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Multipolar quantum optics deals with the interaction
of light with matter as a many-body bound
system of charged particles where the coupling
to electromagnetic fields is in terms of the
multipolar electric polarization and magnetization.
We describe two transformations applied to the
conventional non-relativistic formalism, namely a
gauge transformation applied directly to the fields at
the Lagrangian stage and a unitary transformation
applied to the old Hamiltonian. We show how
such transformations lead to the same Power–
Zienau–Woolley (PZW) formulation of the quantum
electrodynamics (QED) of an overall electrically
neutral many-body bound system of charges,
including the internal motion as well as the gross
dynamics of the centre of mass. Besides highlighting
the utility of the multipolar formalism as a reliable
and convenient platform in dealing with optical
processes in atomic and molecular physics, it is
shown how the analysis can also lead to the
identification of the Röntgen effect arising from the
gross motion of an electric dipole moment in a
magnetic field and the Aharonov–Casher effect due
to the motion of a magnetic dipole moment in an
electric field. The importance of the two effects is
pointed out in both experimental and theoretical
contexts.
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1. Introduction

Applications of quantum electrodynamics (QED) involving the interactions of light with atomic
and molecular matter often used the conventional minimal coupling formulation in which
potentials have a central role in their description of the electromagnetic fields, and they require
the specification of a gauge condition such as the Coulomb or the Lorenz gauge. In such
treatments, applications of the perturbation theory often involve interaction terms which lack
direct interpretation, i.e. whether it is an electric or a magnetic interaction one is dealing with.
It then became clear that it may be advantageous if a formulation could be found in which
the gauge-invariant electric and magnetic field variables can take the central role rather than
the potentials. Furthermore, Power & Zienau [1] pointed out that the evaluation of radiative
transitions using the Coulomb gauge led to ambiguities which would not arise if the electric
and magnetic polarizations are the sources (rather than the charge and current densities),
which couple to the electric and magnetic fields (rather than the potentials). Such a formulation
would have the advantage of being manifestly gauge-invariant. This was the motivation by
Power and Zienau in devising their 1959 theory. However, their theory then only dealt with
electric dipole interactions and so involved the use of a canonical transformation applied to the
conventional Hamiltonian in the dipole approximation. Power and Zienau’s work thus put the
theory on a firm basis in terms of a canonical transformation and explored its consequences for
actual processes [2], highlighting the calculational advantages of the transformed theory and
agreement with experiment. Generalizations to include all multipoles in closed forms and for a
many-body atomic and molecular system were later done by a number of authors [3–9]. Work
by Woolley [10–13] led to an equivalent formulation of the multipolar theory of interaction
of atoms and molecules with electromagnetic fields, and so, the theory is now known as the
Power–Zienau–Woolley (PZW) theory.

In 1983, it was suggested that the PZW theory can be equivalently achieved using a gauge
transformation [14], but although multipolar in treatment, it only dealt with the two-particle
case and led to a new Lagrangian with the gauge transformation applied to the electromagnetic
fields, and the new Lagrangian then led to the new ‘transformed’ Hamiltonian. The analytical
framework based on this gauge transformation represents a valid platform for the description
of the interacting system. However, the details are rather different from an equivalent canoni-
cal transformation which would start at the old Hamiltonian operator (derived from the old
Lagrangian) on which a canonical transformation is performed to obtain new generalized
momenta and a new Hamiltonian.

Our aim here is to describe the two transformations mentioned above and discuss their
manifestations specifically in the context of the quantum optics of atoms and molecules [15,16].
In addition to emphasizing the advantages of using the multipolar formalism to evaluate
processes in atomic and molecular physics, we also show how the analysis has led to the
Röntgen effect [8,17–21] and the Aharonov–Casher effect [22–25], which are currently of
interest.

The plan of  this  article  is  as  follows.  In  §2,  we define  the  many-body bound system
of  particles,  typically  forming an atom or  a  molecule,  and present  the  conventional  theory
leading from the  old Lagrangian to  the  old Hamiltonian via  the  canonical  procedure.  In
§3  and §4,  we consider  the  two transformations  in  turn focusing specifically  on neutral
atomic  and molecular  systems interacting with  electromagnetic  fields  via  their  electric
and magnetic  multipoles.  The two transformations,  in  effect,  involve  the  same generating
function defined as  the  space  integral  of  the  product  of  the  electric  polarization vector
P  with  the  vector  potential  A  [1].  §3  describes  the  formalism needed to  generate  the
new Lagrangian arising from the  gauge transformation and moves  on to  determine
the  new gauge Hamiltonian.  The details  are  markedly  different  from the  case  of  the
canonical  transformation in  §4  in  which we apply the  unitary  transformation involving
the same generating function to  derive  the  new canonical  momenta,  and we proceed
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to  find the  new Hamiltonian,  which,  we demonstrate,  coincides  with  that  arising from
the gauge transformation.  Either  of  the  two identical  Hamiltonians  arising from the  two
transformations  defines  the  Power–Zienau–Woolley theory which emerges  as  suitable  for
the  many-body bound system.  In  §5,  we apply the  PZW theory to  the  electrically  neutral
two-particle  case  as  for  the  hydrogenic  atom.  This  constitutes  a  transparent  illustration of
the  general  case  in  which the  Hamiltonian splits  into  well-defined terms whose  interpre-
tation is  easy to  comprehend,  including the  Röntgen interaction and the  Aharonov–Casher
interaction terms.  Section 6  contains  a  summary and our  conclusions,  together  with
further  comments.

