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Abstract

Energy systems require radical changes due to the conflicting needs of combating climate 
change and meeting rising energy demands. These revolutionary decentralization, decar-
bonization, and digitalization techniques have ushered in a new global energy paradigm. 
Waves of disruption have been felt across the electricity industry as the digitalization jour-
ney in this sector has converged with advances in artificial intelligence (AI). However, there 
are risks involved. As AI becomes more established, new security threats have emerged. 
Among the most important is the cyber-physical protection of critical infrastructure, such 
as the power grid. This article focuses on dueling AI algorithms designed to investigate the 
trustworthiness of power systems’ cyber-physical security under various scenarios using 
the phasor measurement units (PMU) use case. Particularly in PMU operations, the focus 
is on areas that manage sensitive data vital to power system operators’ activities. The initial 
stage deals with anomaly detection applied to energy systems and PMUs, while the sub-
sequent stage examines adversarial attacks targeting AI models. At this stage, evaluations 
of the Madry attack, basic iterative method (BIM), momentum iterative method (MIM), 
and projected gradient descend (PGD) are carried out, which are all powerful adversarial 
techniques that may compromise anomaly detection methods. The final stage addresses 
mitigation methods for AI-based cyberattacks. All these three stages represent various uses 
of AI and constitute the dueling AI algorithm convention that is conceptualised and dem-
onstrated in this work. According to the findings of this study, it is essential to investigate 
the trade-off between the accuracy of AI-based anomaly detection models and their digi-
tal immutability against potential cyberphysical attacks in terms of trustworthiness for the 
critical infrastructure under consideration.

1 Introduction

Modern power systems are evolving at a pace like never before. This significant transfor-
mation is primarily driven by five key elements, commonly referred to as the ‘5 Ds’ of 
energy: Deregulation, Decentralization, Decarbonization, Digitalization, and Democrati-
zation. Among these, Decarbonization and Digitalization are the most influential trends 
shaping the future of our power grids (Cali et  al. 2021). Decarbonization is the process 
of decreasing the amount of greenhouse gas emissions generated by the burning of fossil 
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fuels. Due to climate change and rising energy demand, the energy industry has faced 
unprecedented challenges in recent years. Energy production is a major source of green-
house gas emissions, hence it is essential for reducing the consequences of climate change. 
In order to attain net-zero emissions by 2050, the European Union (EU) has set aggressive 
goals for lowering greenhouse gas emissions by switching to renewable energy sources 
(RES) (https:// www. ipcc. ch/ sr15/ chapt er/ spm/). Additionally, it entails promoting energy 
efficiency and advancing technology for the collection and storage of carbon dioxide. The 
primary objective of decarbonization is to establish a sustainable and ecologically sound 
energy system. Nevertheless, it is crucial to acknowledge that decarbonization is a multi-
faceted procedure that requires substantial transformations in energy generation, infrastruc-
ture, and consumption patterns. However, similar yet distinctly different changes have been 
occurring within the energy industry, starting from the global Organization of Petroleum 
Exporting Countries (OPEC) crisis 40 years ago. Thus, in order to better protect the energy 
industry against sudden shocks, an evolution within the energy industry was deemed nec-
essary and has been realized via various policy changes initiated and led by governments 
across the globe. The deregulation of the energy industry led to alternative utility mod-
els compared to the traditionally integrated utility model (Karney 2019), which started the 
transformation from large and centralized energy systems towards smaller and distributed 
systems that collaborate with each other (Bauknecht et al. 2020). This policy change led to 
the decentralization of the energy systems, which resulted in higher RES deployment and 
utilization, in combination with various governmental policy schemes such as Feed-in-Tar-
iffs, which transformed the energy system into decarbonization. Furthermore digitalization 
is shaping rapidly decarbonized and decentralized power system. High utilization of dis-
tributed RES, such as residential-scale PV systems, resulted in new challenges while man-
aging the power system, such as regional imbalances, supply and demand issues within cer-
tain regions, etc. Thus, as a solution to these challenges, smart grid systems were proposed 
that utilize advanced Information and Communication Technologies (ICTs), the Internet of 
Things (IoT), and various Artificial Intelligence (AI) techniques. These changes working 
in tandem, led to the digitalization of the energy sector while also enabling new paradigm 
shifts such as Peer-to-Peer (P2P) energy trading and hence, resulting in the democratiza-
tion of the energy sector. With advancements in technology and the integration of intelli-
gent devices, the energy sector has witnessed a paradigm shift towards more efficient, reli-
able, and sustainable power systems. The digitalization of energy systems has emerged as a 
transformative force, revolutionizing how power is generated, transmitted, and consumed. 
As part of this digital transformation, the application of artificial intelligence (AI) in power 
systems has gained significant momentum, enabling enhanced decision-making, automa-
tion, and optimization within the power sector. Digitalization unveils both advantages and 
disadvantages in the power markets and systems. On one hand, it offers new opportunities 
to enhance effectiveness and efficiency of the power markets and systems. On the other 
hand, it also introduces additional risks to cyberphysical security, as it creates more vul-
nerable surfaces that potential attacks or interventions from outside actors can target. For 
instance, anomaly detection plays a crucial role in maintaining the integrity and stability 
of energy systems by identifying abnormal behaviors or events that deviate from expected 
patterns. These anomalies could range from equipment malfunctions and cyberattacks to 
natural disasters and human errors. Timely detection of such anomalies is vital for prevent-
ing disruptions, minimizing downtime, and ensuring the security and reliability of power 
systems. AI techniques, such as machine learning and deep learning, have been leveraged 
to address various challenges in power systems, including load forecasting, fault diagnosis, 
demand response, and anomaly detection.

https://www.ipcc.ch/sr15/chapter/spm/
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Traditional anomaly detection techniques, such as statistical methods, rule-based 
approaches, and expert systems, have been widely used in energy systems. These methods 
often rely on pre-defined thresholds or rules to flag abnormal events. However, they may 
struggle to capture complex, dynamic anomalies that evolve or exhibit subtle variations. 
With the advent of AI and machine learning, more sophisticated anomaly detection algo-
rithms have been developed and applied in energy systems. Machine learning techniques, 
including supervised, unsupervised, and semi-supervised learning, have shown promise in 
detecting anomalies by learning patterns and anomalies directly from data. Deep learning 
approaches, such as recurrent neural networks (RNNs) and convolutional neural networks 
(CNNs), have also gained traction in anomaly detection tasks, leveraging their ability to 
model complex temporal and spatial dependencies in energy system data. However, as the 
integration of AI algorithms becomes more prevalent in energy systems, the issue of cyber-
security has come to the forefront. The vulnerabilities associated with the digitalization 
of energy systems and the increasing reliance on AI present new challenges and risks that 
must be addressed effectively. The convergence of cybersecurity and AI introduces unique 
considerations and potential adversarial threats that can compromise the robustness and 
effectiveness of anomaly detection algorithms in energy systems.

Cybersecurity issues in energy systems arise from the interconnectedness of devices, 
the exposure to external networks, and the potential for malicious attacks targeting critical 
infrastructure. The power sector, being a prime target for cyber attacks due to its impor-
tance and interdependencies with other sectors, must proactively address these challenges 
to ensure the integrity and resilience of energy systems. The use of AI in power systems 
introduces additional concerns, as AI algorithms can be vulnerable to various types of 
attacks, including adversarial ones. Adversarial attacks against anomaly detection algo-
rithms in energy systems aim to deceive or manipulate AI models by exploiting their 
vulnerabilities. The objective is to introduce subtle changes to the input data, leading the 
anomaly detection algorithms to misclassify overlook potential anomalies, thereby under-
mining their reliability and effectiveness. These attacks can take various forms, such as 
data poisoning, evasion attacks, or adversarial examples. This article explores the imple-
mentation of dueling AI/ML algorithms designed to evaluate the trustworthiness of power 
systems’ cyber-physical security under various scenarios using the Phasor measurement 
units (PMU) as use case. Particularly in PMU operations, the focus is on areas that man-
age sensitive data vital to power system operators’ operations where we will delve into the 
vulnerabilities in anomaly detection algorithms when subjected to adversarial attacks. By 
understanding these issues, the transmission system operators (TSOs), as well as distribu-
tion system operators (DSOs), can develop robust countermeasures to enhance the resil-
ience of anomaly detection systems in energy systems, ensuring the security and reliability 
of power infrastructure in the face of emerging cybersecurity threats. Therefore, the con-
tributions of this article can be noted as: 1. Introduction of cyber-physical and social sys-
tems within the context of energy and cyberphysical security, 2. Methodological literature 
review, 3. Demonstration of AI-based anomaly detection algorithm for PMU use case as 
basis, 4. Evaluation of the implemented algorithms according to their robustness towards 
adversarial AI-based attacks as dueling algorithms for cyber attack and mitigation scenar-
ios, and 5. Evaluation of the degree of trustworthiness for the investigated power systems 
related use case and scenarios.

The remainder of this article is organized as follows: Sect. 2 provides an overview of 
the digitalization of energy systems and the role of AI in power systems and cybephysical 
security. Section 3 discusses the cyberphysical security issues that arise in energy systems 
and PMUs. Section 4 focuses on the cybersecurity challenges related to AI and its impact 
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on anomaly detection algorithms. Finally, Sect. 5 concludes the article by summarizing the 
essential findings and outlining potential directions for future research in securing energy 
systems against adversarial attacks.

2  Related work

This article focuses on dueling AI/ML algorithms crafted to conceptualize and demon-
strate the trustworthiness of cyber-physical system security under diverse scenarios using 
the PMU use case. The initial section deals with anomaly detection applied to energy sys-
tems and PMU-related tasks, while the subsequent section examines adversarial attacks 
targeting AI/ML models. The final section addresses mitigation methods for AI/ML-based 
cyberattacks. Notably, the authors highlight a gap in existing research, emphasizing that the 
impact of adversarial attacks on anomaly detection with PMUs still needs to be explored. 
Consequently, the authors deemed conducting a dedicated literature review on this subject 
imperative.

