, so that any potential local nematic ordering is solely 

induced by the activity. All of the model parameters are reported in 

lattice units.

Statistical analyses of vortical flow structures
Calculating local vorticity and zero-vorticity isocontours. The 

vorticity field ω is obtained from the velocity field data (u
x

,u

y

)

T

, using 

ω = ∂xuy – ∂yux. Both of the spatial derivatives are numerically computed 

using a five-point stencil at every grid point. To identify the locations 

of the zero-vorticity contours, we then calculated a binary field  

from the vorticity field using the ternary expression: 1 if w > 0, else 0. 

Contours of zero vorticity were then traced using a marching squares 

algorithm that preserves orientation, that is, always keeping sites of 

positive vorticity on its right (Extended Data Fig. 4).

Fractal dimension. We calculated the fractal dimension of vorti-

city clusters using both their complete and accessible external peri-

meters. Clusters are identified and labelled using a two-pass binary 

connected-component labelling algorithm83. The complete perimeter 

is identified by tracing the contour of a cluster according to the above 

contour-tracing algorithm. The corresponding accessible external 

boundary is constructed by dilating the boundary morphology and its 

perimeter is yet again measured using the contour-tracing algorithm 

(Extended Data Fig. 3).

The fractal dimension is measured by comparing the cluster 

peri meter l to its radius of gyration Rg, for a large sample of vorticity 

clusters. The radius of gyration is computed as the positional mean 

square displacement from its centre of mass:
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where si denotes the set of lattice sites belonging to the ith cluster  

and ∣si∣ is its cardinality. For the complete and external perimeters,  

we expect l ∼ RD
g

 and l ∼ RD∗
g

, respectively. For the zero-vorticity  

contours in our experiments and model, we find that the fractal  

dimension D of the complete perimeter is D = 1 + κ/8 = 7/4, for κ = 6,  

in agreement with the expected value for SLEκ=6 (ref. 35). By duality,  

the accessible external boundary is similarly conjectured to be  

SLE8/3 (ref. 24), implying that its fractal dimension D* is related to D  

by the duality relation 4(D – 1)(D* – 1) = 1 and consequently agrees  

with D* = 4/3.

The perimeter and radius of gyration (Fig. 2a) have been normal-

ized by the radius of gyration of the largest vorticity cluster in their 

respective systems, which are as follows:

WT bacteria ∆pilH bacteria MDCK MCF-7 Model

193 μm 200 μm 1,150 μm 1,130 μm
828

√

K/ζ

Here the scaling factor used for the model is reported in units of active 

length scale √K/ζ .

SLE contours. To detect the candidate SLE contours, we follow the 

procedure used elsewhere11 to study zero-vorticity isolines in the 

reverse cascade of classical 2D turbulence using data generated using 

a numerical model of the Navier–Stokes equations. To this end and 

in line with previous studies12,84, we used chordal SLE because it is 

mathematically less complex and more straightforward to calculate 

compared with radial or dipolar SLE. Chordal SLE describes curves 

that start and end at fixed boundary points of the upper-half plane 

and can be used to characterize a number of physical quantities, such 

as the interfaces in critical percolation and boundaries of clusters in 

statistical mechanics. Radial SLE describes curves from a boundary 

point to an interior point, and dipolar SLE involves curves between 

two boundary points with additional force points, making them more 

complex. Candidate chordal SLEκ traces are identified using the follow-

ing procedure (Extended Data Fig. 4).

 1. Start with a binarized vorticity field, in which regions of positive 

vorticity are distinguished from negative vorticity (see the  

‘Calculating local vorticity and zero-vorticity isocontours’ 

section).

 2. In the complex plane, draw a horizontal line representing the 

real axis across the binary vorticity field;

 3. The origin is defined at the intersection of a zero-vorticity  

contour and the real axis.

 4. Consider an ‘explorer’ who starts at the origin and travels along 

the zero-vorticity contour such that regions of positive vorticity 

are always on the explorer’s right side.

 5. If the explorer returns to the real axis, it should travel along that 

axis and preserve its previous orientation, until the explorer 

can re-enter the upper-half plane to again travel along the 

zero-vorticity contour with the region of positive vorticity on 

his right side.