2. Conventional QED

The many-body system consists of N particles of charges eα : e1, e2, .....eN of masses
mα : m1,m2, ....mN interacting with electromagnetic fields. We develop the theory from first
principles for this case, beginning with the conventional non-relativistic minimal coupling
Lagrangian for the above system of charges in interaction with electromagnetic potentials A and
Φ. We write

(2.1)L = 1
2 ∑
α = 1

N

mαq̇α
2 + L(r) d3r,

where L is the Lagrangian density

(2.2)L(r) = 1
2ϵ0 (Ȧ + ∇Φ)2 − c2(∇ × A)2 + J(r) ⋅ A(r) − ρ(r)Φ(r).

Here qα, α = 1,2, ..N are the particle position vectors. The charge and current densities receive
contributions from all charged particles and are given by

(2.3)ρ(r) = ∑
α = 1

N

eαδ(r − qα); J(r) = ∑
α = 1

N

eαq̇αδ(r − qα).

The equations of motion arising from the Euler–Lagrange equations are the source Maxwell’s
equations

(2.4)∇ ⋅ E = ρ/ϵ0; ∇ × B = μ0ϵ0Ė + μ0J,

and Newton’s law with the Lorentz force for each of the constituent particles

(2.5)mαq̈α = eαE(qα) + eαq̇α × B(qα),

where E and B are defined in the usual fashion

(2.6)E = −Ȧ − ∇Φ; B = ∇ × A.

As we shall see below, it turns out, conveniently, that theory can avoid the explicit appearance
of the scalar potential Φ as a dynamical variable in favour of the longitudinal component
of the vector potential. We then adopt qα, α = 1,2, ..N and A as the dynamical variables. The
corresponding canonical momenta are

(2.7)pα = ∂L
∂q̇α

= mαq̇α + eαA(qα)

and

(2.8)Π(r) = ∂L
∂Ȧ

= ϵ0 Ȧ(r) + ∇Φ(r) = − ϵ0E(r) .

The corresponding Hamiltonian is

3
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(2.9)H = ∑
α
pα.q̇α + d3r Π ⋅ Ȧ − L,

which gives

(2.10)H = ∑
α

pα − eαA(qα)
2

2mα
+ 1

2 d3r
Π2

ϵ0
+ B2

μ0
+ d3r ∇ .Π + ρ Φ .

We may now remove the final term in the above Hamiltonian by direct use of equation (2.8),
together with equation (2.4). We get

(2.11)H = ∑
α

pα − eαA(qα)
2

2mα
+ 1

2 d3r
Π2

ϵ0
+ B2

μ0
.

The commutation relations are

(2.12)[pαi, qβj] = −iℏδαβδij; [Πi(r) , Aj(r′)] = −iℏδijδ(r − r′).

The final form of the Hamiltonian can be written entirely in terms of gauge invariant variables
q̇α,E and B

(2.13)H = 1
2∑
α
mαq̇α

2 + 1
2ϵ0 d3r E2 + c2B2 .

This is the universal form of the Hamiltonian to which all forms arising via transformations
must be reduced.

(a) Electric polarization and centre of mass

To be able to proceed to a multipolar formulation, we need to identify a reference centre,
and we choose the centre of mass coordinate for this purpose relative to which the particles’
coordinates are referred. The idea is an attempt to separate the internal motion from the gross
motion of the centre of mass. This separation cannot unfortunately be done straightforwardly
on the conventional theory represented by the Hamiltonian equation (2.11) since the fields enter
the formalism directly in terms of the particle coordinates qα. It turns out that the separation is
best achieved in the multipolar formulation as we now explain.

The centre of mass coordinate is R = ∑αmαqα
M

, where M is the total mass of the system of
charges M = ∑αmα. As we pointed out earlier, our concern here is with a version of theory which
describes both the internal and translational motions of the system of charges in the presence
of electromagnetic fields. The translational motion is appropriately described in terms of the
centre of mass which, conveniently, also provides a natural choice for the point in space (albeit
not a fixed point) relative to which multipolar moments are defined. Relative to the centre of
mass, the electric polarization vector field of the charge system is written in the form

(2.14)P(r, {qα}) = ∑
α

eα
0

1
dλ(qα − R)δ r − R − λ(qα − R) .