The modern power systems emerged from the more fundamental twentieth-century 
structure of one-way flow from centralized power generators to customers. The current 
grid complexity, which incorporates renewable energy sources, has enhanced, and poses 
challenges for conventional forecast and control techniques. ICT is a crucial aspect of the 
smart grid, enhancing power system reliability through intelligent infrastructure and vari-
ous technologies. However, its vulnerability to failures and cybersecurity issues can com-
promise this reliability (Jimada-Ojuolape and Teh 2020). AI/ML has already demonstrated 
its effectiveness in other technical domains. These technologies may be used to improve 
energy forecasting, enable predictive maintenance, implement AI-driven control, and boost 
cybersecurity in power systems (Cali et al. 2021). Moreover, some studies have explored 
additional dimensions of power systems reliability and cybersecurity, including dynamic 
thermal line rating within the framework of cyberphysical power systems (Lawal and Teh 
2023; Lawal et al. 2024). The use of AI/ML for anomaly detection in power systems has 
emerged as a rapidly evolving field of study. Researchers are using AI to identify anomalies 
in several industries associated with energy. These include many tasks, such as detecting 
anomalies in photovoltaic systems, batteries, PMUs, monitoring anomalies in energy use, 
studying power electronics, implementing advanced electric metering, and conducting pre-
dictive maintenance on power system assets, among other use cases (Amini et  al. 2022; 
Ogu et al. 2021; De Benedetti et al. 2018; Baker et al. 2023; Himeur et al. 2021; Zhang 
et  al. 2022; Gaggero et  al. 2020, 2022). Furthermore, Ahmed et  al. (2016) extensively 
examines the prominent anomaly detection techniques, including classification, statistical 
analysis, information theory, and clustering, that are used to discover network intrusions. It 
also explores the challenges encountered when working with datasets specifically created 
for this purpose.

Among the wide variety of AI-based anomaly detection for PMU-related use cases, this 
is one of the most promising and impactful domains since such anomalies can dramatically 
impact the entire power system. The high-frequency nature of PMU measurements made 
it possible to achieve real-time monitoring and management of electrical systems. PMUs 
send data to distributed substations across the system for system-wide monitoring and con-
trol, which is crucial for various power system applications such as state estimations and 
various anomaly detection (Veerakumar et al. 2023). However, applying stand-alone meth-
ods, such as the ones with fixed parameters for anomaly detection, takes great effort in the 
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tuning phase and does not yield the best results. Thus, ML applications on power system 
anomaly detection by utilizing time series PMU data have seen rapid research interest over 
the years (Halden et  al. 2022). One such research was performed by Zhou et  al. (2018) 
where the authors developed and compared various ML techniques for anomaly detection 
with PMU data. In total, four ML techniques (ensemble, regression, dbscan and chebyshev) 
were assessed for their anomaly detection performance in cooperation with various other 
factors such as scalability and computational power requirements. According to the results, 
the ensemble-based ML technique outperforms other performed techniques by a recall 
score of 0.92, whereas the lowest accuracy was observed during DBSCAN utilization, with 
a recall score of 0.86. Another research that tried to identify physical fault events such 
as voltage sag, sustained interruption, and under or over-voltage events was performed by 
Jamei et al. (2017). The authors utilized distributed Micro-PMU data in combination with 
a specially developed algorithm called the two-sided Cumulative Sum algorithm. The algo-
rithm was utilized in a simulation environment with the IEEE-34 bus bar test case. Accord-
ing to the results, the authors identified the fault events with a total accuracy score of 96%. 
Nevertheless, as modern-day power grids are cyber-physical and social systems, anomalies 
can happen at any of those levels.

Cyber-physical security of power systems as critical infrastructure shall be investigated 
by considering different contents other than anomaly detection in terms of fault detection. 
One such example was researched by Ford et al. (2014), which proposed an ANN-based 
intrusion detection system in order to predict the consumption behavior of grid customers 
better. The authors utilized assessed customers’ energy consumption behavior profiles in 
addition to hot encoded time data such as day of the week and weekend vs. weekdays in 
order to model the customers’ typical consumption behavior where the statistical analysis 
between the real usage vs. estimated usage can be used to identify deviations from sta-
ble power grid operation. The study by Valdes et  al. (2016) looked at energy measure-
ment samples and used self-organizing maps and adaptive resonance theory to find new 
information and patterns that were the same. In Ashrafuzzaman et al. (2018), stealthy false 
data insertion in a state estimation was detected using both supervised and unsupervised 
machine learning techniques where dimensionality reduction is accomplished using PCA, 
and a distributed SVM is utilized to distinguish between a stealth assault and a regular 
attack. Meanwhile, Hink et al. (2014), Badrinath Krishna et al. (2016), Badrinath Krishna 
et al. (2015), O’Toole et al. (2019) have extensively worked with anomaly detection con-
cerning electrical meter frauds. In Hink et al. (2014), researchers investigated an ARIMA 
forecasting tool and came up with a way to find strange patterns in data about how much 
electricity is used. Whereas, in Badrinath Krishna et  al. (2015) the authors proposed a 
framework based on KullbackLeibler Divergence (KLD) in order to detect the attack 
model. The researchers have identified five different classes of attacks and have success-
fully utilized KLD to identify frauds, such as multiple readings from the customer’s tariff 
data. Additionally, in Badrinath Krishna et  al. (2015), the authors proposed and utilized 
a Principal Component Analysis (PCA) to monitor consumption readings and detect any 
anomalies that might occur during the reading and billing process based on historical val-
ues. The work on O’Toole et al. (2019) was continued in Krishna et al. (2018) to deal with 
different signal processing-based approaches for finding irregularities in metering frauds 
involving Distributed Energy Resources (DERs) like wind and solar.

As the public, commercial, and academic attention is increasing toward novel use-
cases of ML across various domains, new vulnerabilities are also emerging. Some 
vulnerabilities can affect how the output of the utilized ML algorithm will change via 
carefully and maliciously designed input data. Such attacks are defined as adversarial 
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attacks and can have devastating consequences, especially within the sectors of health 
and energy. In Finlayson et al. (2019), the researchers evaluated a tumor detection algo-
rithm and its vulnerability to adversarial attacks. According to the results, after adver-
sarial attacks, the algorithm started to classify benign tumors as malignant, which can 
lead to healthcare fraud. According to the authors, it is also possible to carry out a simi-
lar but reverse attack type in which benign tumors can pass for malignant ones, endan-
gering the patient’s health. Moreover, research on adversarial attacks is also occurring 
within the commercial domain. Albeit on a large scale. Kurakin et  al. (2016) focused 
on adversarial training on large ML models, which are especially prone to adversarial 
attacks due to a large number of input parameters. According to the study results, adver-
sarial training as a mitigation mechanism provided added robustness toward adversarial 
attacks. However, it has also been noted that the adversarial training model does not 
help against iterative adversarial attacks. Yet, iteration-based adversarial attacks are 
less likely to propagate across ML networks. Thus, indirect robustness is inherently pro-
vided. Since Szegedy et al. first pointed out that Deep Neural Networks (DNNs) could 
be attacked by adversaries in 2014 Szegedy et al. (2014), a lot of research has been done 
to both come up with new ways to attack adversaries and make DNNs more resistant to 
attacks by making their models stronger (Huang et al. 2020; Ozgur Catak et al. 2020; 
Qayyum et al. 2020; Sadeghi et al. 2020). The vulnerabilities inherent in deep learning 
models pose formidable challenges in the face of adversarial attacks, rendering them 
intricate to safeguard effectively. One notable vulnerability is their heightened sensi-
tivity to minor alterations in input data, leading to unpredictable outcomes in the final 
output of the model. Traditionally, adversarial attack strategies predominantly center 
on perturbing input instances to maximize the model’s loss. Over the past few years, 
a plethora of adversarial attack algorithms have been proposed, reflecting a concerted 
effort to explore and exploit the vulnerabilities of deep learning models. These algo-
rithms seek to manipulate the model’s decision boundaries, thereby inducing misclas-
sifications or erroneous predictions.

Presently, research is deficient in a cohesive approach that combines several AI applica-
tions for the purpose of identifying anomalies and ensuring cyberphysical security. This 
gap is especially noticeable when there is a lack of methods that use AI algorithms to chal-
lenge and improve one another’s skills. Furthermore, there is a significant deficiency in the 
existing body of knowledge about the dependability of AI-driven models when applied to 
trusted critical infrastructure. There is a lack of research specifically examining the com-
parison between the ability to withstand cyber-physical attacks and the effectiveness of 
anomaly detection. This article aims to close this gap by using a variety of AI methods 
to systematically improve the digital immutability and trustworthiness of the investigated 
critical infrastructure. The objective is to enhance critical systems’ resilience, including 
digital and physical components, specifically emphasizing power infrastructure.

3  Background and interdisciplinary framework

This section serves to provide an appropriate theoretical foundation relevant to the pro-
posed approach. This involves designing the framework of the cyber-physical-social sys-
tem in connection to the proposed content. Moreover, it presents fundamental background 
about theoretical insights into cyber-physical security and the resilience of power systems.
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3.1  Cyber physical and social systems

In order to provide a holistic view of smart grid applications, The Smart Grid Archi-
tecture Model (SGAM) was developed under the mandate of M/490 (Bruinenberg et al. 
2012), and was particularly adopted, utilized by the European Union (EU) countries, 
industry, and academia (Uslar et  al. 2017). However, SGAM and similar architecture 
models with multiple layers did not consider the enablers for deep digitalization such as 
Artificial Intelligence (AI), Machine Learning (ML), and Distributed Ledger Technol-
ogy (DLT). Thus, a reference model with multiple layers that can provide a holistic view 
while considering mentioned enablers for deep digitalization was developed in order to 
provide insight towards next-generation smart grid systems (Cali et al. 2021) and visual-
ized in Fig. 1.

The layers in the CPSS model for power systems are:

• Energy policy and regulatory layer: Responsible for new policy development, supervi-
sion, and management of energy legislation and regulations. Policymakers propose and 
develop new policies to ensure the needs of the energy industry are satisfied while con-
sidering energy security and emissions. Transmission System Operators (TSOs), Dis-
tribution System Operators (DSOs), and other market participants are legally obligated 
to comply with energy policy and regulations.

• Business layer: There are many stakeholders in the modern power markets such as; util-
ities, TSOs, DSOs, trading companies, investors, prosumers, etc. This increased seg-
mentation and participation is due to deregulation and decentralization of the power 
markets and is expected to grow in the future due to The Green Digital Shift (Cali 
et al. 2021). The business layer is affected by the regulation policies, legislations, and 
economic metrics such as the Levelized Cost of Electricity (LCOE), Levelized Cost of 
Storage (LCOS), Net Present Value (NPV), Return on Investment (ROI), etc. There-

Fig. 1  CPSS model for power systems (Cali et al. 2021)
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fore, comprehensive benefit and cost analysis needs to be performed diligently for any 
investment decision.