This procedure faithfully reproduces the statistics of chordal SLEκ 

in the scaling limit if and only if the isocontour satisfies the locality 

property of SLE6 (ref. 85), meaning that it does not ‘feel’ like the bound-

ary before reaching it.

Winding angle. The winding angle θj of a curve sampled at the  

points {z
j

}

l

j=0

 is defined as the cumulative sum θ
j

= ∑

j

i=1

α

i

 of the  
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local turning angles αi. The turning angle αi is given by the angle 

between the two consecutive line segments [zi−1, zi] and [zi, zi+1] 

(Extended Data Fig. 5a). For putative chordal SLEκ traces, in the  

scaling limit, we expect that the winding angle at a given distance s  

along the trace is Gaussian distributed and that the variance grows 

logarithmically26,86–88 in accordance with

Var(θ) = a +

2κ

8 + κ

log[s]. (4)

This expression is used to directly calculate the diffusivity (κ), where 

a is a constant.

Left-passage probability. The probability that a chordal SLEκ trace, 

with κ ∈ [0, 8), passes to the left of the point z = ρeiϕ in the upper- 

half plane depends only its argument ϕ and is given by Schramm’s 

formula34
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where Γ is Euler’s gamma function and 2F1 is Gauss’ hypergeometric 

function.

To measure this left-passage probability, we fixed a finite set 𝒮𝒮  

of points in the upper-half plane and measured the probability  

P(z) that a putative chordal SLEκ trace passes to the left of these  

points. Following another work89, the diffusivity κ is estimated by 

minimizing the weighted mean square deviation (Extended Data 

Fig. 5b):

Q(κ) =

N − 1

|𝒮𝒮|

∑

z∈𝒮𝒮

[P(z) − P

k

(arg z)]

2

P(z)[1 − P(z)]

, (6)

where N is the number of samples and |𝒮𝒮| denotes the cardinality of  

the set 𝒮𝒮.

Driving function. The stochastic driving function U
t

∶ [0,T ] → ℝ   

encoding the information of a chordal SLEκ curve is measured by 

numerically integrating the forward chordal Loewner equation90:

∂

t

g

t

(z) =

2

g

t

(z) − U

t

, (7)

with initial condition g0(z) = z. The numerical integration scheme is 

simple: we introduced a partition 0 = t0 < t1 < … < tn = T for time interval 

[0, T] and approximated the driving function U
t

k

= δ

k

 as constant on 

each short time interval Δk = tk – tk−1. Then, the conformal map g
t

k

(z)  

was obtained by explicitly solving the Loewner equation (7). Although 

there are many such solutions91, in this study, we arguably used the 

most simple one—the vertical slit map33:

g

t

k

(z) =

√

(z − δ

k

)

2

+ 4Δ

k

+ δ

k

, (8)

which simply projects the vertical slit extending from δk to δ
k

+ 2i√Δ

k

 

onto the real axis (Extended Data Fig. 6a). Presume we have a puta tive 

chordal SLEκ trace sampled at the points {z0
0

= 0, z

0

1

,… , z

0

l

}, the Loewner 

times tk and driving function U
t

k

 are computed iteratively by the suc-

cessive application of a vertical slit map (8). At each ite ra tion step, the 

points {zk−1
k

, z

k−1

k+1

,… , z

k−1

l

}  get mapped onto the reduced sequence of 

points {zk
k+1

= g

t

k

(z

k−1

k+1

),… , z

k

l

= g

t

k

(z

k−1

l

)} (Extended Data Fig. 6b).

To claim that zero-vorticity curves truly are chordal SLEκ curves, 

the extracted driving function U
t

k

 must be a Brownian process. How-

ever, in addition to its variance scaling linearly with the Loewner time 

according to Var(Ut) = κt, it should be Gaussian distri buted at every 

time instance, too. However, as demonstrated earlier92, these are not 

a sufficient test on their own, as these criteria can also be satisfied  

by non-SLEκ processes. Following another work89, studying the auto-

correlation function

C(t; τ) =

Cov(δU

t+τ

,δU

t

)

√

Var(δU

t+τ

)Var(δU

t

)

(9)

of the driving function increments δUt confirms that the driving  

function is a Markovian process (Extended Data Fig. 7).

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at  

https://sid.erda.dk/cgi-sid/ls.py?share_id=enaibOX0oR. Source data 

are provided with this paper.