Note that P contains contributions from all the particles, of position variables {qα} including the
nucleus, and that the centre of mass is not fixed in space. Because of the motion of the constitu-
ents, the centre of mass possesses a velocity Ṙ. The division of the motion into internal plus
translational motions must be carried out in such a way that no additional degrees of freedom
are introduced in the theory. This form of the electric polarization field vector conforms with the
requirement that [14]

(2.15)∇ ⋅ P = −ρ,

4
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where ρ is the electric charge density of the N point charges, as given in equation (2.3). The
physical meaning of equation (2.15) can be seen when both sides of the equation are integrated
over a space of volume V  enclosed by a surface S. The right-hand side then yields the total
charge −Q inside V , while the left-hand side can be converted into a surface integral over S
using Gauss’ theorem, which is the integration over the surface S of outward normal compo-
nent of the Polarization field. This is then equal to the negative of the total charge within V . In
our case of a set of discrete point charges, the proof of equation (2.15) can be done straightfor-
wardly as a generalization of the two-particle case (see Appendix B of [14]) to N-particles.

3. Gauge transformations

The gauge transformation we are concerned with here is specific to the electromagnetic
interactions with bound charged particles such as atoms and molecules. In electrodynamics,
the presence of charges involves a minimal coupling Lagrangian L in terms of a vector potential
A and a scalar Φ. The application of a gauge transformation simply changes the electromagnetic
potentials to new ones involving a generating functional S~ [14,26] as follows.

(3.1)A → A′ = A − ∇S~; Φ → Φ′ = Φ +
∂S~

∂t .

As is always the case with gauge transformations in electromagnetism, the generating function
is a scalar function. Here it is defined as follows:

(3.2)S~(r′) = d3r A(r) ⋅ F (r, r′),

with F  given by

(3.3)F (r, r′) =
0

1
dλ(r′ − R)δ r − R − λ(r′ − R) .

Note that the the gauge function is related to the generating function S as follows:

(3.4)∑
α
eαS

~(r′ = qα) = ∑
α
eα d3r A(r) ⋅ F (r, r′ = qα) = ∑

α
Sα = S = d3r A(r) ⋅ P(r, {qα}),

where P(r, {qα}) = ∑αeαF (r, r′ = qα) is the polarization field as in equation (2.14). Applying the
gauge transformation equation (3.1) to the old Lagrangian equations (2.1) and (2.2), we obtain
the transformed Lagrangian as follows:

(3.5)L′ = L − d3r J ⋅ ∇S~ + ρ
∂S~

∂t .

Recall that J and ρ are given by

(3.6)J = ∑
α
eαq̇αδ(r − qα); ρ = ∑

α
eαδ(r − qα) .

Substituting for J and ρ, we have

(3.7)d3rJ ⋅ ∇S~ = d3r∑
α
eαq̇αδ(r − qα) ⋅ ∇ d3r′ A(r′) ⋅ F (r, r′) .

Integrating over r and so replacing r with qα, the expression can then be rearranged as follows:

5
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(3.8)

d3rJ ⋅ ∇S~ = ∑
α
eαq̇α ⋅ ∇

α d3r′ A(r′) ⋅ F (qα, r′)

= ∑
α
eαq̇α ⋅ ∇

α d3r′ A(r′) ⋅ F (qα, r′)

= ∑
α
q̇α ⋅ ∇

αSα .

Evaluation of ∇αSα = eα∇α∫d3r′ A(r′) ⋅ F (qα, r′) yields

(3.9)∇αSα = eαA(qα) + d3r Θα(r) × B(r),

where Θα is given by

(3.10)Θα = ∑
β
eβ

0

1
dλ λδαβ − mα

M
(λ − 1) (qβ − R) δ r − R − λ(qβ − R) .

Consider next the last term in equation (3.5). We have

(3.11)− d3rρ
∂S~

∂t = − d3r∑
α
eαδ(r − qα)Ȧ ⋅ F (r, r′) .

Once again using Ȧ = − E − ∇Φ and that ∇ ⋅ P = −ρ, we have

(3.12)− d3rρ
∂S~

∂t = d3r[P ⋅ E − ρΦ].

Substituting and after cancellations of the A and Φ terms, the transformed Lagrangian emerges
as follows:

(3.13)L′ = ∑
α = 1

N 1
2mαq̇α

2 + q̇α ⋅ d3r Θα(r) × B(r) + d3r
1
2 ϵ0(E2 − c2B2) + P ⋅ E .

We may now evaluate the canonical momenta. We have, for the particles,

(3.14)p′α = ∂L′
∂q̇α

= mαq̇α + d3r Θα(r) × B(r),

and for the fields we are concerned with momentum density

(3.15)Π′ = ∂L′
∂Ȧ

= ϵ0 Ȧ + ∇Φ − P = − ϵ0E − P,

and we note that that Π′ is transverse since ∇ ⋅ Π′ = 0. The new Hamiltonian is

(3.16)Hgauge′ = ∑
α
p′α ⋅ q̇α + d3rΠ′ ⋅ Ȧ − L′ .

