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Abstract
The availability of coherent sources of higher order Poincaré optical beams have opened up new
opportunities for applications such as in the optical trapping of atoms and small particles, the
manipulation of chirally-sensitive systems and in improved encoding schemes for
broad-bandwidth communications. Here we determine the intrinsic properties of integer order
m⩾ 0 Poincaré Laguerre–Gaussian (LG) modes which have so far neither been evaluated, nor
their significance highlighted. The theoretical framework we adopt here is both novel and
essential because it emphasises the crucial role played by the normally ignored axial
components of the twisted light fields of these modes. We show that the inclusion of the axial
field components enables the intrinsic properties of the Poincaré modes, notably their angular
momentum, both spin and orbital as well as their helicity and chirality, to be determined. We
predict significant enhancements of the intrinsic properties of these modes when compared with
those due to the zero order LG modes. In particular, we show that higher order LG Poincaré
modes exhibit super-chirality and, significantly so, even in the case of the first order m= 1.

Keywords: Poincaré modes, Laguerre–Gaussian beams, optical spin, orbital angular momentum,
chirality

1. Introduction

Recent advances in the field of twisted light have recognised
the importance and the prospects for useful applications of
the so-called higher order vortex modes [1–18]. For a given
order specified by the integer m⩾ 0, the optical polarisa-
tion ϵ̂m arises as a non-separable superposition of the cir-
cular polarisation states (x̂∓ îy) with spatial phase e±imφ.
The terms eimφ(x̂− îy) and e−imφ(x̂+ îy) are multiplied by
Poincare sphere functions (respectively, UP and VP, defined
below) which modulate the polarisation so that it spans the
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range ‘right-handed circular to left-handed circular polarisa-
tion’, with intermediate continuous points populated with gen-
eral elliptical and linear polarisation states. This constitutes a
broad range of states since any state of polarisation is iden-
tified uniquely by a point (ΘP,ΦP) on the surface of a unit
higher order Poincaré sphere, as shown and explained in the
caption of figure 1.

Note that the positive order parameter m includes the low-
est orders, namely m= 0 and m= 1, to be referred to, respect-
ively, as the basic 0th-order and first order set of modes. Each
is distinguished uniquely by its own order Poincaré sphere.
The Poincaré sphere for m= 0 is scalar and incorporates
all elliptically-polarised (including circularly- and linearly-
polarised) Gaussian modes. The first order m= 1 has a dif-
ferent Poincaré sphere and includes, in addition, the radially-
and azimuthally-polarised optical vortex modes [13].

Such modes can already be produced by various means
[10, 12, 15], including specialised lasers [10], using discrete

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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optical components [15, 19] or by metasurfaces [20]. We refer
the reader to these original articles which describe the dif-
ferent ways in which the parameters of such modes can be
manipulated.

Although experimental reports have already confirmed the
controlled generation of the higher order vector modes as
explained above, the optical properties for arbitrary higher
order m⩾ 0 are, as far as we know, not yet been evaluated.
Both the spin angular momentum (SAM) and the optical angu-
lar momentum (AM), as well as the orbital angular momentum
(OAM), are yet to be evaluated for a general ordermLaguerre–
Gaussian (LG) higher order modes. It is not clear what spatial
density variations the vector components of the SAM, OAM
and AM of these modes have and what m-dependence each
has.

It is also clearly important to find out whether and how
the higher order modes can lead to enhanced optical proper-
ties and enable new applications such as higher order encod-
ing protocols for significantly increased bandwidth in quantum
communication [21] and whether their AM, spin and chirality
are greatly enhanced. Evidently, enhanced optical chirality is
highly desirable for chiroptical processes [22]. We show that
higher order Poincaré modes exhibit super-chirality and, signi-
ficantly so, even for the first order for which m= 1. For recent
accounts on the optical interactionwith chiral matter the reader
is referred to [23].

The theoretical framework we adopt here aims first at eval-
uating the energy flux and the linear momentum density and
proceeds to determine the cycle-averaged SAM density, the
total AM density, the OAM density as well as the helicity and
the chirality densities. For each of these main intrinsic prop-
erties we determine the spatial density distributions followed
by the evaluation of its spatial integral over the focal plane at
z= 0. The evaluations are carried out using the electromag-
netic fields associated with the most general paraxial mode of
arbitrary order m(⩾ 0). An important feature of this paper is
that although our main focus is on LG modes our treatment is
applicable to any type of twisted light and includes all the pos-
sible scenarios of optical polarisation of higher order Poincaré
modes.

This paper is organised as follows. In section 2 we begin
with the vector potential A for a general paraxial optical vor-
tex endowed with the higher order polarisation state ϵ̂m which
is defined in terms of the higher order Poincaré sphere.We then
describe the steps leading to the electric and magnetic fields of
the higher order modes. The details are given in appendix A.
In section 3 we define the cycle-averaged intrinsic proper-
ties and proceed to evaluate their respective densities for the
higher order modes for each of the stated properties, namely
the SAM, the AM and the OAM, as well as the helicity and the
chirality. Each evaluated density is then followed by the eval-
uation of the integrated (total) property per unit length. The
m-dependence of the helicity density has been elucidated in
[24], so the emphasis in this paper is the demonstration of the
involvement of both the higher order parameter m as well as
the radial number p, as for Laguerre–Gaussian modes LGm

p .
Section 4 summarises the results and comments on the signi-
ficance of these results and appendices B and C discuss the

normalisation factorA0 in terms of the Power PT and we con-
sider the four definite integrals needed in the body of the paper.

2. Fields of higher order Poincaré modes

The paraxial electromagnetic fields associated with an optical
vortex in a higher order state of polarisation are derivable from
a vector potential in cylindrical coordinates r= (ρ,ϕ,z) in the
form

A= ϵ̂m,pF̃m,p (ρ,z)e
ikzz (1)

where ϵ̂m,p is the order m polarisation and its variations cover
every point on the surface of the order m⩾ 0 unit Poincaré
sphere. This is as follows

ϵ̂m,p = eimφ
(x̂− îy)√

2
cos

(

ΘP

2

)

e−iΦP/2 + e−imφ (x̂+ îy)√
2

× sin

(

ΘP

2

)

eiΦP/2 (2)

where ΘP and ΦP are Poincare sphere angles as defined in
figure 1. The vector ϵ̂m is the most general polarisation state
vector, and written using our convention as depicted in figure 1
so it differs slightly from the form defined byMilione et al [2].
The validity of the polarisation states for the Poincaré modes,
has already been confirmed experimentally [6, 10, 15].