• Power market and pricing layer: Responsible for managing the physical power grid 
operations, energy and financial transactions, settlements, and data exchange (commu-
nication) between the market participants. Due to the deregulation and decentraliza-
tion of the power industry, independent energy producers, non-utility producers, and 
prosumers were able to enter the power market to trade energy and provide ancillary 
services. This in return allowed the utilization of local energy markets and made the 
operation, and pricing of power markets an important research area.

• Control and optimization layer: The power industry adopted the Supervisory Control 
and Data Acquisition (SCADA) systems over the last two decades, and more recently 
began to utilize Phasor Measurement Units (PMUs) to monitor daily system operations, 
optimizations, and control of the power grid. Data analytic technologies such as AI and 
ML as well as DLT are being increasingly integrated into the existing power grid infra-
structure for better security of supply, control, optimization, and cyber-security.

• Information and data layer: Responsible for data processing, analysis, and cyber-secu-
rity aspects of the smart grids. Additionally, integration of DLT which supports smart 
contracts for various transactions and tokenizations, coupled with AI, ML is an active 
research area within this layer. The main focus of this article is mostly related to this 
layer.

• Communication layer: Responsible for the integration of communication protocols 
(Huang et al. 2021) across the different layers and one of the critical layers in modern 
smart grid systems due to cyber-security, reliability, scalability, and power consump-
tion.

• Power system layer: Responsible for day-to-day operations of the physical components 
of the power system such as generators, transmission and distribution infrastructures, 
consumers, prosumers, etc.

3.2  Phasor measurement units

PMUs can be defined as devices that are able to measure positive sequence voltages, cur-
rents and calculate the phase angles and the Rate of Change of Frequency (ROCOF) with 
high accuracy and sampling rate. The probability of a major blackout has driven the global 
power industry towards implementing Wide Area Measurement Systems (WAMS) where 
PMUs are an essential key player since their high sampling rate, specially designed high-
speed communication protocols, and time-synchronized measurements via Global Posi-
tioning System (GPS) offers to locate anomalies quickly and deploy preventive measures to 
avoid large faults (Phadke and Bi 2018; De La Ree et al. 2010).

Traditional measurement techniques such as Supervisory Control and Data Acquisition 
(SCADA), don’t allow high-speed measurements. Thus, the ability of PMUs to achieve 
high sampling rates offers an excellent opportunity for grid operators to get clearer and 
more accurate information regarding the state of the grid (Ren et al. 2018). An additional 
benefit of PMUs is their ability for synchrophasors, which are time-synchronized phasor 
measurements across different locations in the grid, which can be used for providing infor-
mation on both the supply and the demand side within the same timeframe. Therefore, 
allowing vital information to be displayed, and analyzed in a fast and accurate manner 
(Vicol et al. 2013).
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The high amount of data that the PMUs are able to collect is considered an advantage 
and a big resource for the system operators. However, accurate and efficient Machine 
Learning (ML) algorithms that are specifically built for handling such loads are needed 
in order to utilize the said resources in the best way possible (Garza and Mandal 2022).

Future power systems may benefit from the PMU’s capacity to synchronize each 
measurement across a vast region utilizing GPS. The phasors that have been estimated 
at a specific time stamp are referred to as synchrophasors. To ensure that the measure-
ments took place at the precise same moment, WAMS relies on synchronizing the time 
stamps over a wide area. However, because the anti-aliasing filter applies a phase delay 
to the input signal, it interferes with synchronization. Both the frequency of the signal 
and the filter’s properties affect this delay. Because the measurement is done after the 
filter, the PMU must make up for this delay for the synchronization to be accurate.

The connection to satellites in Earth’s orbit ensures that the internal clock of a GPS 
device is extremely accurate. The GPS transmits a signal that pulses once per second to 
transmit this data. A sampling clock that is phase-locked to the GPS signal is used to 
synchronize the PMUs. The PMU generates the time stamps at a frequency that is multi-
plied by the nominal frequency of the power system. The analog wave patterns for each 
phase are digitalized using an analog-to-digital converter. Each sample is synchronized 
with a location and a time stamp with an accuracy of one microsecond using the GPS 
receiver and phase-lock oscillator. The samples are sent to a receiver at up to 60 Hz 
after the phasors have been time-tagged and found. The block diagram of the steps taken 
by the PMU is illustrated in Fig. 2

3.3  Anomalies within the power system

The anomalies within the modern power systems can be categorized into two distinct 
variations, one being physical and the other cyber (Halden et  al. 2023), with various 
interactions between the two, as illustrated in Fig. 3.

Fig. 2  Block diagram of PMU, adapted from Vicol et al. (2013)
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3.3.1  Frequency events

Frequency-based anomalies are deemed to be critical phenomena in power systems that 
can have far-reaching implications regarding grid stability, reliability, and safety. Such 
anomalies can be characterized by a sudden and significant deviation from the nominal 
system frequency.

One of the most common reasons for frequency-based anomalies within the power sys-
tem domain is due to sudden loss of generation or load. When a large-scale power genera-
tor or a significant load is being disconnected from the grid, it can cause an immediate drop 
in the overall grid frequency. Alternatively, if a large-scale generator or load suddenly gets 
connected to the grid, this can cause a major increment within the grid frequency. Thus, 
rapid detection and mitigation of such problems are essential for grid stability.

Another type of frequency-based anomaly within the power grid can be caused by phys-
ical component faults, such as short circuits or equipment failures. For such events, protec-
tive relays and circuit breakers can be employed within the grid system in order to detect 
and isolate the fault region. Thus, preventing a cascading event throughout the grid.

In order to detect and analyze such anomalies, power system operators rely on PMU 
systems to continuously monitor the grid’s frequency and provide real-time data to vari-
ous algorithms and automated systems for quick action taking. However as mentioned, the 
high sampling rate of PMUs require advanced data handling capabilities due to rapid data 
gathering, as well as quick and efficient algorithm designs to handle the gathered data and 
perform the anomaly detection before a total system collapse. Therefore, ML techniques as 
well as statistical data analytics are increasingly employed to process, identify and predict 
such faults (Yang et al. 2018; Rafferty et al. 2018).

3.3.2  Sudden load change

Sudden load changes (SLCs) occur when loads are suddenly added or removed from the 
power system and can affect the quality of the delivered power. The introduction and 
removal of loads, in ideal cases, should be done while considering load management tech-
niques such as increasing generation during the startup of an industrial process (Styvak-
takis et  al. 2003). However, SLCs can also occur during anomalous situations such as a 
generator fault, which needs to be taken offline. Similarly, the same can happen if a circuit 
breaker is triggered in order to clear a fault and protect the system. Thus, various topologi-
cal errors and SLCs are closely intertwined and detection and handling of SLCs are impor-
tant for ensuring good Power Quality (PQ) (Pardha Saradhi et al. 2020).

Fig. 3  Example of physical faults and cyber anomalies within the power system
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Yang et al. (2018) considered sudden load changes and how high sampling frequency 
of the PMUs coupled with strict latency requirements can lead to additional problems for 
the system operators. Thus the authors proposed a fog computing framework that distrib-
utes the required computational load across different edge devices, hence increasing the 
anomaly detection times by reducing the network propagation rate. The researchers imple-
mented k-NN and Singular Spectrum Analysis (SSA) algorithms across the distributed 
edge devices simulated under the IEEE 16 machine 68 bus system and demonstrated that 
fog computing can reduce the data flow End-to-End (ETE) delay by 50%.

3.3.3  Transient events

As defined by Styvaktakis et  al. (2003, 1995), transient events can be defined as short 
events on voltage and current signals in a given power grid and can be categorized into 
three main sub-groups as:

• Events that happen over a long duration of time and adjust or change the voltage mag-
nitude of the fundamental frequency. Such events have the potential to create voltage 
sags or swells ranging from 50 ms to several seconds.

• Events that happen over a short duration of time and change the voltage magnitude. An 
example of such events can be fuse-cleared or self-extinguishing faults.

• Events that the fundamental voltage magnitude is not important, such as during a light-
ning strike.

The authors in Zhou et al. (2016) focus on detecting both impulsive and oscillatory tran-
sient events in a distribution network by utilizing micro PMUs. The authors utilized kPCA 
algorithm for binary decision-making combined with a pSVM to distinguish event types 
while considering both labeled and unlabeled data information. According to the results, 
the proposed model has an accuracy of over 93% and can be used to detect anomalies that 
can occur due to transient events in the distribution network.

Impulsive transient Impulsive transients are phenomena where a sudden change occurs 
in the steady state condition of voltage, current, or both and are generally associated with 
lightning strikes due to them being the most common cause. An example of an impulse 
transient event is illustrated in Fig. 4

Oscillatory transient Oscillatory transient events denote the rapid changing of the volt-
age or current values and can be classified according to their frequency rate, as demon-
strated in Table 1.

Table 1  Categorizing of transients (1995)

Categories Spectrum Typical duration Typical magnitude

Impulsive Nanosecond
Microsecond
Millisecond

5 ns rise
1 μ s rise
0.1 ms rise

< 50 ns
50 ns to 1 ms
> 1 ms

Oscillatory Low frequency
Medium frequency
High frequency

< 50 kHz
5–500 kHz
0.5–50 MHz

0.3–50 ms
20 μs
5 μs

0–4 pu
0–8 pu
0–4 pu
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The majority of the high-frequency oscillatory transient events are a result of some type 
of switching event happening in the grid, usually as a response to an impulsive transient 
event such as a lightning strike. Meanwhile, medium frequency oscillatory transients can 
be the result of back-to-back capacitor energization, which happens when a capacitor bank 
gets energized next to an already in-use capacitor bank.

Oscillatory transients with low-frequency values can have various causes, similarly to 
the cause of medium-frequency oscillatory events, some may be caused due to capacitor 
bank energization, which can induce transients between 300 and 900 Hz, while ferroreso-
nance and energization of transformers can result in transients below 300 Hz, making them 
contained mostly on sub-transmission and distribution system levels.