It is straightforward to show that on substituting for the canonical momenta and the new
Lagrangian, together with the use of Ȧ = −E − ∇Φ and ∇ ⋅ (ϵ0E + P) = 0 and all-space integration
by parts, we obtain the following form of the new Hamiltonian:

(3.17)Hgauge′ = 1
2∑
α
mαq̇α

2 + 1
2ϵ0 d3r E2 + c2B2 .

This looks exactly the same as the Hamiltonian of the conventional theory. However, and
despite appearances, the new Hamiltonians will look different from the old as soon as we
express the different terms in terms of the canonical momenta. That all Hamiltonians in this
context must have the same universal forms was first pointed out in reference [14]. We expect
the new Hamiltonian arising from the unitary transformation (discussed next) to reduce to this

6
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universal form. The useful form of the Hamiltonian is obtained when expressed in terms of the
canonical momenta, which is

(3.18)Hgauge′ = ∑
α

p′α + ∫d3r Θα × B(r)
2

2mα
+ 1

2 d3r
(Π′ + P)2

ϵ0
+ B2

μ0
.

The commutation relations of the particle and field variables are as follows:

(3.19)[pαi′ , qβj] = − iℏδαβδij; [Πi′(r) , Aj(r′)] = − iℏδij⊥(r − r′),

where the transverse delta function δij⊥(r − r′) is as in [2]. Note that the commutation relation
involving Π′ and A indicates that in a field quantization Π′ is interpreted as the electric
displacement field (for a discussion of the roles of the canonical field momenta in the free
field quantization in the different formulations see [14]). The task is now complete with the
determination of the transformed Hamiltonian and the commutation relations using the gauge
transformation. As we shall see, this turns out to be identical to the outcome of the canonical
transformation and is essentially the PZW theory.

4. Canonical transformation and the PZW theory

Canonical transformations are applicable as operator transformations at the Hamiltonian level.
The field variables and the corresponding momenta are thus known in advance and arise from
some Lagrangian functional in the usual manner. At the Hamiltonian level, it is possible to
assign state vectors |Ψ′⟩ and a set of Hermitian operators, represented by O, corresponding to
the observables of the system. We define a unitary operator U satisfying

(4.1)UU† = U†U = 1.

We require U to act on the system by changing the state vectors to |Ψ′⟩ and the operators to O′
including the system Hamiltonian which changes from H to H′. The transformation equations
are

(4.2)|ψ′⟩ = U |ψ⟩ O′ = U O U† .

It turns out that the unitary operator U has the form

(4.3)U = eiS,

where S is the generating function. For the above canonical transformation to be equivalent to
the gauge transformation, we must have the same form of S. The transformation makes use of
the operator identity

(4.4)eABe−A = B + [A, B] + 1
2[A, [A, B]] + ........,

with A = iS and B a system operator. All expectation values are unaffected

(4.5)⟨ψ′| O′ |ψ′⟩ = ⟨ψ|U† UOU† U|ψ⟩ = ⟨ψ| O |ψ⟩

and all canonical commutation relations are preserved by such unitary transformations.
The new formulation is called the unitary equivalent of the original one. As pointed out

earlier, in the context of quantum optics of atoms and molecules, the most prominent canonical
transformation is the Power & Zienau transformation [2,27] which was further extended to the
multipolar many-body form [3,6,7,28].

The procedure for casting the Hamiltonian into a form exhibiting independent translational
and internal motions plus interactions depends on a first step on the application of a PZW
transformation whose generating function is

7
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(4.6)S({qα}) = d3rA(r) ⋅ P(r; {qα}).

Substituting for P, we have

(4.7)S({qα}) = ∑
α
eα d3r

0

1
dλ(qα − R) ⋅ A(r) δ r − R − λ(qα − R) .

The direct route to the transformed theory is by using the operator identity, equation (4.4),
together with the commutation rules in equation (2.12) to obtain new canonical momenta. The
momentum conjugate to qα is denoted p′α. We have

(4.8)p′α = mαq̇α + eαA(qα) − ∇αS,

where ∇α denotes differentiation with respect to the coordinates of qα. The new momentum
density conjugate to A is denoted Π′ which emerges in the form

(4.9)Π′(r) = ϵ0 Ȧ + ∇ϕ − P = − ϵ0E − P.

On taking the divergence of both sides and making use of the first Maxwell’s equation in
equation (2.4), we find that Π′ is transverse, i.e. ∇ ⋅ Π′ = 0. Evaluation of ∇αS yields

(4.10)∇αS = eαA(qα) + d3r Θα(r) × B(r),

where Θα is given by

(4.11)Θα = ∑
β
eβ

0

1
dλ λδαβ − mα

M
(λ − 1) (qβ − R) δ r − R − λ(qβ − R) .

Like the contributions of each particle to the electric polarization field, the vector Θα depends
only on the internal coordinates. An interesting sum rule that can be verified at once with the
use of ∑mα = M is the following:

(4.12)∑
α
Θα = P.