In equation (1) the polarisation is seen multiplying the
paraxial vortex mode function F̃m,p(ρ,z)eikzz which has no ϕ-
dependence and in which kz is the wavevector for the light
travelling along the+z axis andFm,p specifying only the amp-
litude variations in terms of the coordinates (ρ,z). The mode
function is labelled by the its integer order m> 0, (which is
also the winding number) and p⩾ 0 (which is the radial num-
ber), as for a LG optical vortex modes.

In order to simplify the evaluations we now express the
polarisation vector ϵ̂m, equation (3), in the following form

ϵ̂m,p = eimφ (x̂− îy)UP+ e−imφ (x̂+ îy)VP (3)

where UP and VP are the complex Poincare’ angular functions
(i.e. of ΘP,ΦP) given by

UP =
1√
2
cos

(

ΘP

2

)

e−iΦP/2; VP =
1√
2
sin

(

ΘP

2

)

eiΦP/2.

(4)

We seek to develop the analysis for a general F̃ , which
could be appropriate for any optical vortex type, for example
LG, Bessel, Bessel–Gaussian,.. etc and then consider the eval-
uations for the LG case. We begin by writing the vector poten-
tial in equation (1) in the following form

A=
{

(x̂− îy)eimφUP+(x̂+ îy)e−imφVP
}

F̃m,p (ρ,z)e
ikzz

(5)

This form of the generally-polarised mode of orderm suggests
that it is a superposition of two vortex modes, one with wind-
ing numberm and right-handed circular polarisation, weighted

2
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Figure 1. 0th order, (a), and 1st-order, (b), Pioncaré sphere (PS) representation of the polarisation state in which optical polarisation is
coupled with vortex phase, characterised by a unit sphere with respect to the corresponding Stokes-parameter(-like) Cartesian coordinates
(S01,S

0
2, S

0
3) and (S11,S

1
2, S

1
3) respectively. It is seen that the 0th order PS is equivalent to the conventional PS where |H> and |V> are

commonly used to denote the vertically and horizontally linearly polarised light, |A> and |D> for±45o tilted linearly polarised light, |R>
and |L> for right-hand and left-hand circularly-polarised light, respectively. The 1st order PS figure is related to the corresponding figure
by Milione et al [2] with slightly different conventions for S11 and S

1
2. Six sets of special vector modes are drawn in different colours next to

each sphere for illustration. Their positions on the Poincaré sphere are indicated by dots of the same colour. (a) and (b) Reprinted from [24],
Copyright (2024), with permission from Elsevier.

by the Poincaré function UP and the second has winding num-
ber −m and left-handed circular polarisation, weighted by the
Poincaré function VP. It is easy to check that UP and VP satisfy
the following identities

(U∗
PVP−V∗

PUP) =− i
2
sin(ΘP)sin(ΦP)

(

|UP|2 − |VP|2
)

=
1
2
cos(ΘP)

(

|UP|2 + |VP|2
)

=
1
2
. (6)

One of the main requirements to be satisfied by free-space
paraxial optical fields is that the electric fieldmust be derivable
from the magnetic field using the Maxwell curl equation and
that the electric field must produce the same magnetic field via
the secondMaxwell curl equation. For convenience, we can do
so by writing the vector potential equation (5) as the sum of
two parts as follows:

A= A1 +A2 (7)

where

A1 = (x̂− îy)F (1)
m,p (r)e

ikzz; A2 = (x̂+ îy)F (2)
m,p (r)e

ikzz

(8)

F (1)
m,p (r) = UPeimφF̃m,p (ρ,z) ; F (2)

m,p (r) = VPe−imφF̃m,p (ρ,z) .
(9)

Note that so far we have regarded F̃ as a general optical
vortexmode amplitude function and here we develop the form-
alism without specifying this function. Once the results are

arrived at, we shall consider the special case of F̃ appropri-
ate for LG modes.

The magnetic and electric fields of our generally-polarised
mode are written as the sums of two terms B= B1 +B2 and
E= E1 +E2 where Bi =∇×Ai; i = 1,2. The sequence of
steps leading to the required expressions for the fields involve
dealing with the two parts of the magnetic field first and from
those use Maxwell’s curl B equation to derive the correspond-
ing electric field parts. We have

B1 = ikz (̂y+ ix̂)F (1)eikzz− ẑ
(

i
∂F (1)

∂x
+

∂F (1)

∂y

)

eikzz

E1 = ickz (x̂− îy)F (1)eikzz− ẑc
{

∂F (1)

∂x
− i

∂F (1)

∂y

}

eikzz

B2 = ikz (̂y− ix̂)F (2)eikzz+ ẑ
(

i
∂F (2)

∂x
− ∂F (2)

∂y

)

eikzz

E2 = ickz (x̂+ îy)F (2)eikzz− ẑc
{

∂F (2)

∂x
+ i

∂F (2)

∂y

}

eikzz

(10)

where we have dropped the subscript labels in F (1),(2) and in
F̃ for ease of notation and these can be restored when the need
arises. The fields we have derived in the set of equation (10)
form the basis for the derivation of the optical properties of
the order m vector vortex mode. Note that up to now we have
not specified the type of vortex mode and we continue to deal
with the general form involving the vector potential amplitude
function F̃m,p(ρ,z).

3
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3. Cycle-averaged intrinsic properties

Our aim is to evaluate all the major cycle-averaged properties
of the higher order Poincaré mode. These include the optical
SAM density s̄ the AM density j̄ from which we obtain the
OAM density and finally, the helicity and the chirality of the
mode. The cycle-averaged AM density requires evaluation of
the linear momentum density and we also need to evaluate
the power flux for normalisation. The relevant properties are
defined as follows [25]

s̄=
1
4ω

ℑ
{

[ϵ0E
∗ ×E] +

1
µ0

[B∗ ×B]
}

;

= s̄E+ s̄B (SAM density) (11)

j̄= r× π̄; (AM density) (12)

ℓ̄= j̄− s̄; (OAM density) (13)

η̄ (r) =
c
ω2

χ̄=−ϵ0c
2ω

ℑ[E∗ ·B]

(Helicity/ Chirality density) , (14)

where in the above π̄ = 1
c2 w̄ is the linear momentum dens-

ity with w̄= 1
2µ0

ℜ[E∗ ×B] the energy density. The symbols
ℜ[. . .] and ℑ[. . .] stand for real and imaginary parts of [...] and
the superscript ∗ in E∗ stands for the complex conjugate of E.
Note that in free space the chirality density χ̄ is proportional
to the helicity density η̄(r), so we only need to deal with the
helicity from which the chirality follows.