3.3.4  Topological errors

Line status error and substation configuration error are the two main types of power sys-
tem network topology faults that are caused by inaccurately reported circuit breaker status 
(Abur and Exposito 2004). The former refers to incorrectly excluding or including trans-
mission lines from the network model, while the latter refers to bus splitting or merging 
errors at the substation level. The summary of these errors can be seen in Fig. 5 illustrated 
within a 2-bus system.

In El Chamie et  al. (2018) the authors proposed an anomaly detection technique for 
power grids that builds machine learning models with physics-based features using data 
from PMUs. Instead of using the conventional steady-state anomaly detection algorithms, 
the resulting model finds anomalies based on their transient features. The placement of 
the anomaly detection algorithm on the distribution grid allows for quicker anomaly iden-
tification and better localization. The results of simulations were performed on the IEEE 
34-node feeder and demonstrate that the anomaly detection algorithm performed better to 
detect various classes of anomalies such as single line to ground faults.

Arefin et  al. (2022) focuses on detecting topological errors and islandings within the 
power network by utilizing PMU data. The researchers specifically utilized frequency and 
phase angle data coupled with time series anomaly detection techniques to identify and 
detect the islanding events. The results of the study can help to provide more symmetrical 

Fig. 4  Impulsive transient event occurring in a power system, adapted from
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and improved PMU data analytics and better islanding event detection for enhanced grid 
reliability.

3.3.5  Voltage variations

Voltage variation-based faults pose a critical concern within the power systems due to their 
potential for wide-scale disruption if left unchecked. Such faults denote a range of voltage 
deviation, which can include over-voltage and under-voltage conditions. Such anomalous 
conditions can occur due to various conditions, including:

• Transient faults: Such faults can be the result of natural phenomena, such as light-
ning strikes, or operational reasons such as sudden switching events, as well as cyber-
attacks. If not mitigated in a quick manner, these transient faults can propagate through 
the system and affect a widespread area,

• Physical equipment fault: Such faults occur when a physical component of the power 
grid, such as transformers and circuit breakers stops functioning properly, which can 
lead to over or under-voltage events. For example, a transformer fault can lead to a 
significant voltage drop within the surrounding area where the transformer is being 
located. Thus, impacting consumers and prosumers alike across the distribution grid,

• Sudden load changes: Rapid fluctuations within the load demand, such as during heavy 
motor startup or other heavy industrial processes can result in voltage sags or swells, 
which can be especially problematic for sensitive equipment, as in the case of health 
equipment within hospitals.

Voltage variation anomalies can have major consequences for both utilities and end-users, 
where equipment damage is one of the notable outcomes. Thus, requiring expensive repairs 
or total replacements. Additionally, within industrial-scale applications, voltage variation 
faults can disrupt production processes. Therefore, cause downtime and financial loss. In 
order to mitigate such faults, power system operators can utilize:

Fig. 5  Topological error illustration in 2 bus system, adapted from Choi and Xie (2017)
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• Voltage regulation: Automatic Voltage Regulators (AVRs) and tap-changing transform-
ers can be employed by the grid operators in order to maintain the voltage levels within 
an acceptable range. Thus, ensuring a stable and reliable power supply to the end cus-
tomers,

• Fault detection and isolation: Advanced monitoring systems and tools such as PMUs 
can detect voltage sags or swells within a quick timeframe and allow the grid operators 
to isolate the affected area in order to minimize disruption within the overall grid,

• Transient voltage suppressors: If the cause of the voltage variation is detected to be 
due to natural phenomena such as lightning strikes or equipment error, surge arresters, 
and other protective equipment can be deployed in order to reduce the transient voltage 
spikes.

• Load management: Load shedding and shifting is another tool the grid operators can 
utilize in order to manage the voltage fluctuations within the power system. Reducing 
the likelihood of voltage variations during peak demand periods.

3.3.6  Missing and incorrect data

It is inevitable that faults will occur seldomly while processing a large number of data 
points such as PMUs (Karpilow et  al. 2020). The term “Bad Data” can include missing 
data where a problem occurred during measurement recording or data that is unrepresenta-
tive of the real situation of the analyzed power system. There can be a number of reasons 
for bad data quality such as equipment failure (sensor errors), communication problems 
between the devices or a combination of both.

Since PMUs record and handle high volumes of data, a short burst of error during data 
transmission can result in high amounts of missing data points. However, since PMU 
measurements are time synchronized, the missing points can actively merge back into the 
dataset. This, however, will lead to problems for real-time SE or anomaly detection in the 
system, where continuous data feed is required.

An example of bad data can be seen in Fig. 6 where four different types of bad data are 
illustrated (Tinawi 2019). As can be seen, sensor malfunctions can lead to major oscilla-
tions or noise which is higher than the original. Additionally, the same malfunctions can 
result in measurement spikes either in the form of a single data point or over a time frame. 
Meanwhile, synchronization error measurement drifts, where over time the errors might 
add up and result in measurements being even less representative. Finally, malfunctioning 
measurements can lead to either high or low-magnitude offsets in the data.

In Amutha et  al. (2021), the authors used the density estimation technique, which is 
based on the Gaussian Mixture Model, to take into account all the features and identify 
anomalies in real-time streaming PMU multi-variate data in a smart grid. The distribution 

Fig. 6  Different types of bad data examples (Karpilow et al. 2020)
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of normal PMU data followed a GMM with five mixtures, and by using principal com-
ponent analysis, the pertinent features were chosen in six different combinations. The 
accuracy of classification increases with the number of features used, but it is impacted 
by random initialization, which makes it harder to determine whether a set of data is nor-
mal or anomalous. The system is able to detect anomalies within the selected window in 
the streaming PMU data with a low false positive rate and an F1 score of 1 for the chosen 
features, according to the performance evaluation of testing data with 13 blocks in online 
mode for 2, 3, 8, 10, 12 and 16 features. The suggested framework was tested with stream-
ing data in both online and offline modes, and the results of the experiments show that the 
proposed methodology can perform anomaly detection.

Deng et al. (2020) considered four types of anomalies that can happen during PMU data 
retrieval as erroneous patterns, high-frequency interferences, missing points, and random 
spikes in the data. A deep learning CNN model was employed for real-time anomaly detec-
tion in the Jiangsu power grid located in China and was able to perform anomaly detection 
with a continuous data stream, hence being computationally efficient for easy implementa-
tion. The proposed CNN model achieved 97.71% accuracy over the testing data and can 
effectively detect data-based anomalies within synchrophasor measurements.

3.3.7  Denial of service attacks

The FDI attacks are not intended to be detected, meanwhile for Denial of Service (DoS) 
or Distributed Denial of Service (DDoS) attacks will be immediately detected and start to 
affect the overall system. This type of attack is constructed to overload the utilized com-
munication network between data transmitting devices and prevent the normal data flow 
from occurring (Ramasubramanian et al. 2022). Thus, DoS or DDoS detection is not based 
on detecting subtle differences in the measured data, but on understanding that an attack is 
ongoing instead of basic communication error within the measurement devices.

3.3.8  False data injections

False data injection (FDI) attacks work by getting unauthorized access to the data stream 
and altering the retrieved measurements between the measuring and data collection points 
(Risbud et  al. 2019). FDI-type attacks can have massive effects on the stable operation 
of the power grid, as the measured data is constantly in use for SEs and production, load 
balancing. Thus, FDIs can lead to rapid destabilization of the whole system with possible 
catastrophic consequences.

In the case of microgrids, a common way to perform destabilization is via GPS spoof-
ing and PMU data alterations (Risbud et al. 2019), which is possible due to PMUs being 
time synchronized. The actual spoofing is done by achieving access to the data stream and 
sending intentionally fabricated measurements to the Phasor Data Concentrators (PDCs) to 
inject false data, change the timestamps of the measurements and lead to voltage/current 
magnitudes and angles to be unsynchronized (Jafarnia-Jahromi et al. 2012).

The authors in Pal and Sikdar (2014) perform a Gauss-Newton iterative method and 
obtain the transmission line parameters while also reducing the residuals. Prior to the 
analysis, the authors assumed the nominal values of the line parameters to be known. 
After performing a chi-square test based on the known and estimated line parameters 
which were modeled as a state estimation problem, possible anomaly detection scenar-
ios were performed. According to the results, the authors were able to detect anomalies 
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that can arise due to FDIs in an example topology and claim the same methodology can 
be scaled up to the whole power system with minimal needs.

Another FDI detection work was performed by Wang et al. (2018) by utilizing dis-
tributed edge devices and deep autoencoders which is a generative deep learning model. 
By feeding the newly acquired data into the deep autoencoder and computing the recon-
struction errors after training, the anomaly measurer may be used to evaluate the likeli-
hood that the FDI exists. The suggested framework can be used to detect FDI in the 
entire power system by merging the local results received from various anomaly meas-
urers and working with other information sources. Additionally, to prevent false posi-
tives, a delayed alert triggering algorithm was also implemented, which also benefits 
towards an improved noise immunity.

3.3.9  Man in the middle attacks

A Man in the Middle (MITM) attack is a cyberattack in which the attacker places one-
self between two parties who believe they are directly communicating with each other 
without any third-party involvement, and then secretly transmits or modifies their mes-
sages. Active eavesdropping is one type of MITM attack in which the attacker estab-
lishes separate connections with the victims and relays messages between them to give 
the impression that they are speaking directly to one another over a private connection 
when in reality the attacker is in control of the entire conversation (Sivasankari and 
Kamalakkannan 2022). All essential messages sent between the two victims must be 
intercepted by the attacker, who must then introduce fresh and malicious messages. In 
many cases, this is simple; for instance, a person within the communication range of 
an unsecured Wi-Fi access point could act as a man-in-the-middle attacker. The worm-
hole attack is another example of a sub-MITM assault in which the attacker penetrates 
the network and listens to network activity without changing any of the original com-
munications between the conversing parties. Meanwhile, Sinkhole Man in the Middle 
Attacks (SMITM) can crash the entire network connection by generating a large volume 
of network traffic via sending requests and routing information to nearby nodes while 
also broadcasting falsified information.

3.3.10  Data spoofing

Cyberattacks that use spoofing often take advantage of established connections by pre-
tending to be someone or something that the victim is familiar with. These messages 
may even be tailored to the victim in some situations, such as whale phishing attacks 
that use email spoofing or website spoofing, to persuade the victim that the contact is 
genuine. A user is more likely to be the victim of a spoofing attack if they are not aware 
that communications might be falsified.