Expressing the old Hamiltonian equation (2.11) in terms of the new canonical momenta p′α and
Π′ and so eliminating the old momenta, we have

(4.13)Hcanonical′ = ∑
α

p′α + ∫d3r Θα × B(r)
2

2mα
+ 1

2 d3r
(Π′ + P)2

ϵ0
+ B2

μ0
.

This is identical to Hgauge′ , equation (3.18). The commutation relations of the particle and field
variables are as before

(4.14)[pαi′ , qβj] = −iℏδαβδij; [Πi′(r) , Aj(r′)] = −iℏδij⊥(r − r′),

where the transverse delta function δij⊥(r − r′) is as defined in [2]. Note that here too the new
Hamiltonian can be written in the universal form

(4.15)Hcanonical′ = 1
2∑
α
mαq̇α

2 + 1
2ϵ0 d3r E2 + c2B2 ,

as it should be. Of course, it is the canonical form in equation (4.13) which forms the starting
point for evaluations of processes involving atoms and molecules in electromagnetic fields.

The multipolar Hamiltonian equation (4.13) differs from the conventional Hamiltonian in
that the dependence on the particle variables qα now enters relative to the centre of mass
coordinate with multipoles depending on qα − R. This feature greatly facilitates the division of
the motion into internal and translational motions as we next discuss.
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5. The two-particle case

If we consider two particles, only the formalism as given above is still valid except that all sums
over the particle label α now range between 1 and 2. Since N = 2, we have

(5.1)R =
m1q1 + m2q2

M
; M = m1 + m2,

and there will be only one internal variable q

(5.2)q = q1 − q2.

Using these relations, we obtain

(5.3)q1 − R = m2
M
q; q2 − R = −m1

M
q.

It can now be easily seen for the present two-particle case that the polarization equation ( (2.14)
becomes a function of one internal variable q, and it exhibits no explicit dependence on the
centre of mass variable R.

We are now in a position to eliminate the particle variables and momenta in favour of the
above internal and centre of mass coordinates. We need to express pα′  in terms of the total
momentum P = MṘ and the internal momentum p. We have for the momenta [29]

(5.4)p′α = mα

M
P + (−1)α + 1p; α = 1,2.

Substituting for p′α in the Hamiltonian (remembering that we are really dealing with a two-
particle system), we get

(5.5)H′ = ∑
α = 1

2
mα

M
P + (−1)α + 1p + ∫d3rΘα × B(r)

2

2mα
+ 1

2 d3r
(Π′ + P)2

ϵ0
+ B2

μ0
.

We can now expand the square in the first term and in the field term divide the polarization
vector into separate transverse ⊥ and longitudinal ∥ components [2] to obtain a result which we
can conveniently rearrange as follows:

(5.6)

H′ = ∑
α

P2

2M2mα + p2∑
α

1
2mα

+ 1
2ϵ0

(P∥)2d3r + 1
2 d3r

Π′2
ϵ0

+ B2

μ0

+ 1
ϵ0

d3rΠ′ ⋅ P⊥ + 1
2ϵ0

d3r(P⊥)2

+ 1
2M∑

α
P ⋅ [Θα × B] + [Θα × B] ⋅ P d3r

+ ∑
α

( − 1)α + 1 1
2mα

p ⋅ [Θα × B] + [Θα × B] ⋅ p d3r

+ ∑
α

∫d3rΘα × B
2

2mα
.

The integral in the third term of the square of the longitudinal polarization P∥ contains the
Coulomb energy of the system, and we may drop infinite self-energies [14]. The sum over α
can be carried out in the first and the second terms. Also in the seventh term, the sum can
be performed to yield dependence on the polarization P and with the help of the sum rule in
equation (4.12), we have
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(5.7)

H′ = P2

2M + p2

2m‾
+ e1e2

4πϵ0|q|
+ 1

2 d3r
Π′2
ϵ0

+ B2

μ0

+ 1
ϵ0

d3rΠ′ ⋅ P + 1
2ϵ0

d3r(P⊥)2

+ 1
2M d3r P ⋅ [P × B] + [P × B] ⋅ P

+∑
α

(−1)α + 1 1
2mα

d3r p ⋅ [Θα × B] + [Θα × B] ⋅ p

+∑
α

∫d3rΘα × B
2

2mα
.

where we have set m‾ to denote the reduced mass m‾ = m1m2
m1 + m2

. Equation (5.7) is the desired result
giving the total Hamiltonian for a system of two charges exhibiting both internal and gross
motions in interaction with electromagnetic fields. This result is exact within the non-relativistic
framework of the original theory, but has considerable advantages for applications involving
bound systems. The physical contents of the various terms in the Hamiltonian can now be
discussed, considering them in turn.

(a) Physical interpretation

The first term to be denoted Hc is P2

2M . This is the zero-order Hamiltonian of the centre of
mass M, position vector R, and canonical momentum P. It represents the Hamiltonian of a free
particle. The eigenfunctions of Hc are simply plane waves of momentum P = ℏK, and we can
write

(5.8)Hc|K⟩ = E(K)|K⟩; E(K) = ℏ2K2

2M .