As stated above we consider the evaluations of the above
densities and deal with them in turn, including their vector
components, all evaluated specifically in relation to the higher
order Poincaré modes. After this the next tasks will involve
the evaluation of the total intrinsic properties per unit length
for SAM and AM and from these two we deduce the OAM.
Finally we evaluate the helicity and chirality per unit length.
Each property is evaluated as the space integral of the corres-
ponding density over the x-y plane.

The evaluation now requires as a first step expressions for
the x- and y-derivatives of F (1,2) in polar coordinates. Note
that F (1) is distinguished by the phase factor exp(+imϕ) and
F (2) is distinguished by the phase factor exp(−imϕ). We have
for F (1,2)

∂F (1)

∂x
= UP

{

cosϕF̃ ′ − i
m
ρ
sinϕ F̃

}

eimφ (15)

∂F (1)

∂y
= UP

{

sinϕF̃ ′ + i
m
ρ
cosϕ F̃

}

eimφ (16)

∂F (2)

∂x
= VP

{

cosϕF̃ ′ + i
m
ρ
sinϕ F̃

}

e−imφ (17)

and

∂F (2)

∂y
= VP

{

sinϕF̃ ′ − i
m
ρ
cosϕ F̃

}

e−imφ (18)

3.1. Paraxial LG forms

Ultimately we will apply the formalism to the case of higher
order LG Poincaré modes.We thus require the amplitude func-
tion of these for winding numberm and radial number pwhich
is

F̃m,p (ρ,z) =A0
C|m|,p

√

1+ z2/z2R

(

ρ
√
2

w0

√

1+ z2/z2R

)|m|

× exp

[

−ρ2

w2
0

(

1+ z2/z2R
)

]

L|m|p

{

2ρ2

w2
0

(

1+ z2/z2R
)

}

eiξ(ρ,z),

(19)

where A0 is a normalisation factor, to be determined in terms
of the power PT. The phase function ξ(ρ,z) includes the Gouy
and the curvature phases

ξ (ρ,z) =−(2p+ |m|+ 1)arctan

(

z
zR

)

+
kzρ2

2
(

z2 + z2R
) . (20)

Here w0 is the beam waist, zR = w2
0k/2 is the Rayleigh range,

C|m|,p =
√

p!/(p+ |m|)! and L|m|p the associated Laguerre
polynomial.

Note that the amplitude function F̃ for LG modes only
depends on the absolute value of m, so that we can now inter-
pret themth order Poincarémodes, defined in (7)–(9), as LGm,p

and LG−m,p modes. This fact is useful experimentally as well
as in aiding the interpretation of our results.

Our main concern will be on evaluating the variations of
each intrinsic property on the focal plane at z= 0 so that the
vector potential amplitude function reduces to

F̃m,p (ρ) =A0

√

p!
(p+ |m|)!e

− ρ
2

w20

(√
2ρ
w0

)|m|

L|m|p

(

2ρ2

w2
0

)

,

(21)

where now F̃m,p depends only on the radial coordinate ρ. In
appendix B we evaluate the normalisation constant A0 and
express it in terms of the applied power PT.

3.2. The SAM density

The SAM density equation (11) receives contributions from
both the electric field s̄E and the magnetic field s̄B. We begin
by the evaluation of the first part s̄E of the SAM density which
satisfies

4ω
ϵ0

s̄E = ℑ [E∗ ×E] . (22)

Since E= E1 +E2, the vector cross product contains four
products, two of which are direct terms and two mixed terms

E∗ ×E= {(E∗
1 ×E1 +E∗

2 ×E2)+ (E∗
1 ×E2 +E∗

2 ×E1)} ,
(23)

where the first set of terms are direct and the second set are the
mixed terms. A similar treatment is followed for the second

4
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part of the SAM density. We have

4ωµ0s̄B = ℑ [B∗ ×B] . (24)

Here also the vector product consists of four products two of
which are direct and two are mixed

B∗ ×B= (B∗
1 ×B1 +B∗

2 ×B2)+ (B∗
1 ×B2 +B∗

2 ×B1) .
(25)

The evaluation of the SAM density is straightforward, but
rather lengthy. Each of the eight vector products consists of
three vector components whichwe evaluated separately by dir-
ect substitutions of the electric and magnetic fields given in
equation (10).

Extensive careful evaluations lead to the following results.
We have found that the direct E terms are equal to the direct B
terms

[

E∗
1,2 ×E1,2

]

= c2
[

B∗
1,2 ×B1,2

]

. (26)

We have also found that all components of the mixed E terms
are equal and opposite in sign to those of the B term. We have

[E∗
1 ×E2] =−c2 [B∗

1 ×B2] . (27)

Similarly we have found

[E∗
2 ×E1] =−c2 [B∗

2 ×B1] . (28)

Thus the direct terms add while mixed ones cancel. Making
use of the above relations we get the simple result

[E∗ ×E] + c2 [B∗ ×B] = 2{[E∗
1 ×E1] + [E∗

2 ×E2]} . (29)

This simplifies the analysis.

3.3. Transverse SAM density components

The x-component of the spin density is

s̄x =
ϵ0
2ω

ℑ
{

[E∗
1 ×E1]x+ [E∗

2 ×E2]x
}

. (30)

Direct evaluations using the expressions in equation (10)
for E1 and E2 lead us to the result

s̄x =
ϵ0c2kz
2ω

{

m
F̃2

ρ
+ F̃ ′F̃

}

sinϕ, (31)

where we have made use of the identities in equation (6).
Similarly on evaluating the y-component and obtain

s̄y =−ϵ0c2kz
2ω

{

m
F̃2

ρ
+ F̃ ′F̃

}

cosϕ, (32)

These combine to give the transverse SAM vector compon-
ent s̄⊥ defined as follows

s̄⊥ = s̄xx̂+ s̄yŷ. (33)

Figure 2. The variations of the SAM density components (arbitrary
units) with the radial coordinate ρ (in units of w0). Here the blue
curve represents the magnitude of the transverse component
(equation (34)) and the yellow curve represents the longitudinal z
component (equation (36)). For illustration we have chosen to
consider the order m= 2 and the point on the north pole
Θp = 0,Φp = 0 of the order m = 2 Poincaré sphere.

