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Abstract—Drones are becoming essential tools in emergency
situations such as search and rescue, surveillance, and firefight-
ing. These applications make the development of trust worthy
software a priority to increase efficiency, cut costs, and reduce
risks, in future replacing human personnel in challenging areas.
RoboChart, a platform-agnostic tool, brings numerous benefits
to the robotics community by providing a language and high-
level tool of describe model and via automatic verification and
exhaustive testing of model. However, when it comes to real
robotics it is essential to use testing tools suitable for specific
robotic software. In the context of Robotic Operating System
(ROS), it imposes its own design constraints, best practices,
and communication requirements. This paper aims to apply
RoboChart modeling approach to autonomous firefighting drone,
putting forward a low-level ROS software architecture that aligns
with RoboChart models, ensuring the trustworthiness of the
system during operation.

Index Terms—robochart, ros, drone, firefighting, software,
architecture,trustworthy

I. INTRODUCTION

As technological advancements progress, drones are be-

coming essential in addressing a variety of emergency oper-

ations. Drones demonstrate adaptability in disaster response,

healthcare, and safety emergencies, reshaping approaches with

advanced features and redefining the approach to addressing

challenges. In disaster response, they survey affected areas,

identify hazards, and provide real-time information to emer-

gency responders, contributing not only to surveillance but also

improving the efficiency of search and rescue operations [1],

[2], [3]. Furthermore, when drones are used for firefighting,

their capabilities not only enhance the assessment of fires but

can allow them to actively participate in extinguishing them.

When suitably equipped, these drones contribute to firefighting

efforts, providing an additional dimension to their role in

emergency missions [4]. By enhancing situational awareness

for firefighting teams, drones contribute to the effectiveness

of firefighting strategies and operations. For these drones

to gain societal acceptance and deliver benefits, they must

be trustworthy. This means they must operate consistently

and predictably within their intended functions safely, min-

imizing unexpected behavior or errors with following ethical

principles. This requires better design, rigorous testing and

verification during their development and deployment.

Software models and verification tools for robots are gaining

popularity and evolving to ensure accurate representations for

reliable, and safe behavior [12]. These tools aid in compliance

with specifications and building trust among stakeholders.

They contribute to iterative development, legal and ethical

compliance, and adaptability to evolving requirements, foster-

ing the responsible deployment of drone technology. Various

approaches have been utilized to model behavior and verify

systems, some of the notable research in this direction are [7],

[8], [9], [10]. RoboStar, Robotool and RoboChart are distin-

guishes by providing standard semantics with a CSP-based

formal verification tool which help in building trustworthy

autonomous systems through rigorous mathematical analysis

[11], [12]. Moreover, it validates critical properties, enhances

transparency with a state machine-based representation, and

enables early error detection.

ROS (Robot Operating System) is widely used by the

robotics community due to its open-source nature which

promotes global collaboration and information sharing within

the robotics community. By abstracting underlying hardware

details, ROS allows developers to focus on software, facilitat-

ing the creation of robot applications compatible with various

hardware platforms. The framework offers a rich set of tools

and libraries for diverse robotics tasks, including simulation,

visualization, control, perception, and planning [14].

The ROS software architecture for autonomous drone pro-

vides a comprehensive and coherent representation of the en-
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tire system, including its components, interactions, and overall

structure. It typically illustrates the nodes, topics, messages,

services, and actions that constitute the ROS-based system. An

undefined architecture may result in inefficient resource uti-

lization and communication patterns within the ROS system.

This can lead to suboptimal performance, including increased

latency, and higher resource consumption. Moreover,the ab-

sence of a well-defined ROS software top-level architecture

can pose significant challenges in applying formal verification

techniques effectively, potentially impacting the completeness,

accuracy, and scalability of verification efforts.

This paper propose top-level ROS software architecture for

firefighting drone, a step towards constructing truly trustworthy

autonomous drone by supporting RoboChart formal verifica-

tion process.