The coupling of the centre of mass to the fields then occurs only via higher multipoles as
contained in the subsequent terms discussed as follows.

The second and third terms can be grouped together and denoted as Hp

(5.9)Hp = p2

2m̄ + e1e2
4πϵ0 |q|

,

and the result can immediately be recognized as the Hamiltonian describing the internal motion
of the hydrogen-like system including the effect of the finite mass of the system as contained
in the effective mass m‾. The eigenproblem is identical to the hydrogen-like system, and we can
write

(5.10)Hp|i > = Ei|i⟩,

where the label i denotes a set of quantum numbers that is sufficient to define the state as a
spinless hydrogenic system.

The fourth term in the Hamiltonian pertains to the free electromagnetic field and is thus
denoted as Hf

(5.11)Hf = + 1
2 d3r

Π′2
ϵ0

+ B2

μ0
.

Recall that Π′ is the field canonical momentum conjugate to the vector potential. The eigenpro-
blem for the free field Hamiltonian is well known and can thus be written at once. The single
photon states of wavevector k and polarization λ satisfy the equation

(5.12)Hf|k, λ⟩ = ℏω(k)|k, λ⟩.

10
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The fifth term, denoted as Hint
(1) , is recognized as the interaction of the entire electric multipole

series with the field. We have

(5.13)Hint
(1) = 1

ϵ0
d3rΠ′ ⋅ P.

It will be seen shortly that the leading term of Hint
(1) is the electric dipole term followed by

the electric quadrupole terms and so on through all the higher multipole interaction terms.
These interactions involve the coupling of the multipoles to the transverse displacement field
evaluated at the centre of mass coordinate R which thus enters only as a parameter, since all
attributes of the charge system merely involve the internal motion.

The sixth term is a field-independent term that involves only the integral of the squared
transverse electric polarization and is denoted as Hint

(2)

(5.14)Hint
(2) = 1

2ϵ0
d3r[P⊥]2.

This term is important in calculations of the Lamb shift [30,31] but does not influence any of the
other manifestations of the interaction with electromagnetic field.

The seventh term, denoted as Hint
(3), involves the gross motion. We have

(5.15)Hint
(3) = 1

2M P ⋅ (P × B) + (P × B) ⋅ P d3r.

As we explain later, this term is the origin of the Röntgen current [17], and on performing all
space integration by parts, the term can be understood classically as a coupling between an
electric field Ṙ × B generated by the centre of mass motion at velocity Ṙ = P/M in the magnetic
field B. The interaction corresponds to the coupling of this electric field to the multipole
polarization field P . The eighth term, denoted as Hint

(4), affects primarily the internal motion

(5.16)Hint
(4) = ∑

α
(−1)α + 1 1

2mα
p ⋅ [Θα × B] + [Θα × B] ⋅ p d3r.

This corresponds to the coupling of the entire magnetic multipole series to the magnetic field.
We can write

(5.17)Hint
(4) = − d3rM ⋅ B,

where M is the magnetization field for the two-particle system

(5.18)M = −∑
α

(−1)α + 1 1
2mα

Θα × p − p × Θα .

The final term, denoted as Hint
(5), is

(5.19)Hint
(5) = ∑

α

∫d3rΘα × B
2

2mα
.

This is referred to as the two-particle diamagnetic energy term which is reminiscent of the
A2/2m term in the conventional theory.

The above theory forms the basis for the application involving the radiative transitions of
atoms and molecules, for example, the evaluation of emission and absorption processes, the
London–van der Waals forces between two neutral atoms and the scattering of light from atoms
and molecules. It became clear that in many such processes, the multipolar formulation is more
advantageous than the conventional minimal coupling formulation [2,32].
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(b) Expansion in multipoles

The multipole series embodied in the definitions of P can be explicitly derived using the Taylor
expansion of the delta function entering these expressions in powers of (qα − R). We have

(5.20)δ r − R − λ(qα − R) = 1 − λ(qα − R)j
∂

∂rj
+ ........ )δ(r − R).

Thus, we have for a component of P

(5.21)Pi = ∑
α
eα(qα − R)i

0

1
dλ 1 − λ(qα − R)j

∂
∂rj

+ . . . . . . . . δ(r − R) .

We may now perform the λ integration term by term, make use of equation (5.3) to write the
result as follows:

(5.22)Pi = di +Qij
∂

∂rj
+ . . . . . . δ(r − R) .

where di is the ith component of the dipole moment vector , and Qij is the quadupole tensor.
Now consider the two-particle case and assume further that we are dealing with a neutral
system e1 = −e2 = e We have for the dipole moment vector

(5.23)d = ∑
α = 1

2
eα(qα − R) = eq.