This result can be written in terms of the azimuthal unit
vector ϕ̂ as follows

s̄⊥ =−ϵ0c2kz
2ω

{

m
F̃2

ρ
+ F̃ ′F̃

}

ϕ̂. (34)

The emergence of the transverse spin is a direct consequence
of the longitudinal field components in equation (10) whose
strength involves both the ϕ and ρ gradients in the transverse
plane [26]. The ϕ−gradient accounts for the m−dependence
in the first term, while the radial gradient is manifest in the
second term F̂ ′F̂ .

3.4. The longitudinal component of the SAM density

The longitudinal spin density component is given by

s̄z =− ϵ0
2ω

ℑ
{

[E∗
1 ×E1]z+ [E∗

2 ×E2]z
}

. (35)

Similar evaluations lead to the result

s̄z =
ϵ0c2kz
2ω

[

|U2
P| − |V2

P|
]

F̃2

=
ϵ0c2kz
2ω

cos(ΘP) F̃2. (36)

The lack of any m−dependence in s̄z in equation (36) is easy
to see since s̄z depends only on contributions arising from the
transverse field components.

This completes the evaluations of the general form of the
transverse and the longitudinal components of the SAM dens-
ity, which are applicable to any optical vortex amplitude func-
tion F̃ . However, we shall proceed to consider the specific case
in which F̃ corresponds to a LG amplitude function. The vari-
ations of the SAMdensity components with the radial coordin-
ates are displayed in figure 2.

5
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3.5. Integrated SAM density

We have seen that the transverse SAM density components are
proportional to sine and cosine of the azimuthal angle ϕ and
so on spatial integration they vanish

S̄x = 0; S̄y = 0. (37)

Only the z-component survives on integration, so we have, on
substituting from equation (35)

S̄z =
ˆ 2π

0
dϕ
ˆ ∞

0
s̄zρ dρ=

πϵ0
ω

cos(ΘP)IP, (38)

and on substituting for IP in terms of PT using equation (87)
we have

S̄z =
c2k2zπϵ0

ω
cos(ΘP)

µ0PT

π ck2z
, (39)

which finally leads us to the total SAM per unit length in the
form

S̄z = cos(ΘP)

( PT

ωkz

)

. (40)

The expression between the brackets has the dimensions of
AM per unit length. Note that this is independent of m, which
means that all higher order modes have the invariant SAM
which depends only on the Poincare angle ΘP. The factor
cos(ΘP) takes the values ±1 at ΘP = 0,π as for circularly-
polarised modes and is zero for ΘP = π/2, as for radially
and azimuthally-polarised modes. Other values ofΘP concern
elliptically-polarised modes.

3.6. AM desnity

The cycle-averaged AM density is defined as follows:

j̄= r× π̄, (41)

where π̄ = 1
c2 w̄ is the linear momentum density with w̄=

1
2µ0

ℜ[E∗ ×B] the energy density. Thus in order to proceed we
have to work out all the components of the Poynting vector.
The vector product [E∗ ×B] where the fields are E= E1 +E2

and B= B1 +B2 is

[E∗ ×B] = [E∗
1 ×B1] + [E∗

2 ×B2] + [E∗
1 ×B2] + [E∗

2 ×B1] .
(42)

We refer to the components of the different terms generic-
ally by Pαβi where α,β each take the values 1 and 2 and
i = (x,y,z).

As an example to how evaluations proceed, we consider
P11x. We have

P11x = [E∗
1 ×B1]x = E∗

1yB1z−E∗
1zB1y, (43)

which gives

P11x = (−ckz)
{

F (1)∗
[

i

(

∂F (1)

∂x

)

+

(

∂F (1)

∂y

)]

+F (1)

[

−i
(

∂F (1)

∂x

)∗

+

(

∂F (1)

∂y

)∗
]}

. (44)

We obtain on substituting for the derivatives

P11x =−2ckz|UP|2
(

F̃ ′F̃ +
m
ρ
F̃2

)

sinϕ. (45)

Similar evaluations were carried out for all 16 terms in
equation (42). It turns out that all the eight mixed term com-
ponents arising from [E∗

1 ×B2] + [E∗
2 ×B1] are imaginary and

so will not contribute to the real part of of the overall Poynting
vector. From these we are able to evaluate the components of
j̄. For example the y-component j̄y is given by

j̄y =
ϵ0c2kz
2ω

{z(P11x+P22x)− x(P11z+P22z)} . (46)

The x-component j̄x together with the y-component j̄y, consti-
tute the transverse AM density vector along ϕ̂

j̄⊥ =
ϵ0c2k3z
2ω

ρF̃2ϕ̂. (47)

Similar evaluations of the longitudinal (z-component) of the
AM density j̄z in the form

j̄z =
ϵ0ckz
2ω

{x(P11y+P22y)− y(P11x+P22x)} . (48)

We obtain

j̄z =
ϵ0c2k2z
2ω

{

mF̃2 + ρF̃F̃ ′
}

cosΘP. (49)

The AM density vector is therefore given by

j̄= j̄⊥ϕ̂+ j̄ẑz, (50)

where j̄⊥ is the magnitude of the transverse component, given
by equation (47), and j̄z is the longitudinal component, given
by equation (49).

3.7. Variations of j̄⊥ and j̄z with ρ

For illustration we now examine the distributions of the AM
density components for a representative case, namely the order
m= 3 Poincaré mode of the LG type for which the mode func-
tion F̃ is given by equation (21). Figure 2 displays the vari-
ations of the SAMdensity components with the radial coordin-
ate while figure 3 displays the corresponding AM density vari-
ations with the radial coordinates.
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Figure 3. Variations of the components of the angular momentum
density j̄ (arbitrary units) with the radial coordinate ρ. The blue
curve represents the variations of the transverse component
(equation (47)) and the yellow curve represents the variations of the
longitudinal component (equation (49)). For illustration we have
chosen to consider the order m= 2 and the vector mode for which
Φp = 0 and cosΘP = 0.99 of the order m = 2 Poincaré sphere.