A successful spoofing attempt could have catastrophic consequences. Sensitive per-
sonal or business data may be stolen, credentials may be gathered for use in fraud or 
future attacks, malware may be transmitted via malicious links or attachments, trust 
relationships may be used to gain unwanted network access, and access limits may be 
disregarded. They might even conduct a MITM or DoS/DDoS attack, or malicious code 
injections into the system.



Trustworthy cyber-physical power systems using AI: dueling…

1 3

Page 17 of 47 183

3.3.11  Package analysis

The power grid is a critical component of the modern society. Thus, rendering it a primary 
target for cyberattacks. Among the diverse array of available cyberattacks, package analy-
sis has emerged as a prominent concern within the power system domain (Tu et al. 2018).

Data package analysis-based attacks denote the interception of data packages that are 
being exchanged by various IoT equipment within the grid network. Such attacks can be 
utilized by malicious entities in order to gain valuable insight into the communication pat-
terns of the infrastructure, power grid vulnerabilities, and various other sensitive informa-
tion. Therefore, the objective of such attacks can be summarized as:

• Information gathering: Malicious actors can seek to gather information regarding the 
power system architecture, utilize communication protocols and procedures in order to 
leverage weaknesses within the power system,

• Vulnerability identification: Through the network analysis, attackers can try to pinpoint 
vulnerabilities within the power system and open a way for future and more critical 
attacks in order to disrupt the power grid,

• Cyber-physical attacks: Data package analysis can also serve as a precursor for cyber-
physical attacks. Where information regarding the physical components of the grid can 
be gathered for physical sabotage.

In order to mitigate the risk of data package analysis within the power grid, a multi-strat-
egy must be utilized. Such strategies include state-of-the-art encryption protocols that can 
mitigate eavesdropping and Intrusion Detection Systems (IDSs), enhancing the power sys-
tem’s capabilities by providing real-time intrusion alerts. However, it should be noted that 
as technology keeps evolving, the techniques that are being employed by malicious actors 
evolve in tandem. Therefore, power utilities as well as policy actors need to remain vigilant 
for emerging threats.

3.3.12  Model poisoning

As ML started to be used within the cyber defense industry, model poisoning attacks 
started to evolve together with the defense algorithms, much like in a game of cat and 
mouse. Hence, the first examples of model poisoning attacks against ML systems were 
focused on evading spam e-mail classifiers.

ML model poisoning attacks happen when the attacker can and will inject specially con-
structed bad data into the ML model training dataset, resulting in the model learning some-
thing it shouldn’t. As the attack is done to the training dataset, the most common result is 
that the models’ decision-making boundary shifts in such a way, in the case of anomaly 
detection in PMU systems, this will show itself as actual anomalies within the power sys-
tem being categorized as normal operation conditions or vice versa.

Model poisoning can happen in two ways, the ones that target the ML models’ availabil-
ity and the ones that target its integrity, which is also known as backdoor attacks. The ini-
tial model poisoning attacks were the first type, which aimed to inject specially crafted bad 
data into the training pool in order to shift the models’ boundaries, making it practically 
useless. The newer type of attack is the backdoor attacks, which are much more sophisti-
cated compared to the availability type attacks and aim to keep the ML model as intact as 
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possible with the exception of adding a backdoor to the system. In this context, the back-
door can be defined as a type of input of which the model owner is not aware, however, the 
attacker party can utilize it to get the ML system to do what they want, such as classifying 
faulty operations as operations under normal conditions, by using a special key attached to 
the input data, so the ML system can classify it automatically as normal operation due to 
installed backdoor.

In Roy et al. (2020), the researchers performed availability type model poisoning to a 
synthetic PMU dataset where three attack strategies were carried out as step attacks where 
the current values in poisoned data used for training purposes increase by an average value 
during the whole training time period, ramp attack where the current values used during 
the training phase increases up to a certain value and then decreases again to starting point 
and finally the mirroring type, where the snapshot of current time series dataset was used 
over and over during the training phase in order to falsify the model. According to the 
findings of the research, the harmonic to the arithmetic mean ratios of the power system is 
a stable and effective way to determine if there were any model poisoning, as even if the 
attacker has knowledge about the time series data used during the testing, the defenders can 
identify anomalies happening in the power system in real-time with a 91% accuracy.

Meanwhile, Bhattacharjee et  al. (2022) developed an anomaly detection algorithm 
based on the Ordinary Least Squares (OLS) regression model which focuses on microgrids 
and thus, utilized smart meter data instead of PMU dataset. According to the performed 
research, using L1 norm instead of L2 norm helps to protect the ML model against model 
poisoning, as the L1 norm has a gradient gradient-shattering effect which does not allow 
for the calculation of accurate gradients during the training phase. Hence, limits the attack-
ers’ ability for gradient shifting.

3.4  Artificial intelligence and machine learning

The use of AI/ML has gained significant attention in the domain of power systems as well 
as in several other industries. This section presents appropriate AI/ML techniques for the 
proposed approach.

3.4.1  Long short term memory

Long Short Term Memory (LSTM) networks replace hidden units within the Recurrent 
Neural Networks (RNNs) by memory cells which is constructed via three gates (Hochreiter 
and Schmidhuber 1997). In addition to the utilization of said gates, the LSTM networks 
also include a cell state vector, which can be denoted as Ct in order to keep track of the 
critical information within the network. The structure of an LSTM network is illustrated 
in Fig. 7. For each time step during the modeling, the information can either be added or 
removed via the input and forget gates, respectively. Meanwhile, the output gate is utilized 
for deciding which information to keep for the next hidden state and the output.

The initial step within an LSTM network is for the cell to decide which information 
from the previous hidden state (denoted as h(t−1) ) and from the input (denoted as xt ) is sur-
plus information and hence should be forgotten. This step is performed by multiplication 
of the concatenate of h(t−1) and xt via a weight matrix (denoted as U ). Additionally, similar 
to Multi Layer Perceptron (MLP) and RNNs, a bias (denoted as b

f
 ) is added via a sigmoid 

function, as mathematically shown in Eq. (1a).
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Meanwhile, Eq. (1b) helps to determine which information should be kept within the 
cell by updating the current cell state. In order to achieve this, a candidate vector (denoted 
as C̃ ) is utilized, as shown in Eq. (1c) via the help of a candidate activation function, 
namely tanh in order to keep the values within −1 and 1. In order to calculate the updated 
cell states, the unimportant parts need to be forgotten, which is achieved by multiplying the 
previous cell state with the forget vector. After the forget gate, the new information can be 
added by multiplying the input vector with the candidate vector, as shown mathematically 
in (1d). As the last step, in order to create a hidden state, an output vector is created as 
shown in Eq. (1e) where W denotes the output weights and b

o
 the output bias (Henriksen 

et al. 2022). 

3.4.2  Convolutional neural networks

Convolutional neural networks are particularly adept at recognizing patterns. As a result, 
CNN has proved to be extremely useful in image recognition due to the way it breaks the 
image down into its various components, making it simpler to recognize unique elements 
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Fig. 7  LSTM Cell (Henriksen et al. 2022)
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in an image. Different convolutional layers are used to accomplish this by looking for vari-
ous patterns.

For images, a 2-dimensional search grid is used. However, as time series data is com-
posed of different patterns transpiring within different frequencies, a 1-dimensional search 
grid can be utilized, as well as a classical 2-dimensional grid if there are multiple time steps 
existing simultaneously within the dataset (Goodfellow et al. 2016). The mathematical for-
mulation of a convolution can be seen in Eq. (2), which, as the name implies, is heavily 
utilized in CNNs. Unlike MLPs, CNNs do not need to be fully interconnected, hence can 
utilize sparse interactions, which aids in simplification of input data. Compared to MLPs, 
another advantage of CNN can be noted as the parameter sharing for future maps, which 
in combination with sparse interactions, helps to achieve lesser computational times and 
memory usage.

The convolutional layers can be divided into three main stages as: convolution, non-line-
arity and finally, pooling. The convolution step is responsible for performing multiple con-
volutions in order to transform the input into various sets of outputs, which is often called 
a feature map. For the general convolution equation, as stated in Eq. (2), f will denote the 
input tensor, whereas the g is the kernel, which is itself another tensor for feature extrac-
tion. In the second step, a non-linearity is added as the first convolutional step is linear. In 
the final step, the input is divided into various and equal-sized rectangles, where the size is 
equal to kernel size, which is then simplified. For the simplification process, max pooling 
is one of the most heavily used techniques (Goodfellow et al. 2016), which works by taking 
the maximum value in a given area.

3.4.3  Adversarial machine learning

Adversarial machine learning is a field that focuses on studying the vulnerabilities of AI 
models to intentional attacks and developing robust defenses against such attacks. Adver-
sarial attacks aim to exploit the weaknesses in AI algorithms by intentionally manipulating 
input data to mislead or deceive the models’ predictions.

In the context of anomaly detection algorithms in energy systems, adversarial attacks 
can undermine the effectiveness of these algorithms by introducing subtle perturbations or 
crafting malicious inputs. Adversarial attacks against anomaly detection can be categorized 
into two main types: evasion attacks and poisoning attacks.

Evasion attacks, also known as adversarial perturbations or adversarial examples, 
involve manipulating input data to make anomalies appear normal or to hide anomalies 
from detection. These attacks aim to evade the anomaly detection algorithm by perturb-
ing the data in ways that are invisible to human observers but can mislead the AI model’s 
predictions.

On the other hand, poisoning attacks involve injecting malicious or deceptive data dur-
ing the training phase of the anomaly detection algorithm. By poisoning the training data, 
adversaries can manipulate the AI model’s learned patterns and decision boundaries, lead-
ing to compromised performance during anomaly detection.

Adversarial machine learning techniques, such as adversarial training and defensive dis-
tillation, have been proposed to enhance the robustness of AI models against adversarial 
attacks. These techniques involve augmenting the training process with adversarial examples 

(2)(f ∗ g)(t) = ∫
inf

− inf

f (�)g(t − �)d�



Trustworthy cyber-physical power systems using AI: dueling…

1 3

Page 21 of 47 183

or introducing additional defenses to detect and mitigate adversarial manipulations in the input 
data.