The quadrupole tensor can also be expressed in terms of components of the internal variable as
follows:

(5.24)Qij = − 1
2∑
α
eα(qα − R)i(qα − R)j = − 1

2eqiqj
m2

2 − m1
2

M2 .

This exhibits finite mass effects contained in the factor between the brackets. In the limit when
m2 > > m1, this factor approaches unity, and we get the usual definition for the quadrupole
tensor of hydrogen.

A similar expansion can be performed for the magnetic series which involves Θα. We write

(5.25)

Θα = ∑
β
eβ

0

1
dλ λδαβ − mα

M
(λ − 1) (qβ − R)

× 1 − λ(qβ − R).∇ + ⋯ . δ r − R) .

We are interested, however, in the leading order in the approximation in which we retain the
dipole term and ignore all higher multipoles. We therefore obtain for the electric polarization in
the dipole approximation

(5.26)P ≈ dδ(r − R),

and the corresponding approximation for Θα turns out to be

(5.27)

Θα ≈ 1
2eqδ(r − R)

= 1
2dδ(r − R); α = 1,2.

The magnetic polarization then becomes
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(5.28)

M = 1
2∑
α

( − 1)α + 1

mα
Θα × p − p × Θα

= e
4

1
m1

− 1
m2

(q × p − p × q)δ(r − R)

= μδ(r − R),

where μ is the magnetic dipole moment

(5.29)μ = 1
4e

1
m1

− 1
m2

q × p − p × q .

Another term that can be reduced to its dipole approximation form is the field-independent
interaction Hint

(2)

(5.30)Hint
(2) = 1

2ϵ0
d3r[P⊥]2.

This interaction term was analysed by Power & Zienau [1] and shown to give rise to a singular
contribution to the non-relativistic Bethe term of the Lamb shift when the dipole coupling term
d.Π′/ϵ0 is used.

The dipole approximation affects various other terms in the multipolar Hamiltonian and
has implications for both the translational and the internal motions. The presence of the delta
function δ(r − R) in P and Θα in the dipole approximation leads to immediate evaluations of the
space integrals. The Hamiltonian reduces the dipole approximation to

(5.31)

H′ = P2

2M + p2

2m‾
− e2

4πϵ0|q|
+ 1

2 d3r
Π′2
ϵ0

+ B2

μ0

+ 1
ϵ0
d ⋅ Π′(R)

+ 1
2M P ⋅ [d × B(R)] + [d × B(R)] ⋅ P

−μ ⋅ B(R) + [d × B(R)]2

8m‾

+ 1
2ϵ0

d3r(P⊥)2.

The result given in equation (5.31) is the non-relativistic Hamiltonian for a system of two
bound charged particles in interaction with the radiation field. In this Hamiltonian, the internal
motion of the charge system is clearly distinguished from the gross motion. It is seen that the
zero-order Hamiltonians of the three subsystems (gross motion, internal motion and fields) are
exactly separated off and given by the first three terms occupying the first line of equation
(5.31). The rest of the terms represent the interaction in which the three subsystems are coupled.
The d ⋅ Π′(R)/ϵ0 term represents the coupling of the dipole moment to the field Π′, which is
interpreted as the electric displacement field, and in field quantization, it satisfies equation
(3.19) as the usual commutation relation [27]. The next term is the Röntgen interaction which
we discuss further below. The next term is the magnetic dipole interaction, and the penultimate
term is a diamagnetic-type energy which is relatively small. The last term has been rewritten in
its original form involving the integral of the square of the polarization. It is a self-interaction
term which is known to contribute to the Lamb shift [2].

There is an effective Hamiltonian Hd used in the literature, defined as the version of H′ in the
electric dipole approximation, and is restricted to the following truncated form [33–35]:

(5.32)Hd = P2

2M + Ha + Hf + 1
ϵ0
d ⋅ Π′(R) + 1

2M P.d × B(R) + d × B(R).P ,
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where Ha is the hydrogen-like Hamiltonian describing the internal motion while Hf is the field
Hamiltonian, and as far as interactions are concerned, we may replace Π′ with −ϵ0E.

Equation (5.32) is the starting point for the investigation of gross motion effects. We note
in particular the appearance of the P-dependent terms, which we refer to as the Röntgen
interaction. Note that this is the dipole approximation of the full form in equation (5.15) where
the entire set of multipoles enter. For instance, one can talk about a quadrupole Röntgen
interaction, etc.

The leading Röntgen effect involves an electric dipole moment d, which is assumed moving
in the presence of a magnetic field. We refer to the Röntgen interaction in equation (5.32) as HR

and write it in a simpler form by making use of Maxwell’s equation ∇ ⋅ B = 0,

(5.33)HR = d × B ⋅ P
M

.

A second effect due to translational motion is the Aharonov–Casher (AC) effect [22,36]. Here a
particle carrying a magnetic dipole moment μ is assumed to be moving in the presence of an
electric field E. The AC effect is, in fact, the electric form of the Röntgen effect, and its form can
be obtained by replacing the d by μ/c and B by E/c. We have

(5.34)HAC = μ × E ⋅ P
Mc2 .