3.8. Integrated AM density

The space integral of the AM density over the x− y plane is
formally defined by

J̄=
ˆ ∞

0
ρ dρ
ˆ 2π

0
dϕ
{

j̄⊥ϕ̂+ j̄ẑz
}

= J̄⊥ϕ̂+ J̄ẑz. (51)

The integral of the transverse density vanishes by virtue of the
ϕ integral. We can then write

J̄⊥ = 0. (52)

The integral of the longitudinal term is

J̄z =
ϵ0c2k2z
2ω

ˆ ∞

0
ρdρ
ˆ 2π

0
dϕ
{

mF̃2 + ρF̃F̃ ′
}

cosΘP. (53)

The two different integrals involved in the evaluation of
equation (53) are detailed in appendix B. The result is

J̄z =
kzw2

0πE2
0

4µ0c
[cosΘP (m− 1)] , (54)

and on substituting for E0, we find

J̄z =

(PT

ωc

)

[cosΘP (m− 1)] . (55)

The factor
(

PT
ωc

)

has the dimensions of AM per unit length,
as is the case with SAM. Note, however, that this total AM
depends on the order m. The factor (m− 1) appearing in
equation (55) is consistent with the observation that in cyl-
indrical coordinates the two terms in the polarisation vector
in equation (3) have phase functions ei(m−1)φ and e−i(m−1)φ.
The factor cos(ΘP) takes the values ±1 at ΘP = 0,π as for
circularly-polarised modes and is zero for ΘP = π/2, as for
radially and azimuthally-polarised modes. Other values ofΘP

concern elliptically-polarised modes. For m= 0 and cosΘP =
−1 we recover the conventional result of PT/(ωc) appro-
priate for circularly polarised Gaussian modes. For m= 1,

Figure 4. Variations of the orbital angular momentum density (in
arbitrary units) with the radial coordinate ρ. The blue curve
represents the variations of the transverse component and the yellow
curve the longitudinal component (equation (57)). For illustration
we have chosen to consider the order m= 2 and the vector mode
close to the north pole point for which cosΘP = 0.99.

we recover the zero AM appropriate for pure radially and
azimuthally-polarised vortex modes.

3.9. OAM

Having derived expressions for the AM density j̄ and the SAM
density s̄, we consider the difference (̄j − s̄) as representing
OAM density ℓ̄ [25, 27]. Thus in our case the OAM density
components are obtainable by subtracting the SAM density
components, equations (34) and (36), from the AM density
components, equations (47) and (49). We have

ℓ̄= j̄− s̄. (56)

Substituting for the transverse (ϕ̂) and the longitudinal (̂z)
components of the density vectors j̄ and s̄ we obtain

ℓ̄=

(

ϵ0c
2kz

2ω

){

k2zρF̃
2 −

mF̃2

ρ
−F̃ ′F̃

}

ϕ̂+ cosΘP

(

kzϵ0c
2

2ω

)

×
{

mF̃2 + ρF̃F̃ ′ + F̃2
}

ẑ, (57)

and we note the two separate OAM density components,
namely the azimuthal component and the longitudinal one,
both of which are seen to depend on the choice of m, but,
in addition, the longitudinal component depends on Poincaré
angle ΘP. This means that for a given order m, the azimuthal
component is the same at every point of the unit Poincar’e
sphere, while the axial component varies with the angle ΘP

in the domain (0,π). For illustration, we display in figure 4
the variations of the OAM density components with the radial
coordinate (in units of w0).

3.10. OAM per unit length

The OAM per unit length is the space integral of the OAM
density components over a cross section of the mode. Clearly
the azimuthal component of the OAM component vanishes
due to the angular integration. The longitudinal component is

7
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then given by

L̄z = cosΘP

(

π kzϵ0c2

ω

)
ˆ ∞

0

{

mF̃2 + ρF̃F̃ ′ + F̃2
}

ρ dρ.

(58)

For a LG mode for which the amplitude function is given
by equation (21) the integrals involved in the evaluation of
equation (58) are detailed in appendix C. It is easy to see that
the integrals of the last two terms in equation (13) are IQ and
IP, which have the same magnitude, but opposite signs. These
terms now cancel identically and we obtain for the OAM dens-
ity per unit length

L̄z = mcosΘP

(PT

ωc

)

. (59)

Thus for m= 0 we have a Gaussian mode with zero OAM, so
that the total AM is entirely due to optical spin. For m ̸= 0 the
OAM increases with increasing m, with cosΘP spanning the
range (+1,−1) involving generally elliptical polarisations.

3.11. Optical helicity

A recently published brief account of the helicity of higher
order Poincaré modes appeared as a short communication by
the current authors [24]. That communication provided little
details of the procedure leading to the evaluations of the heli-
city density and its space integral as the helicity per unit length.
The formalism was also characterised by the use of cylindrical
polar coordinates to describe the fields. Only the results for
helicity density and helicity per unit length of the higher order
modes for which p= 0 were presented in [24]. However, we
feel that it is necessary to discuss here the details of the evalu-
ations specifically in Cartesian coordinates for the general case
of m⩾ 0 and p ̸= 0 as the evaluations are both intricate and
worthy of presentation using the Cartesian coordinate system
we have adopted throughout this paper. As we shall see the
results that emerge are more general and show that the inclu-
sion of the radial number p> 0 enhances the super-chirality,
but we shall also show that we recover the special case p= 0
discussed in [24].

The cycle-averaged optical helicity density and chirality
density are defined generally in equation (14). There are thus
contributions arising from the total electric field E= (E1 +
E2) and magnetic field B= (B1 +B2), so that

η̄ (r) =
c
ω2

χ̄

=−ϵ0c
2ω

ℑ
[

(E1 +E2)
∗ · (B1 +B2)

]

, (60)

where Ei and Bi, with i = 1,2 are as given in equations (10).
We focus on the helicity from which the chirality can be
determined using equation (60) and proceed to evaluate both
the helicity density and its space integral for a general higher
order optical vortex mode. The four terms arising from the
expansion of equation (60) are evaluated separately and now
require as a first step expressions for the x and y-derivatives

of F (1) and F (2) in polar coordinates which are displayed in
equations (15)–(18). It turns out that the sum E∗

1 ·B2 +E∗
2 ·B1

does not contribute an imaginary part and only the two dir-
ect terms E∗

1 ·B1 +E∗
2 ·B2 contribute. As an example how the

evaluations proceed we consider the first dot product term. We
have using the first and second equations in equation (10)

[E1
∗ ·B1] = 2ick2z |F

(1)|2 + c

{

i

∣

∣

∣

∣

∂F (1)

∂x

∣

∣

∣

∣

2

+ i

∣

∣

∣

∣

∂F (1)

∂y

∣

∣

∣

∣

2

−

(

∂F (1)

∂y

)∗(
∂F (1)

∂x

)

+

(

∂F (1)

∂x

)∗(
∂F (1)

∂y

)}

.