Understanding the vulnerabilities introduced by adversarial attacks and developing 
effective defense mechanisms are essential for ensuring the reliability and security of 
anomaly detection algorithms in energy systems.

In the following sections, we will delve deeper into the cybersecurity challenges related 
to anomaly detection algorithms in energy systems and discuss the specific adversarial 
attacks and defense strategies relevant to this context.

Basic iterative method (BIM) The Basic Iterative Method (BIM) is a popular iterative 
attack technique in adversarial machine learning. It aims to generate adversarial examples 
by perturbing the input data in small steps while ensuring that the perturbations stay within 
a specified epsilon ( � ) boundary.

The BIM attack starts with an initial adversarial example x
(0) , which is typically a 

slightly perturbed version of the original input example x . Then, for a predefined number 
of iterations T, the algorithm computes the gradient of the loss function with respect to the 
input data and updates the adversarial example accordingly. The update rule for each itera-
tion t is given by:

Here, ∇
x
J(x(t), y

true
) represents the gradient of the loss function J with respect to the input 

data x(t) , where y
true

 is the true label of the original input example. The term � controls the 
step size of the perturbations, and clip

�
 is a function that clips the perturbed example to 

ensure that the perturbations remain within the � boundary.
The BIM attack iteratively adjusts the adversarial example to maximize the loss func-

tion, aiming to fool the target model into making incorrect predictions on the perturbed 
input.

Momentum iterative method (MIM) The momentum iterative method (MIM) is an exten-
sion of the BIM attack that introduces momentum to accelerate the convergence toward 
adversarial examples. The inclusion of momentum helps overcome the oscillations often 
observed in the BIM attack and can result in more effective adversarial perturbations.

In the MIM attack, the update rule for each iteration t is given by:

Here, r
(t) represents the momentum term, which accumulates the gradients of previous 

iterations.
Projected gradient descent (PGD) The Projected gradient descent (PGD) attack is an 

iterative optimization-based method to generate adversarial examples. It aims to find the 
perturbation that maximizes the loss function while ensuring that the perturbed example 
remains within a specified epsilon ( � ) boundary.

The PGD attack iteratively updates the adversarial example by taking small steps in the 
direction that maximizes the loss function while projecting the perturbed example back 
into the epsilon ball at each iteration to satisfy the constraint. The update rule for each 
iteration t is given by:
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Here, ∇
x
J(x(t), y

true
) represents the gradient of the loss function J with respect to the input 

data x(t) , and y
true

 is the true label of the original input example. The term � controls the 
step size of the perturbations, and clip

�
 is a function that clips the perturbed example to 

ensure that the perturbations remain within the � boundary.
The PGD attack performs multiple iterations of the update rule to iteratively refine the 

adversarial example until convergence or until a predefined number of iterations is reached.
Madry attack The Madry attack, also known as the Projected Gradient Descent with ran-

dom starts (PGD-RS), is a variant of the PGD attack designed to find solid, robust adversarial 
examples against various defences.

In the Madry attack, multiple random initialisations are used instead of starting the opti-
misation from a single initial adversarial example. Let i index the random initialization, and 
x
(0)

i
 represent the initial perturbed example for the i-th initialization. The attack then performs 

PGD iterations on each randomly initialised adversarial example. The update rule for each 
iteration t is given by:

Here, ∇
x
J(x

(t)

i
, y

true
) represents the gradient of the loss function J with respect to the input 

data x(t)
i

 , where y
true

 is the true label of the original input example. The term � controls the 
step size of the perturbations, and clip

�
 is a function that clips the perturbed example to 

ensure that the perturbations remain within the � boundary.
The Madry attack performs multiple iterations of the update rule for each random initiali-

sation i to iteratively refine the adversarial examples. The final adversarial example is then 
selected based on the highest loss obtained across all random initialisations, making it robust 
against various defenses and models.

3.5  Defensive distillation‑based mitigation method

The concept of knowledge distillation, initially introduced by Hinton et  al. (2015), offers a 
means to transfer the expertise of an extensive, densely connected neural network (referred to 
as the teacher) into a smaller, sparsely connected neural network (referred to as the student). 
This approach enabled the student network to achieve performance levels akin to those of the 
teacher network. The original application of knowledge distillation primarily revolved around 
solving classification problems, a framework often called the “teacher–student” model.

Building upon this foundation, Papernot et  al. (2016) extended the utility of knowledge 
distillation by applying it to adversarial machine learning defence. Their work showcased the 
technique’s capacity to enhance model robustness against negative examples. The key innova-
tion here was the introduction of knowledge distillation for the specific purpose of bolstering 
machine learning models against adversarial attacks.

Defensive distillation, as a machine learning framework, is primarily employed to fortify 
the resilience of models in classification tasks. The first step involves training the teacher 
model using a high-temperature parameter (T), which serves to soften the softmax probability 
outputs of the deep learning model. Mathematically, this process is defined as:

(7)x
(t+1)

i
= clip

�

(

x
(t)

i
+ � ⋅ sign(∇

x
J(x

(t)

i
, ytrue))

)

(8)psoftmax(z, T) =
ez∕T

∑n

i=1
ez(i)∕T
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In this equation, n corresponds to the number of labels, and z represents the output of the 
final layer of the deep learning model, where z = Wn ⋅ an−1

+ bn . Here, W
n
 signifies the 

weight matrix, and a
n−1

 denotes the activation of the last layer.
In the subsequent step, the student model is trained using the softmax probability out-

puts from the teacher model but with a lower temperature parameter. The objective func-
tion for this phase is defined as:

In this equation, N represents the number of training samples, yij stands for the training 
label, and zij corresponds to the logit. The objective function for training the teacher model 
can be defined as:

Deep learning approaches have demonstrated exceptional performance in various computer 
vision tasks, such as image classification, object detection, action recognition, scene seg-
mentation, and image generation. However, deep neural networks (DNNs) often require 
substantial training data, which may only sometimes be readily available for new tasks or 
domains. Several knowledge distillation methods have been proposed to train a smaller stu-
dent network to emulate the predictions of a more extensive and accurate teacher network 
to address this issue.

Distillation techniques have also found applications in intelligent systems, including 
knowledge-based and rule-based systems, where the goal is to reduce the system’s size and 
enhance its performance by improving the quality of the system’s knowledge. The differ-
ences between the teacher and student models can be a form of regularization, preventing 
overfitting. Algorithm 1 presents the pseudocode for the distillation process.

Algorithm 1  Pseudocode of distillation

(9)

Lstudent(T) =
1

N

N
�

i=1

n
�

j=1

yij ⋅ log psoftmax(zij, T)

=
1

N

N
�

i=1

n
�

j=1

yij ⋅ log
ezij∕T

∑n

i=1
ezij∕T

(10)Lteacher(T) = −
1

N

N
�

i=1

n
�

j=1

yij ⋅ log
ezij∕T

∑n

i=1
ezij∕T
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4  Methodology

The flowchart depicted in Fig. 8 is a high-level representation of the integrated methodol-
ogy designed to enhance the robustness of cyber-physical power systems against adver-
sarial AI threats. This study assumes that conventional cybersecurity mitigation methods 
are deployed as initial phase of the framework before more sophisticated AI-based cyber-
physical attacks are analyzed for the rest of the investigation. This section is dedicated to 
explaining the details of proposed methodology. The proposed approach was carefully 
designed as a multi-stage process to facilitate a thorough analysis and generate valuable 
insights, as well as to provide a transparent framework for readers to comprehend the pro-
cesses underlying the study.

4.1  Data collection

The dataset used in this study was collected from a power grid equipped with PMUs for 
real-time monitoring located in Norway. Due to confidentiality resasons some details of 
the dataset and position of the PMU cannot be given publicly. The PMUs provide high-fre-
quency voltage and current phasor measurements, enabling precise tracking of the power 
system dynamics of the Norwegian power grid where they are located. The dataset con-
sisted of historical PMU measurements spanning one year, including data from multiple 
substations and transmission lines within the grid.

The safeguarding of data and the maintenance of privacy are crucial factors that must 
be taken into account from the initial stages of any data-intensive and data-driven solu-
tion, such as the case being presented. Stringent measures were implemented to safeguard 
the security and privacy of power grid data, given its sensitive nature at also earlier stages 
of the operations like preprocessing steps. To ensure the integrity of the data, appropri-
ate measures were taken to maintain the cleanliness and isolation of the raw data, thereby 
mitigating the risk of any potential data contamination. The data handling and process-
ing operations shall be carried out within a secure environment, implementing stringent 

Fig. 8  The overview of the performed research methodology
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access controls and encryption protocols. To safeguard the confidentiality of the regional 
power grid, the identification of the substations and transmission lines is recommended to 
be anonymized in real operations.

It should be noted that this study adhered to ethical guidelines for data privacy and 
security. The PMU measurements used in the analysis were anonymized and aggregated to 
ensure the confidentiality of sensitive information. The research team obtained the neces-
sary permissions and approvals for data access and complied with all relevant data protec-
tion regulations.

4.2  Data visualization

In order to enhance the understanding of the utilized data, as well as to act as a guide for 
future preprocessing steps and increase the model performance and interoperability, a man-
ual data visualization was carried out. As a part of the data visualization, the NaN values as 
well as other possible data outliers were tried to be detected with the help of histograms in 
order to make future informed decisions. Moreover, the pre-feature selection step was car-
ried out by assessing the relevance and correlation of variables.

4.3  Data preprocessing

The process of data preprocessing is an essential stage in energy analysis and other AI-
based tasks. It involves transforming raw data into a machine-understandable format to be 
used as input for the AI models. Prior to commencing the data analysis procedure, it was 
imperative to perform comprehensive preprocessing on the gathered dataset. The initial 
stage of data processing encompassed a range of procedures with the objective of cleansing 
and converting unprocessed data into a structure that is amenable to systematic evaluation. 
The previously mentioned process played a pivotal role in guaranteeing the accuracy and 
reliability of any insights and conclusions derived from the data.

The process of data cleaning involves identifying and correcting errors, inconsistencies, 
and inaccuracies in a dataset to ensure its quality and reliability. The data was initially 
subjected to a screening process in order to identify and address any potential anomalies 
or errors. For example, any instances of missing values in the PMU measurements were 
identified and appropriately addressed. One potential approach to address missing values is 
through the utilization of imputation techniques, which involve the estimation and substitu-
tion of missing values using information from other pertinent data points. In addition, the 
presence of outliers was identified and subsequently dealt with. Outliers have the potential 
to indicate measurement errors or exceptional events, and if not appropriately addressed, 
they can have a substantial impact on the outcomes of the analysis.