II. CHALLENGES OF FORMAL VERIFICATION WITHOUT A

WELL-DEFINED ROS TOP-LEVEL ARCHITECTURE

In the context of RoboChart formal verification, a well-

defined top-level architecture in ROS software development

is essential for following reasons:

• A clear architecture helps define the scope of formal

verification efforts. By delineating the system’s high-

level structure, including ROS nodes, topics, messages,

and services, it enables developers to identify which

components need to be verified formally.

• With a defined architecture, developers can specify formal

properties and requirements more precisely. They can

express desired system behaviors, safety properties, and

functional constraints in a formal language, facilitating

formal verification techniques’ application.

• Formal verification often relies on assumptions about the

system’s environment and behavior. A clear architecture

helps clarify these assumptions by defining interfaces,

communication patterns, and dependencies between ROS

components, ensuring that verification assumptions are

well-founded.

• A well defined architecture aids in ensuring comprehen-

sive verification coverage. Developers can systematically

verify each aspect of the system’s behavior against formal

specifications, including error-handling mechanisms, fault

tolerance strategies, and safety-critical functions.

III. SYSTEM OVERVIEW

The system described herein is a case study within the

UKRI Trustworthy Autonomous Systems project, focusing on

a firefighting drone designed for search, track, and extinguish

operations in known building layouts [15]. The firefighting

drone autonomously locates and extinguishes fires, directing

its suppressant towards identified blazes. The execution of

firefighting drone operations relies on perception system. The

perception system accurately detects fire sources, enabling

the drone to navigate safely near the fire and precisely

align itself for effective extinguishing. The success of the

firefighting drone hinges on its trustworthiness. This means

reliable decision-making, safeguarding both itself, operator

and the environment as the drone navigates close to fire and

extinguishes it, even in complex situations.

Fig. 1. Real Robotics Aerial Firefighting System

The Real Robotics Aerial Firefighting System shown in

Figure 1 utilizes the DJI M600 Pro drone, integrating an

Intel NUC for on-board vision processing and communication.

Two key sensors, the Intel RealSense D435i camera for depth

information and the TR-EVO-T90-USB thermal camera for

fire detection, contribute to the system’s vision data. The

drone incorporates a custom-designed water pump subsystem

for firefighting purposes. Planning and control operations are

managed through a ROS-based Aerial and Ground Control

Station. The entire system is designed to comply with size

and weight constraints for safety.

For the mounting of the RealSense D435i and TR-EVO-

T90-USB cameras, as well as a gimbal and nozzle, a custom-

designed 3D-printed adapter attachment is utilized. This at-

tachment is fixed to the bottom of the drone, designed to

ensure the camera and nozzle assembly remains unaffected by

the UAV rotor downdraft. To enhance stability when aiming a

jet of water, three carbon fiber tubes are incorporated into the

design.

IV. ROS SOFTWARE ARCHITECTURE

The primary objective is to establish a ROS top-level

architecture with communication interfaces between the nodes

that are capable of implementation with both ROS1 and ROS2.

This architecture is designed to integrate with the RoboChart

framework while adhering to the best practices within the ROS

ecosystem. ROS architecture facilitates the understanding and

verification of the interactions and dependencies between these

components, ensuring correct system-level behavior.

Without a defined architecture, developers may lack a clear

understanding of how different components of the ROS system

should be structured and interact with each other. This can lead

to confusion and inefficiencies in the development process.

A. Mapping RoboChart Model building blocks to ROS nodes

RoboChart divides a large firefighting drone system into

a number of smaller models. This breakdown enables the

isolated evaluation of each functional component, facilitating

unit testing and systematic verification of requirements. By
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addressing potential issues at the individual block level before

integration, this approach significantly enhances the overall

reliability of the system.

The following sections give an overview of the individual

blocks.