Both the Röntgen effect and the AC effect manifest themselves in phase shifts of the Aharo-
nov–Bohm kind. Although derived here from the Röntgen interaction by appeal to electromag-
netic symmetry, it was Horsley et al. [26] who managed to provide a rigorous derivation based
on the Lagrangian formalism and by introducing the concept of centre of mass-energy 26,35,
which led to the appearance of the AC interaction term along with other familiar interaction
terms in the multipolar formulation and which conforms with equation (5.34) in the magnetic
dipole approximation.

The phase phenomena associated with moving electric and magnetic dipoles have been
referred to as the He–McKellar–Wilkens (HMW) topological phase which was predicted by
He and McKellar [37] and by Wilkens [20] and has been experimentally investigated [25].
The first topological phase stems from the Röntgen interaction. This can be written in the
Aharanov–Bohm interaction form [38] as follows:

(5.35)HR = ev.AR,

where v = P/M and AR is an effective Röntgen vector potential

(5.36)AR = 1
e
d × B(R).

This indicates an Aharonov–Bohm-type effect while the particle is travelling along a closed path
C, associated with the vector potential AR. We have

(5.37)ΔSR/ℏ = 1
eℏ C

(d × B) ⋅ dl.

The Aharonov–Casher effect can be treated along the lines above. The effective Aharo-
nov–Casher vector potential is

(5.38)AAC = 1
c2μ × E .

Instead of the Röntgen phase shift (5.39), we obtain the Aharonov–Casher phase shift

(5.39)ΔSAC/ℏ = 1
c2ℏ C

(μ × E) ⋅ dl .

The AC effect has already been observed experimentally [39,40].
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6. Comments and conclusions

In this article, we sought to highlight the roles of gauge and canonical transformations when
bound neutral atomic or molecular systems interact with electromagnetic fields. There is in
fact a third equivalent transformation, namely the addition of a total time derivative to the
Lagrangian. The equivalence of this method to the gauge transformation method has been
succinctly verified in the conclusions section of [14]. The main feature of the PZW theory is that
the interaction between electromagnetic fields and a bound system of charges arises in terms of
multipoles, both electric and magnetic, and as a result, the coupling of the multipolar sources
is to the field intensities E and B. This should be contrasted with the case of the conventional
theory where the coupling is between the charge and current densities with gauge-dependent
electromagnetic potentials A and Φ. The electric polarization and the magnetization enter as
closed integral forms leading to quantum optics in the most usable form in terms of electric
and magnetic dipoles and quadrupoles and, in principle, to any multipolar order, interacting
with gauge-invariant electric and magnetic fields. The theoretical framework involving the
canonical transformation in effect follows the formalism first derived by Power & Zienau [1]
and generalized to the Power–Zienau–Woolley (PZW) formalism with contributions by Woolley
on the same subject [10–13]. A significant extension included the gross motion of matter in
addition to the internal motion and a further extension included the many centres which allows
for inter- as well as intra-atomic and molecular processes [41]. The procedure that has led to the
same PZW Hamiltonian and which involved a gauge transformation is less familiar. A recent
review by Stokes & Nazir [42] discusses gauge invariance in non-relativistic QED and points
out how gauge ambiguities can arise in that context.

The formalism here has drawn attention to some features of significant current interest,
most notably the Röntgen interaction and the Aharonov–Casher interaction, both of which were
initially ignored as small effects. However, including the Röntgen interaction has been shown to
account for the difference between canonical and mechanical momenta in the electrodynamics
of dielectrics, and the effect is predicted to lead to additional forces acting on a moving atom
[34,43]. It must also be taken into account in order to exhibit the time dilation effect in the
evaluation of the spontaneous emission of such a moving atom [44–46]. It is interesting to
note that the AC effect has already been observed experimentally [39,40], but as far as the
author knows, there is no direct experimental confirmation yet for the Röntgen effect which
followed Wilkins’ suggestion [21]. Both effects are predicted to lead to quantum phase effects of
the Aharonov–Bohm kind. The phase associated with the Röntgen interaction is now referred
to by some as the He–Mckellar–Wilkins phase. Recent work has extended the validity of the
AC interaction, equation (5.34) to any particle carrying a magnetic dipole, where the magnetic
moment is attributable to the spin angular momentum such as in the case with neutrons and
electrons [36,40,47]. It seems reasonable to suggest that, similarly, some real particle endowed
with a permanent electric dipole moment moving in a magnetic field should exhibit the
Röntgen phase. Unfortunately, an atom does not possess a permanent dipole moment, so
only an induced dipole moment can be used, as done in the experiment [25]. Furthermore,
there is at present no known elementary particle endowed with a permanent electric dipole
moment. However, in 2011, a substantial permanent dipole moment was reported, carried by
a homonuclear rubidium molecule [48], and there is also another report of a permanent dipole
moment associated with NiO [49].
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