(61)

The next steps involve substituting for the x- and y-derivatives
of F (1) using equations (15) and (16). This leads from
equation (61) to the result for the first term in the helicity
density

1
|UP|2

ℑ[E1
∗ ·B1] = 2ck2z |F̃ |2 + c

{

|F̃ ′|2 + m2

ρ2
|F̃ |2

}

+ c
2m
ρ
F̃ ′F̃ . (62)

The second term ℑ[E2
∗ ·B2] follows the same steps to

obtain for the dot product

1
|VP|2

ℑ[E2
∗ ·B2] =−

(

2ck2z |F̃ |2 + c

{

|F̃ ′|2 + m2

ρ2
|F̃ |2

})

− c
2m
ρ
F̃ ′F̃ . (63)

Thus we find

1
|UP|2

ℑ[E1
∗ ·B1] =− 1

|VP|2
ℑ[E2

∗ ·B2]. (64)

After some algebra, the results (62) and (63), together with
the use of equation (6), lead to the final expression for the heli-
city density

η̄ (r) =
ϵ0c2

4ω
cos(ΘP)

{

2k2z |F̃m,p|2 + |F̃ ′
m,p|2 +m2 |F̃m,p|2

ρ2

+2m
F̃ ′
m,pF̃m,p

ρ

}

. (65)

The first two terms of equation (65) are identifiable as the zero
order (m= 0) helicity density for a general elliptical polarisa-
tion. The rest of terms are them-dependent higher-order terms.

Recall that the Poincaré angleΘP spans the rangeΘP = 0 to
ΘP = π and within this range the Poincare function cos(ΘP)
varies continuously from +1.0 (ΘP = 0, which corresponds
to right-hand circular polarisation at the north pole), to -1.0;
ΘP = π (left-hand circular polarisation at the south pole).
Between the two pole points where 0<ΘP < πwe have ellipt-
ical polarisation. However when ΘP = π/2 and m= 1, we
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have radial and azimuthal polarisation and we see that the heli-
city density vanishes at all points on the equatorial circle in this
case and for all higher order m.

The general polarisation state covers a continuous set of
points on longitudes on the surface of the order m unit
Poincar’e sphere. In order to specify the helicity density we
only need the orderm, the angles (ΘP,ΦP) and the optical vor-
tex amplitude function F̃ . Note that the general helicity dens-
ity equation (65) shows no dependence on ΦP. This means,
for example, all points on a given latitude intersecting a given
longitude point have the same helicity density.

A special case is that for which m= 0 and ΘP = 0 or π,
for which all the m-dependent terms of equation (65) are zero.
The remaining expression corresponds to the helicity density
of circularly-polarised general optical vortex mode [28]. This
is because in this case the overall factor cos(ΘP) =±1 can be
identified as σ =±1, as for circular polarisation.

The helicity density at the general point ΘP,ΦP as given
by equation (65) and with m ̸= 0 the m-dependent terms come
into play for all values of cos(ΘP) in the range (+1.0 to −
1.0), corresponding to elliptically polarised modes (including
circular, linear, as well as radial and azimuthal). In particular,
for m⩾ 1, as ΘP increases from its value at the north pole,
the function cos(ΘP) vanishes at ΘP = π/2 for all points ΦP

on the equatorial circle. It is only for the first order m= 1 that
this vanishing density corresponds to pure radially-polarised
optical vortex modes.

We may now evaluate the super-chirality properties of
higher order for the special case involving LG modes. The
amplitude function for topological order m, radial number p
and waist w0 is given by equation (21). The results are shown
in figure 5 in which the helicity density variations are shown
for different topological order m. Figure 5 displays the heli-
city density in this special case with topological order val-
ues m= 0,1,25,50,100 and 150 for ΘP = 0. It is clear from
figure 5 that for m= 0 and m= 1 the helicity density is max-
imum on axis ρ= 0 and that the casem= 1 is more than double
that for m= 0, which makes the case m= 1 super-chiral. The
m= 1 helicity density variation contrasts with the casesm⩾ 2
in which the helicity density vanishes at ρ= 0 and the maxima
occur off-axis. Form⩾ 2 the density is initially marginally lar-
ger than the case m= 0. It is concentrated off-axis ρ> 0 and it
initially decreases with increasing m, but then increases with
increasing m.

In figure 6 we focus on the helicity density variations of
the lowest orders m= 0 and m= 1 and the p values p= 0 and
p= 1 using the same parameters as in figure 5. We see that the
maximum of the first orderm= 1,p= 0, as in figure 5 exceeds
that of m= 0,p= 0. However, the case m= 1;p= 1 shows a
much higher value of the helicity density at ρ= 0 as a main
feature of this mode. This observation confirms that this mode
behaves like a Gaussian, as form= 0, and is indicative of spin-
to-orbit conversion such that σ+m= 0. It follows that since
we havem= 1, we must have σ =−1 corresponding to one of
the components forming the Poincaré polarisation ϵm=1,p.This
is consistent with our earlier comment following equation (55)
about the appearance of (m− 1) in the phase functions and the

Figure 5. Variations with the radial coordinate ρ in units of w0 of
the helicity density, equation (65), due to focused Poincare modes of
orders m= 0,1,25,50,100 and 150 with p= 0 and w0 = 0.5λ. Each
of these modes lies on the longitude (ΘP,ΦP = 0), so that the
values at a given point on this longitude should be multiplied by
cos(ΘP). Note that values on each curve are given relative to the
maximum of the Gaussian helicity density (m= 0,p= 0; blue solid
curve) which is set to the value of 1.0. Superchirality for a given
curve is said to occur when the helicity density at a given radial
position exceeds 1.0.

form of axial AM component J̄z. When we consider a larger
w0, as in figure 7 where w0 = λ, we find that the on-axis heli-
city density for the case p= 0; m= 1 is lower than that for the
case p= 0; m= 0, in contrast with the corresponding case in
figure 6. This is because the p= 0;m= 1 case is due to the lon-
gitudinal field components becoming weaker when the beam
width is larger. However, the enhanced on-axis helicity densit-
ies in the cases p= 1;m= 0 and p= 1;m= 1 are evidence of
p-dependent and m-dependent contributions arising from the
longitudinal components as radial and azimuthal gradients of
the transverse fields, respectively.

3.12. Integrated helicity

We can evaluate the integral of the helicity density in
equation (65) over the x− y plane. First we note that the radial
integral of all terms in the form F̃ ′F̃

ρ are identically zero for all

mode functions which satisfy F̃{m}(0) = 0= F̃{m}(∞). The
integrals needed to evaluate the helicity density per unit length
are given in appendix C for the special case of LG mode for
which amplitude function is given by equation (21).