1) Flight Controller Interface Block: The Flight Controller

Interface (FCS) is the primary interface to the drone’s software

development kit (SDK) flight controller, designed to make

the other blocks independent of the drone flight controller

SDK. This ensures that the code can be easily implemented on

other drones by modifying the FCS, while keeping the other

blocks unchanged. The module handles tasks such as take-

off, landing, global positioning through waypoints, and local

positioning through visual navigation.

2) Fire Detection Block: The Fire Detection Block utilizes

inputs from both the depth and thermal cameras to identify

the location of a fire, determine its distance from the wall,

and align the drone toward the wall. By fusing data from the

thermal and depth cameras, the drone gains a comprehensive

understanding of the environment enabling better situational

awareness for firefighting operations.

3) Spray Aim Block: The Spray Aim Block receives real-

time fire tracking data, directs the spraying nozzle accurately

towards the fire location, and provides status feedback. It takes

input from the fire detection block, processes fire status data,

calculates yaw and pitch for motor control, sends commands,

receives feedback on motor angles, and coordinates with the

flight planner to turn the pump on when signalled and water

level is sufficient, and turn pump off when signalled by

planner.

4) Battery Monitor Block: This block monitors the drone’s

battery status and transmits information categorized as OK,

Mission Critical, and Safety Critical to the planner, allowing

for appropriate actions to be taken by Planner.

5) Water Monitor Block: Water monitoring involves track-

ing the amount of water used based on pump flow and

providing feedback to other blocks on the amount of water

remaining. This process includes retrieving pump status data

from the Planner and sending feedback to both Flight Planner

and the spray aim block, ensuring awareness of the water

remaining status.

6) Visual Navigation Block: The visual navigation block

ensures that the drone is positioned facing the center of the

fire on the wall at the correct distance. It achieves this by

sending relative positioning commands to the flight controller

interface. The status of visual positioning is also transmitted

to the flight planner.

7) Flight Planner Block: The flight planner maintains

control through higher level mission control, intelligent path

generation, and real-time decision-making. It incorporates data

from the fire detection block, dynamically adapting the drone’s

trajectory and actions while ensuring the mission’s safety and

facilitating water spraying on the fire. This active involvement

includes coordinating responses to detected fires, adjusting

flight paths, and intervening when necessary.

RoboChart blocks operate at a high level of abstraction,

focusing on conceptual modeling the behavior by using state

machines. Directly mapping the models to ROS may lead

to integration complexities. ROS deals with lower-level robot

control using commands, sensor data processing using call-

backs. Bridging this abstraction gap requires careful mapping

of behaviours and ROS functionalities. The following prin-

ciples are employed to map RoboChart model to ROS node

functionality.

1. Division of the ROS Nodes dedicated to specific hardware

components, provide a clean interaction with the hardware.

This separation allows for modular development and easy

replacement or upgrade of hardware components. This division

improves maintainability, extensibility making it easier to

adapt to evolving hardware configurations and requirements

without compromising the state machine’s overall behavior.

2. In case of complex behavior represented by a block, it

is better to break them into smaller behaviors, represented by

individual nodes. This can be accomplished using behaviour

trees which fosters modularity and reusability. Moreover,

nodes can be combined and arranged in various ways using

different control structures to create complex, flexible trees.

This allows complicated concurrent asynchronous behaviors

of the robot while maintaining clarity and structure.

The following table showing mapping RoboChart major

blocks onto the ROS nodes with justification

TABLE I
ROS NODES MAPPING

SR RoboChart Blocks ROS nodes Justification

1 Fight Planner 10 Behaviours
2 Fire Detection 3 Hardware division
3 Spray Aim 2 Hardware division

The Spray Aim block was divided into two ROS nodes,

with a Spray Aim Main Node handling state machine logic,

gimbal and pump clients, and a Hardware Interface Node

managing pump and gimbal servers communicating with a

microcontroller through a serial interface shown in Figure 2.