Data transformation is a process in which raw data is converted into a more suitable 
format for analysis or presentation. This process involves manipulating. The PMU data 
that was gathered exhibited a time-series structure, necessitating the implementation of 
transformation procedures to render it amenable for analysis. This could include various 
operations, including resampling, normalizing, and smoothing. As an illustration, the high-
frequency data from the PMUs could be downsampled to a lower frequency, if deemed 
necessary for the analysis. Normalization is used as a means of standardizing measure-
ments to a uniform scale, a practice that holds particular significance when amalgamating 
data from various substations or other parts of regular operations.
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The process of feature extraction involves identifying and selecting relevant character-
istics or attributes from raw data. The preprocessed data is utilized to extract pertinent fea-
tures, which are subsequently subjected to further analysis. When dealing with PMU data, 
the process may entail the extraction of data pertaining to the amplitude and phase of volt-
age and current phasors, along with the computation of related quantities such as power 
and impedance.

Data partitioning refers to the process of dividing a large dataset into smaller, more 
manageable parts. This technique is commonly used in database management systems The 
data that shall undergo preprocessing steps is divided into separate datasets for training, 
validation, and testing purposes. The training dataset is utilized for the purpose of con-
structing the analytical models, while the validation dataset serves the purpose of fine-
tuning the models and mitigating the risk of overfitting. Lastly, the test dataset shall be 
employed to assess the performance of the final model.

High-quality data establishes the foundation of anomaly detection models. This study 
will look at PMU data from the Norwegian TSO, Statnett, and the Texas Synchrophasor 
Network (TSN). The data sets consist of a total of over 50 million data points. The PMUs 
measure voltage magnitude, angle, power flow, and frequency. This data must be processed 
for further model training, prediction and anomaly detection. Data preprocessing involves 
removing missing values, noise filtration, and data normalization.

4.4  Algorithm selection for anomaly detection models

In order to determine the model that works the best for the provided PMU data, a variety 
of models were developed and assessed based on their anomaly detection performances. 
Within the context of this study, four distinct models, namely: 1. LSTM, 2. Bi-LSTM, 
3. CNN and 4. C-LSTM were compared. It should be noted that Bi-LSTM as well as 
C-LSTM models are hybridized, meaning they consist of two consecutive LSTM and CNN 
with LSTM layers respectively.

LSTM-based models excel at capturing long-term temporal dependencies within the 
applied dataset. Thus, may lead to increased accuracies within the domain of PMU-based 
anomaly detection. One additional benefit of LSTM-based models can be denoted as their 
robustness towards the vanishing gradient problem (Noh 2021), further strengthening their 
temporal pattern recognition capabilities. However, it should be noted that LSTM-based 
models may struggle with spatial dependencies, which is a major limiting factor within the 
PMU datasets. Additionally, training LSTM-based models may require longer computa-
tional times and hence, increased computational requirements.

On the other hand of the spectrum, CNN-based models excel at capturing spatial pat-
terns in a given dataset. As the PMU datasets are both spatiotemporal, CNNs can offer 
increased benefits within the spatial domain. Additionally, compared to LSTM-based algo-
rithms, CNNs are more efficient, further decreasing the computational requirements. On 
the downsides of pure CNN-based algorithms, and their limited ability to capture temporal 
dependencies must be highlighted. Additionally, their increased sensitivity to variations in 
data shape and size, further requires careful hyper-parameter tuning.

Hybridization offers increased benefits by aiming to combine the strong sides of each 
algorithm. Thus, mitigating their individual downsides. Within the performed study, two 
hybrid models, C-LSTM and Bi-LSTM were also assessed. The C-LSTM model combines 
the individual strengths of both CNN and LSTM models. Thus, can capture spatiotemporal 
dependencies within the PMU datasets. However, the hybridization can lead to increased 
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computational capabilities during the training phase. Additionally, careful hyperparameter 
optimization is similar to pure CNN models. On the other hand, Bi-LSTM models can cap-
ture bi-directional temporal dependencies within the training data and thus, lead to a more 
comprehensive understanding of the sequential data. However, similar to C-LSTM, may 
need increased computational power during the training phase and may require a larger 
training dataset.

In summary, LSTMs excel at capturing temporal dependencies within the given datasets 
and CNNs excel at capturing spatial patterns. By amalgamating both models, a C-LSTM 
network may excel in both, whereas Bi-LSTM networks may capture bi-directional tempo-
ral dependencies better (Sharadga et al. 2020). It should be noted that within the performed 
study, a single comprehensive PMU dataset was utilized. Hence, the applied models were 
not trained with additional datasets. Thus, it was not possible to assess their individual per-
formances on various PMU datasets.

4.5  AI‑based adversarial noise attacks

The demonstrated experimental framework was designed to evaluate the robustness of four 
distinct deep-learning models. We subjected these models to several adversarial attack 
methods to rigorously assess their robustness. These included the BIM, Madry, MIM, and 
PGD. Each approach challenges the models in a unique way, simulating real-world adver-
sarial scenarios. BIM introduces small iterative perturbations to input data, Madry is an 
adversarial training-based method, MIM employs momentum for faster perturbation, and 
PGD computes the worst-case perturbation.

Performed experiments tested different EPS values, determining the level of adversarial 
perturbations. The range of epsilon values varied from 0.0 to 4.1, encompassing a wide 
range of adversarial intensities. We analysed how the models reacted to adversarial attacks, 
ranging from small changes to more significant distortions.

4.6  AI‑based cyberattack mitigation

Securing power systems against cyber threats is critical in safeguarding vital infrastructure, 
particularly power grids. Before delving into the transformative role of AI in augmenting 
cyber defenses, it is paramount to understand the foundational conventional cybersecu-
rity measures integral to fortifying power systems against cyber threats. Several crucial 
approaches play a pivotal role in enhancing the resilience of power systems.

Firewalls and intrusion detection systems (IDS) constitute the initial line of defense 
against cyber threats. Firewalls diligently monitor and regulate incoming and outgoing 
network traffic based on pre-established security rules. Complementing this, IDS actively 
surveil network or system activities, swiftly identifying malicious activities or policy viola-
tions. Detection of anomalies in network traffic triggers alarms, prompting further investi-
gation and response.

Encryption and implementing secure communication protocols, such as Secure Sockets 
Layer and Transport Layer Security (SSL/TLS), are instrumental in securing data during 
transmission. This is essential to guarantee the confidentiality and integrity of information, 
shielding it from potential eavesdropping and man-in-the-middle attacks. Even if inter-
cepted, the encrypted data remains indecipherable without the requisite decryption keys.



 U. Cali et al.

1 3

183 Page 28 of 47

Access control and authentication mechanisms are robust barriers against unauthorized 
access to critical systems. This involves meticulously defining user roles and permissions, 
ensuring only authorized personnel can access specific resources. Incorporating multi-fac-
tor authentication (MFA) adds a security layer by mandating users to verify their identity 
through multiple authentication methods using passwords, tokens, or biometrics.

Regular software updates and patch management are imperative to address vulnerabili-
ties cyber adversaries exploit. They consistently keep software and systems up-to-date, aid-
ing in closing security loopholes and maintaining the system’s resilience against evolving 
cyber threats. This applies to operating systems and to, network devices, and any software 
components integral to power system operations.

Preparedness for cyber incidents is as crucial as preventive measures. Establishing an 
incident response plan enables organizations to detect, respond to, and recover from cyber 
incidents effectively. Concurrently, regular cybersecurity training programs for personnel 
enhance their awareness of potential threats, equipping them with the knowledge to iden-
tify and respond to security incidents promptly.

Network segmentation emerges as a strategic defense mechanism by dividing a network 
into segments or zones. This containment strategy adds a defense layer, limiting potential 
threats within isolated areas. Even if an attacker gains access to one segment, network seg-
mentation prevents lateral movement, denying the impact of the intrusion.

Regularly backing up critical data and implementing robust disaster recovery plans 
include vital measures to ensure organizations can swiftly restore operations during a 
cyberattack. This proactive approach mitigates potential damage caused by data loss or 
system disruptions, reinforcing the resilience of power systems against cyber threats.

4.7  Algorithm training and testing

This section further specifies the steps taken during the training, optimization, and testing 
steps of the various AI models utilized within the context of the performed research.

4.7.1  Algorithm 1: LSTM training

The LSTM model was constructed through the following algorithm. As the first step, the 
architecture of the LSTM network was established, comprising two LSTM layers, each 
containing 64 units. This was followed by a dense layer equipped with a sigmoid activa-
tion function for binary classification. Secondly, crucial parameters such as the learning 
rate, batch size, and the desired number of training epochs were defined to facilitate the 
training process. Subsequently, the LSTM model’s parameters were initialized randomly to 
commence the training process. As the fourth step within the algorithm development, the 
training data was then iterated over for the specified number of epochs, where each itera-
tion involved the forward pass of the LSTM model to predict outcomes, and the calculation 
of the loss through binary cross-entropy computation.

Next, the backpropagation was executed upon loss calculation, which facilitated the 
adjustment of model parameters using the Adam optimizer in order to optimize the model’s 
predictive capacity. Thus, this iterative training process which encompasses steps four to 
six was repeated until the convergence was achieved, or the specified number of training 
epochs was reached. As a summary, the steps performed during the model training can be 
given as: 
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1. Initialize the LSTM network architecture with two LSTM layers, each consisting of 64 
units, followed by a dense layer with sigmoid activation for binary classification.

2. Set the learning rate, batch size, and number of epochs for training.
3. Initialize the LSTM model parameters randomly.
4. Iterate through the training data for the specified number of epochs.
5. Calculate the forward pass of the LSTM model and compute the loss using binary cross-

entropy.
6. Perform backpropagation to update the model parameters using the Adam optimizer.
7. Repeat steps 4–6 until convergence or the specified number of epochs is reached.
8. Evaluate the trained LSTM model on the testing set using the selected performance 

metrics.

Finally, the trained LSTM model was assessed using the testing portion of the dataset, 
where selected performance metrics were computed and evaluated.