We are finally led to the helicity per unit length at the focal
plane as

C̄m,p = L0 cos(ΘP)

(

1+
2p+m+ 1

k2zw
2
0

)

, (66)

where, as pointed out above, L0 = PT/(ωc) is a constant
for a fixed power PT and we have substituted for A0 using
equation (88). The physical interpretation of the two terms
within the brackets is that the first term accounts for the heli-
city due to the transverse fields which are formed as a super-
position of two opposite circularly polarised vortex modes.
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Figure 6. Variations with the radial coordinate ρ in units of w0 of
the helicity density, equation (65), due to focused Poincaré modes
for which m= 0,1 and p= 0,1 with w0 = 0.5λ. The modes lie on
the longitude (ΘP,ΦP = 0), so that the values at any other given
point on this longitude should be as shown, but multiplied by
cos(ΘP). Note that values on each curve are given relative to the
maximum of the Gaussian helicity density (m= 0,p= 0; blue solid
curve) which is set to the value of 1.0. Superchirality for a given
curve is said to occur when the helicity density at a given radial
position exceeds 1.0.

Figure 7. As in figure 6, but with a larger beam width at focus
w0 = λ. Note the general reduction in all cases of the helicity
density due to this. But the peak helicity density for the case of
m= 1; p= 1 still exceeds that of our reference case (m= 0; p= 0),
even for this larger beam width. See the main text for further
remarks on this figure.

The second term accounts for an additional helicity due to
the longitudinal field components which arise from the non-
zero gradient of the transverse field components in the same
manner in which the Gouy phase arises ([29]) as appears in
equation (20) where we have the same (2p+ |m|+ 1) factor.
Note that although the factor 1/k2zw

2
0 in equation (66) is typic-

ally small for w2
0 ≫ 1/k2z , the higher order helicity for which

m≫ 1 and/or p⩾ 1 would ensure super-chirality for relatively
large w0.

A homogeneous chiral medium is characterised by a chiral-
ity parameter κ which enters its constitutive relations linking
the electric displacement field D and the magnetic field B to

the fields E and H

D= ϵrϵ0E+ i
κ

c
H; B= µrµ0H− i

κ

c
E (67)

The chirality parameter κ is related to the dipolar magne-
toelctric polarisability of the medium. The helicity density of
vortex light is a useful probe for distinguishing between a
chiral molecule and its chiral counterpart [22]. Clearly, the lar-
ger the local helicity density value (exceeding the correspond-
ing zero-order value) the better is the experimental demonstra-
tion of the differences between molecular chiral counterparts.

4. Summary

The main mission of this paper has been to determine the
intrinsic properties of Poincaré higher order modes. We have
pointed out the significance of these modes for the processes
of optical trapping of atoms and small particles and also in
the manipulation of chiral matter and in providing improved
encoding schemes for larger bandwidth optical quantum com-
munications. Here their intrinsic properties, as we emphas-
ised, have previously neither been considered, nor their val-
ues determined. We have argued that our approach towards
determining the intrinsic properties is most essential because
it takes into account the participation of the axial compon-
ents of the twisted light fields of the Poincaré modes. We have
shown that proper determinations of their AM, both spin and
orbital, their helicity and the chirality require the inclusion of
the longitudinal field components. We have predicted signific-
ant enhancements of the values of the intrinsic properties of
these modes when compared with those due to the zero order
optical modes.

Our first finding in this paper consists of determining
the spatial distributions of the SAM density components,
both transverse and longitudinal of the higher order modes.
However on integrating the density components, we only find
a non-zero longitudinal component which is independent of m
. This means that all higher order modes have the same SAM
which depends only on the Poincare angle ΘP. The factor
cos(ΘP) takes the values ±1 at ΘP = 0,π as for circularly-
polarised modes and is zero for ΘP = π/2, as for m= 1 radi-
ally and azimuthally-polarisedmodes. Other values ofΘP con-
cern elliptically-polarised modes.

Our second finding concerns the AM density, which for
paraxial light must be the sum of the SAM density and the
OAM density. We obtained the OAM density by subtracting
the SAM density from the AM density. We then evaluated
the space integrals of both the AM and the OAM and found
that they include new terms dependent on the order m and on
cos(ΘP). However, these expressions reduce to the known zero
order and first order results for any point on the surface of the
respective order Poincaré sphere.

Finally, we tackled the helicity and chirality of these higher
order vortex modes, obtaining a general expression for the
helicity density and discussed helicity for the relevant spe-
cial lower order cases. In particular, for points (π/2,ΦP) on
the equatorial circle, the helicity (and so also chirality) is
always zero, as for pure radially and azimuthally-polarised
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modes. The case m= 1,p= 1 displays the highest helicity
density which is at least double the m= 0 helicity density.
This means that this mode exhibits super-chirality since it is
enhanced relative to the helicity of an ordinary (order m= 0)
circularly-polarised mode. For all other points on the surface
of the Poincaré sphere the variations of the helicity density
display an initial decrease with increasing m followed by an
increase. We have also shown that a higher order m LG mode
for which m= 1,p= 1 is a strongly super-chiral vortex beam
which is dominated by the vortex core at ρ= 0. We have found
that other higher order LG modes for whichm> 1,p> 0 have
off-axis maximum helicity which is also super-chiral. These
results strongly indicate the existence of a highly desirable
super-chirality property of the higher order modes which, we
suggest, is now ripe for direct experimental investigation. An
example of possible superchirality experiments would involve
modifying the current dichroic absorption experiments which
use circularly-polarised beams by substituting those beams
with the higher order Poincare’ beams.

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Appendix A. Derivation of fields

Each of the two component Laguerre–Gaussian vortex beams
1 and 2 forming the higher order Poincaré modes is char-
acterised by an axial diffraction length d= kw2

0 ≡ 2zR [30].
We focus on vortex modes for which w0 < d or equivalently
kw0 > 1. Lax et al [30] have shown that in the expansion in
powers of 1/kw0 the electric and magnetic fields have trans-
verse components as well as a longitudinal component [25,
31]. These electric and magnetic fields are derivable from
the transverse vector potential A1,2. The magnetic field vec-
tor follows directly as B1,2 =∇×A1,2. The electric field
components E1,2 are obtainable using the Maxwell equation
involving ∇×B1,2 =−∂E1,2/c2∂t. Here it suffices to illus-
trate the above procedure by the derivation of B1 and E1 from
A1. We have from equations (8) and (9). We have

A1 = (x̂− îy)F (1)
m,p (r)e

ikzz (68)

Evaluating the components of ∇×A1 we obtain

[∇×A1]x =−∂A1,y

∂z
=−kzF (1)

m,p (r)e
ikzz (69)

[∇×A1]y =
∂A1,x

∂z
= ikzF (1)

m,p (r)e
ikzz (70)