This division ensures that any issues in the Hardware Interface

Node are less likely to propagate to the Spray Aim Main Node.

Moreover, if there is a need to upgrade or replace specific

hardware components, the Hardware Interface Node can be

adapted without altering the overall architecture.

B. ROS Communication Interface

ROS facilitates communication between nodes in a robotic

system using three methods: topics for publisher-subscriber

communication, services for request-response, and actions for

goal-oriented communication. RoboChart, on the other hand,

models system behavior at a higher level, abstracting state

machines, events, and interactions among robotic components

without explicitly defining ROS communication mechanisms.

Clearly defined communication interfaces in ROS, in conjunc-

tion with RoboChart, verify that communication aligns with
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Fig. 2. Division of Spray Aim into Main Node and Hardware Interface Node

expected behaviors modeled, ensuring integration testing and

reducing compatibility issues.

For instance, publisher-subscriber and action server are both

forms of asynchronous communication. However, designing

communication for RoboChart blocks only by using the ROS

publisher-subscriber model has some limitations. The asyn-

chronous nature of publisher-subscriber, while beneficial in

many scenarios, may not suit strict request-response patterns.

Furthermore, the publisher-subscriber model lacks a built-

in assurance of message delivery, risking message loss if

subscribers are inactive. In large-scale systems, the substantial

volume of messages can lead to increased network traffic

and processing overhead on subscribing nodes. However,

publisher-subscriber is very well suited when information

needs to be broadcasted to multiple nodes. Selecting an in-

appropriate ROS communication method for your firefighting

drone can result in adverse outcomes, affecting both mission

effectiveness and safety.

The design decisions for ROS communication in the soft-

ware architecture of the firefighting drone were reached

through rigorous analysis of the pros and cons to tailor them

specifically for the requirements of a firefighting drone shown

in Figure 2. Here are some guidelines developed and used

for the fire fighting drone communication design in ROS

architecture.

1) Drone Critical Control Commands: The ROS Action

Server is chosen for this type of communication as they offer

robustness to the design. They can provide detailed real time

feedback during goal execution to allow timely intervention

and the ability to adapt to dynamic conditions during mis-

sion. Moreover, goal preemption enables firefighting drones

to respond swiftly to changing priorities or if there is error in

the system. It also provides timeout handling mechanisms to

prevent indefinite delays, ensuring that critical operations are

executed within a reasonable time frame. This is particularly

important in firefighting scenarios where timely deployment

is necessary for extinguishing fire. Lastly,the result reporting

feature ensures conclusive feedback about the completion

of task which helps in deciding further actions during the

mission.

Drone safety critical commands such as Take off

and Landing fcs/special movement, Searching fire go-

ing through waypoints fcs/F lytoWP , relative position-

ing for track the fire and align to the drone in front

of fire fcs/relative position, and water spray command

fp/pump start in ROS software architecture are shown in

red in Figure 3. Using ROS actions ensures that these actions

are executed in a controlled and safe manner. Moreover, it

allow robust error handling and recovery mechanisms.

2) Enable and Disable Commands: Short duration

functionalities of enabling or disabling a mission

from a ground station fp/enable mission and

visual navigation fp/enable vn and water monitor

fp/enable water monitor were mapped to ROS services

for the firefighting drone and these services are show in

brown in ROS architecture 3. Services in ROS operate on a

synchronous request-response model which has advantageous

for enabling or disabling a mission or initiating water monitor

visual navigation, where a clear and immediate response is

required. ROS services are inherently blocking, meaning that

the client node waits for a response before proceeding. For

critical operations like enable or disable the mission, this

ensures that the drone acknowledges the request so that the

caller knows that the message has been received and has

been or will be acted on. If there is an issue with request,

the service can return an error response, providing specific

details about the problem. This aids in diagnosing issues and

taking corrective action.