Code availability
The CellSegmentationTracker package for analyses of the experi-

mental data can be accessed via GitHub at https://github.com/

simonguld/CellSegmentationTracker. The code for the numerical 

simulation can be accessed via GitLab at https://gitlab.nbi.ku.dk/

active-intelligent-matter/mass-nematic. The feature-assisted seg-

menter/tracker (FAST) package can be accessed via Zenodo at https://

doi.org/10.5281/zenodo.3630641 (ref. 93), with extensive documen-

tation on its use and functionality available at https://mackdurham.

group.shef.ac.uk/FAST_DokuWiki/dokuwiki.
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Extended Data Fig. 1 | The method used to quantify collective cell movement 

does not appreciably affect our measurements of scale and conformal 

invariance. We measured the cell movement using both Particle Image 

Velocimetry (PIV, open symbols) and direct cell tracking (or Particle Tracking 

Velocimetry, PTV, filled symbols) and used each to calculate a respective set 

of zero-vorticity isocontours (see Materials and Methods for further details). 

(a) The complete perimeter and accessible external perimeter as a function of 

their radius of gyration using the isocontours obtained from the two different 

methods (analogous to that shown in Fig. 2a). Open symbols show PIV data, 

closed symbols show PTV data. (b) The left-passage probability as a function 

of the polar coordinate calculated using data from the two different methods, 

plotted alongside the analytic curve for κ = 6 (dashed black line). Top panels 

shows results for monolayers of MDCK cells and bottom panels shows results  

for wild-type P. aeruginosa cells. Error bars indicate the s.d. about the mean for 

the n > 85 flow field measurements that were obtained for each dataset.

http://www.nature.com/naturephysics
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Extended Data Fig. 2 | Comparison between velocity field obtained from tracking (PTV) and particle image velocimetry (PIV). Shown here are the covariant plots 

for (a) WT bacteria and (b) MDCK monolayer. The datapoints would fall along a line with a slope of 1 (dashed black line) if these two measurements had precisely the 

same value.
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Extended Data Fig. 3 | Three representative clusters of positive vorticity to 

illustrate the methods used in our analyses of contour perimeter and gyration 

radius. Each of these clusters of positive vorticity (shown in blue) was detected 

in a monolayer of wild-type P. aeruginosa using velocity fields obtained by PTV 

(Materials and Methods). Solid red lines show the complete perimeter, dashed 

green lines show the accessible external perimeter, black circles show the radius 

of gyration, and black crosses show the center of mass of each cluster.

http://www.nature.com/naturephysics
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Extended Data Fig. 4 | The procedure used to calculate candidate chordal 

SLE
κ

 traces used in our analyses. (a) Blue/black sites show regions of positive/

negative vorticity, measured in monolayer of wild-type P. aeruginosa using PTV 

(Materials and Methods). (b) The intersection of zero-vorticity contour (shown  

in red) with a horizontal line. (c) The labeled zero-vorticity contour is mapped to 

the upper half-plane.

http://www.nature.com/naturephysics
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Extended Data Fig. 5 | The procedure used to calculate the winding angle. 

(a) The turning angle, αi, is defined as angle between the two consecutive line 

segments [zi−1, zi] and [zi, zi+1]. (b) Weighted mean square deviation Q(κ) as 

function of the diffusivity κ for WT P. aeruginosa PTV data. The blue vertical 

dashed line is a guide to eye at κ = 6. The minimum mean square deviation 

occurs at κ = 5.94 ± 0.08 (red vertical dashed line). The shaded magenta region 

corresponds to the 95% confidence interval about the minimum.

http://www.nature.com/naturephysics
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Extended Data Fig. 6 | Calculating the driving function using a vertical slip-map. (a) Schematic of the vertical slit-map Eq. (8). (b) The vertical zipper algorithm: the 

original path (black) is conformally mapped onto the real axis.

http://www.nature.com/naturephysics
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Extended Data Fig. 7 | The autocorrelation of the driving function decays rapidly with lag time. This finding is consistent with the Markov property expected for 

Schramm-Loewner evolution contours in the scaling limit. The initial decay is due to the finite lattice spacing, which introduces short range correlations.

http://www.nature.com/naturephysics
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