The z-component follows in a similar way. We have

[∇×A1]z =
∂A1,y

∂x
− ∂A1,x

∂y
=−

(

i
∂F (1)

∂x
+

∂F (1)

∂y

)

eikzz

(71)

These components combine to give

B1 = ikz (̂y+ ix̂)F (1)eikzz− ẑ
(

i
∂F (1)

∂x
+

∂F (1)

∂y

)

eikzz (72)

which is the same as the first equation in equation (10).
Having derived themagnetic fieldB1, we now use theMaxwell
equation

∇×B1 =
1
c2

∂E1

∂t
(73)

to derive the electric field vector. The x-component is

E1,x =
ic
kz
[∇×B1]x =−

(

ic
kz

)

∂B1,y

∂z
= cB1,y (74)

where we have discarded the term −∂B1,z/∂y as it would
involve second order field derivatives and we are retaining
terms only to first order [31]. Similarly we have for the y-
component

E1,y =
ic
kz
[∇×B1]y =

(

ic
kz

)

∂B1,x

∂z
=−cB1,x (75)

Finally, we derive the z-component. We have

E1,z =
ic
kz
[∇×B1]z =

(

ic
kz

)[

∂B1,y

∂x
− ∂B1,x

∂y

]

(76)

which is

E1,z =−c
{

∂F (1)

∂x
− i

∂F (1)

∂y

}

eikzz (77)

Collecting terms we get

E1 = ickz (x̂− îy)F (1)eikzz− ẑc
{

∂F (1)

∂x
− i

∂F (1)

∂y

}

eikzz

(78)

which coincides with the second equation in equation (10).
The derivations of B2 and E2 follow the same steps that
have led us to B1 and E1, and so are not displayed
here.

Appendix B. Normalisation

The higher order vortex mode normalisation is related to the
applied powerPT evaluated as the space integral over the beam
cross-section of the z-component of the Poynting vector. We
have

PT =
1

2µ0

ˆ 2π

0
dϕ
ˆ ∞

0
|
{

(E1 +E2)
∗ × (B1 +B2)

}

z
|ρdρ.

(79)

There are four terms, two direct and twomixed terms, but once
again, we find that the mixed terms cancel. Consider first the
mixed terms. We have

11
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P12z = [E∗
1 ×B2]z

= E∗
1xB2y−E∗

1yB2x

= U∗
PVP {(−ickz)(ik)− (ckz)(kz)}F̃2

= 0. (80)

Similarly, we have

P21z = [E∗
2 ×B1]z

= E∗
2xB1y−E∗

2yB1x

= U∗
PVP {(−ickz)(ikz)− (−ckz)(−kz)}F̃2

= 0. (81)

Also the direct terms are as follows

P11z = [E∗
1 ×B1]z

= E∗
1xB1y−E∗

1yB1x

= |UP|2 {(−ickz)(ikz)+ (ckz)(kz)}F̃2

= 2ck2z F̃2|UP|2, (82)

and

P22z = [E∗
2 ×B2]z

= E∗
1xB1y−E∗

1yB1x

= |VP|2 {(−ickz)(ikz)+ (ckz)(kz)}F̃2

= 2ck2z F̃2|VP|2. (83)

Collecting terms, we find, using the last identity in
equation (6)
{

(E1 +E2)
∗ × (B1 +B2)

}

z
= 2ck2z F̃2|

(

|UP|2 + |VP|2
)

= ck2z F̃2. (84)

Then equation (79) yields

PT =
π ck2z
µ0

IP, (85)

where

IP =
ˆ ∞

0
F̃2ρ dρ, (86)

so we can write

IP =
µ0PT

π ck2z
. (87)

This result applies to any optical vortex mode character-
ised by an amplitude function F̃ . The integral IP is evaluated
in appendix C for the special case of a vector mode involving
Laguerre-Gaussians and so we can now evaluate the normal-
isation constant A0 using equations (87) and (90). We then
have

A2
0 =

4µ0PT

π ck2zw
2
0

. (88)

Appendix C. Four integrals

There are four integrals that require evaluation for the special
case of a Laguerre–Gaussian mode for which F̃ is given by
equation (21). These are

IP =
ˆ ∞

0
F̃2ρ dρ, (89)

IQ =

ˆ ∞

0
ρ2F̃ ′F̃ dρ,

IR =
ˆ ∞

0

1
ρ
F̃2dρ,

IS =
ˆ ∞

0
|F̃ ′|2ρ dρ.

Substituting for F̃ from equation (21) and using the variable
x= 2ρ2/w2

0 we have for IP

IP =A2
0
w2
0

4
(p+ |m|)!

p!

ˆ ∞

0
e−xx|m|

[

L|m|p (x)
]2
dx=

A2
0w

2
0

4
,

(90)

where the x-integral is a standard integral of the associated
Laguerre-functions.

Consider next the evaluation of IQ. We have on substituting
for F̃ from equation (21) and using the variable x= 2ρ2/w2

0

IQ =
w2
0

2

ˆ ∞

0
xF̃ (x) F̃ ′ (x)dx, (91)

where

F̃ (x) =A2
0

√

p!
(p+ |m|)!x

|m/2|e−x/2L|m|p (x) . (92)

Integrating by parts in equation (91) we have

IQ =
w2
0

2

ˆ ∞

0

x
2

(

dF̃2 (x)
dx

)

dx

=
w2
0

4

{

xF̃ (x)2
}∞

0
− w2

0

4

ˆ ∞

0
F̃2 (x)dx. (93)

The first term yields zero at both limits and IQ is given by the
second term. On substituting for F̃(x) using equation (92), we
have

IQ =−w2
0

4
A2

0
p!

(p+ |m|)!

ˆ ∞

0
x|m|e−x

[

L|m|p (x)
]2
dx

=−w2
0

4
A2

0 =−IP. (94)

Next we consider IR. Substituting for F̃ from equation (21)
and using the variable x= 2ρ2/w2

0 we have for IR

12
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IR =
ˆ ∞

0

1
ρ
F̃2dρ

=
p!

2(p+ |m|)!

ˆ ∞

0
x|m|−1e−x

[

L|m|p (x)
]2
dx

=A2
0

1
2|m| . (95)

Finally we consider IS. On substituting for the first derivat-
ive F̃ ′, this integral splits into a number of terms which are
then evaluated separately. There are cancellations between the
integrals of those terms and the result turns out to be

IS =
ˆ ∞

0
F̃ ′2ρdρ=

2p+ 1
2

A2
0. (96)
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