3) Continuous Broadcast of Data streams: The ROS

publisher-subscriber method of sending messages is intended

for the transmission of sensor data. Messages can be published

on specific topics, allowing multiple nodes to subscribe and

receive real-time information for situational awareness and

decision-making. This allows the firefighting drone to contin-

uously publish its status, including battery levels, operational

conditions water level status, and completion of tasks visual

navigation status. This information can be subscribed to by

monitoring nodes ensuring continuous monitoring of drone

health and performance during firefighting missions

A properly designed ROS architecture for a firefighting

drone communication interface can support in verification

using RoboChart and help in the achievement of a trustwor-

thy drone. Moreover, a well-structured ROS communication

architecture allows testing to enable early issue detection, en-

suring discrepancies between the model and desired behavior

are identified promptly. Unforeseen issues in an improperly

designed architecture may go undetected and leave the drone
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Fig. 3. RoboChart to ROS Software Architecture showing Communication Interface

vulnerable to failures. Inaccurate selection of communication

can produce false positives or negatives which highlight issues

in non-existent scenarios. A well-structured ROS commu-

nication architecture also provides effective error handling

mechanisms, contributing to the overall trustworthiness of the

drone.

V. ROS CALLBACKS AND STATE MACHINE BEHAVIOR

MODELS

Synchronization mechanisms are important to address the

problems of multiple callbacks in state machines in ROS,

particularly when ensuring trustworthy behavior in complex

systems like fire fighting drones [17]. In ROS callbacks often

access or modify shared resources like global variables, sensor

data, or state information. Without proper synchronization,

multiple callbacks accessing the same resource concurrently

can lead to inconsistencies and unpredictable behavior. Mu-

texes solve this problem by ensuring mutual exclusion only

one callback can access the protected resource. Furthermore,

designing state transitions in the state machine with guards

that check for synchronization conditions can also be use-

ful. Alternatively for more complex scenarios with numerous

callbacks, considering using time stamps in messages [15],

synchronization policy [16], services or actions for complex

operations can help to solve this issue.

VI. HARDWARE IN LOOP FLIGHT TEST

Hardware in Loop (HIL) testing was used to provide a

controlled environment to identify and address potential issues

or errors in the ROS architecture before engaging in real-

world flight operations. It reduces the likelihood of costly

failures during real-world tests. Data is logged during the HIL

mission. This includes logging the drone’s actual position,

orientation, and the executed commands. The recorded data

is compared with the expected trajectory to ensure alignment

with the predefined waypoints.

Figure 4 illustrates the Hardware-in-the-Loop (HIL) testing

of a ROS software, with a drone actively searching for fire us-

ing waypoints depicted on the right side. On the left side of the

figure, recorded plots are displayed, and upon comparison with

the anticipated trajectory,it shows that the drone is precisely
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Fig. 4. Hardware of Testing of ROS Software Architecture

moving along the designated path, adhering to the predefined

waypoints. This is crucial for tasks like searching for fire, as it

ensures that the drone covers the intended area systematically.

Furthermore, accurate waypoints following implies that the

ROS software, in conjunction with the hardware, is capable

of interpreting and executing the navigation commands ac-

curately, such as detecting and responding to a fire in the

specified locations.

VII. CONCLUSION

In conclusion, converting a RoboChart model into a ROS

top-level software architecture presents substantial advantages

in the development and verification of robotic systems. This

integration addresses platform-dependency challenges, offer-

ing a clear and high-level specification aligned with ROS for

improved clarity in specifications and testing. Furthermore, it

ensures consistency between formal specifications and actual

implementation, minimizing the risk of misinterpretation and

enhancing the accuracy of the robotic system representation.

The accurate translation also has the potential to elevate the

verification process, fostering trustworthiness by identifying

and rectifying issues early in the development cycle. In sum-

mary, this integrated approach not only overcomes challenges

associated with platform dependency but also establishes a

robust foundation for developing trustworthy and resilient

robotic systems throughout the entire development lifecycle.
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