As can be seen, steps four to six correspond to hyperparameter optimization. The indi-
vidual results of the parameters after the tuning process are illustrated within Table 2.

4.7.2  Algorithm 2: CNN training

For the training process of the utilized CNN model, the following steps were performed: 
Firstly, the CNN architecture was established which featured two convolutional layers 
where each layer was composed of 32 filters with dimensions of 3 × 3 . This was succeeded 
by max-pooling layers and a final dense layer which was intended for classification pur-
poses. Subsequently, key parameters such as the learning rate, batch size, and the desired 
number of training epochs were defined to facilitate the model’s training process.

Following this, the CNN model’s parameters were initialized randomly as a starting 
point for the training step. The training data was then iterated over for the specified number 
of epochs, encompassing forward passes of the CNN model to generate predictions and 
computations of loss via binary cross-entropy. With the loss computed, backpropagation 
was performed in order to enable the adjustment of the model’s parameters by utilizing the 
Adam optimizer, Therefore, enhancing the model’s predictive capabilities.

This iterative training process, which involved the steps four through six was then 
repeated until either the model was converged or the predefined number of training epochs 
was met. The results after this hyperparameter tuning can be found within Table  3. For 
ease of reproducibility, the summary of the training process can be denoted as: 

1. Define the CNN architecture with two convolutional layers, each consisting of 32 filters 
of size 3 × 3 , followed by max-pooling layers and a dense layer for classification.

2. Specify the learning rate, batch size, and number of epochs for training.
3. Initialize the CNN model parameters randomly.

Table 2  Results of 
hyperparameter tuning for the 
assessed LSTM algorithm

LSTM Model Parameters

Parameter Type Optimized Value

LSTM Hidden units 32

Dropout Dropout value 0.12

Dense Units 1
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4. Iterate through the training data for the specified number of epochs.
5. Perform a forward pass of the CNN model and compute the loss using binary cross-

entropy.
6. Utilize backpropagation to update the model parameters using the Adam optimizer.
7. Repeat steps 4–6 until convergence or the specified number of epochs is reached.
8. Evaluate the trained CNN model on the testing set using the selected performance 

metrics.

Finally, the trained CNN model was evaluated using the testing dataset, where its perfor-
mance was assessed based on chosen performance metrics.

4.7.3  Algorithm 3: C‑LSTM training

For the training purposes of the C-LSTM model, the subsequent procedure was employed: 
To begin with, the architecture of the model was defined, which encompassed the formula-
tion of a CNN with two layers, each comprising 32 filters sized at 3 × 3 . These were suc-
ceeded by max-pooling layers to extract key features from the data. Following the defini-
tion of the CNN architecture, the LSTM network was constructed which incorporated two 
LSTM layers, each containing 64 units. Later on, this was followed by a dense layer that 
utilized a sigmoid activation function for binary classification purposes.

As the next step, the essential hyperparameters such as the learning rate, batch size, 
and the desired number of training epochs were specified. Later on, both the CNN and 
LSTM models’ parameters were initialized randomly. The training portion of the dataset 
was then iterated through for the predetermined number of epochs. For each iteration, the 
forward pass of the CNN model was executed, and the loss was computed using binary 
cross-entropy. Subsequently, the forward pass of the LSTM model was performed and its 
loss was calculated in a similar manner.

In order to optimize both of the models which are working in tandem, backpropaga-
tion was employed, adjusting the parameters for both models through the use of the Adam 
optimizer. This iterative process, which encompasses the performed steps through four and 

Table 3  Results of 
hyperparameter tuning for the 
assessed CNN algorithm

CNN model parameters

Parameter Type Optimized value

Conv1D Filters
Kernel Size
Activation function

32
3
relu

Conv1D Filters
Kernel Size
Activation function

16
3
relu

Conv1D Filters
Kernel Size
Activation function

64
3
relu

Max Pooling Pool Size 2

Dense Units
Activation

50
relu

Dense Units 1
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eight was then repeated until either the convergence was achieved, or the specified number 
of training epochs were reached. Upon completion, the hybrid model was then evaluated 
using the testing portion of the dataset by employing the chosen performance metrics in 
order to see the resulting accuracies. As a summary and a guide for reproducibility, the 
mentioned steps can further be denoted as the following. Additionally, the results of hyper-
parameter optimization can be found in Table 4. 

 1. Define the CNN architecture with two layers, each consisting of 32 filters of size 3x3, 
followed by a max-pooling layer.

 2. Initialize the LSTM network architecture with two LSTM layers, each consisting of 
64 units, followed by a dense layer with sigmoid activation for binary classification.

 3. Specify the learning rate, batch size, and number of epochs for training.
 4. Initialize both CNN and LSTM model parameters randomly.
 5. Iterate through the training data for the specified number of epochs.
 6. Perform a forward pass of the CNN model and compute the loss using binary cross-

entropy.
 7. Calculate the forward pass of the LSTM model and compute the loss using binary 

cross-entropy.
 8. Utilize backpropagation to update the model parameters using the Adam optimizer.
 9. Repeat steps 4–6 until convergence or the specified number of epochs is reached.
 10. Evaluate the trained hybridized model on the testing set using the selected performance 

metrics.

4.7.4  Algorithm 4: Bi‑LSTM training

For the training procedure of the Bi-LSTM model, the following steps were employed 
within the context of this research: As the initial step, two LSTM network architectures 
were initialized where each architecture was comprised of two LSTM layers, each con-
taining 64 units. In the second network, an additional dense layer was added in order to 
make the resulting hybrid model suitable for classification purposes. Following the archi-
tecture initialization, various essential parameters such as the learning rate, batch size, and 
the desired number of training epochs were established in order to facilitate the training 

Table 4  Results of 
hyperparameter tuning for the 
assessed C-LSTM algorithm

C-LSTM model parameters

Parameter Type Optimized value

Conv1D Filters
Kernel Size
Activation

64
3
relu

LSTM Hidden units 64

Dropout Dropout value 0.12

LSTM Hidden units 32

Dropout Dropout value 0.12

Dense Units 1
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process. Subsequently, the LSTM model’s parameters were randomly initialized in order to 
create a starting point for training purposes.

The training portion of the data was then iterated over for the specified number of epochs, 
during which the forward pass of the LSTM model was computed together with the resulting 
loss via binary cross-entropy. Upon the loss calculation, backpropagation was employed in 
order to update the model parameters by using the Adam optimizer. This iterative process was 
then repeated until the convergence was achieved or the initially specified number of epochs 
was reached. The results of the hyperparameter tuning after this iterative process are denoted 
in Table 5. Meanwhile, the step-by-step guide for the overall training process can further be 
given as: 

1. Initialize 2 LSTM network architecture with two LSTM layers, each consisting of 64 
units, followed by a dense layer in 2nd network for classification purposes.

2. Set the learning rate, batch size, and number of epochs for training.
3. Initialize the LSTM model parameters randomly.
4. Iterate through the training data for the specified number of epochs.
5. Calculate the forward pass of the LSTM model and compute the loss using binary cross-

entropy.
6. Perform backpropagation to update the model parameters using the Adam optimizer.
7. Repeat steps 4–6 until convergence or the specified number of epochs is reached.
8. Evaluate the trained LSTM model on the testing set using the selected performance 

metrics.

Finally, the trained Bi-LSTM model was then evaluated on the testing portion of the dataset, 
where the resulting performance of the hybridized model was assessed based on the selected 
performance metrics.

4.8  Evaluation and performance metrics

For the AI attacks section, there are numerous approaches for evaluating the suggested meth-
ods and their predictions. The effectiveness of the evaluation procedure is measured in terms 
of its capacity to identify presented anomalies when used for anomaly detection. Given that 
the LSTM approach predicts future values, it only makes sense to compare the anticipated 
values to the actual measurements taken by the PMUs using an error vector.

In order to evaluate the proposed algorithms, a dynamic error thresholding technique was 
used with a standard x-sigma threshold. This technique was first developed by NASA in Puke-
lsheim (1994). However, the approached used in this research will base itself into a modified 
version as performed in Tinawi (2019).

Table 5  Results of 
hyperparameter tuning for the 
assessed Bi-LSTM algorithm

Bi-LSTM model parameters

Parameter Type Optimized value

LSTM Hidden units 32

Dropout Dropout value 0.12

Dense Units 1
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The first step for evaluation is to find the prediction error, which is done by looking at indi-
vidual datapoints directly. The prediction error can be computed as:

However, the modified approach as done in Tinawi (2019) utilizes a series of errors in 
order to determine the threshold, which is done by defining a window size and a number of 
errors to combine in a given error vector e = [e

t−n
,… , e

t−1, e
t
] , where n denotes the win-

dow size.
The LSTM-based methods tend to experience error spikes frequently (Hundman et  al. 

2018). Thus, Exponentially Weighted Moving Average (EWMA) was used in order to 
smoothen out the error vector with the formula below where alpha denotes how quickly the 
weights tend to zero, while propagating back in time.

The smoothed error vector, denoted as e
s
 , is then to be utilized for calculating the error 

threshold. The threshold, denoted as � is then selected to mitigate the amount of anomalies 
that is marked, reducing the false positives. However, there needs to be a balance between 
the false negative and false positive values. Therefore, the threshold vector can be modeled 
as:

where � and � denote the mean and the standard deviation of the smoothed error vector 
respectively, whereas z is the positive number that is chosen in order to scale up the thresh-
old. Therefore, a lower value of z will result in a lower anomaly detection threshold, result-
ing in more false positives. As stated in Hundman et al. (2018), a number between 2 and 10 
was used for this research.

Furthermore, � was chosen as and modeled as:
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(12)EWMA
t
= � ∗ e

t
+ (1 − �) ∗ EWMA

t−1

(13)� = �(e
s
) + z�(e

s
)

(14)� = argmax(�) =
Δ�(e

s
)∕�(e

s
) + Δ�(e

s
)∕�(e

s
)

|e
a
| + |E

seq
|2

Δ𝜇(e
s
) =𝜇(e

s
) − 𝜇({e

s
∈ e

s
|e

s
< 𝜖})

Δ𝜎(e
s
) =𝜎(e

s
) − 𝜎({e

s
∈ e

s
|e

s
< 𝜖})

e
a
={e

s
∈ e

s
|e

s
> 𝜖}

(15)s(i) =
max(e(i)

seq
− argmax(�)

�(es) + �(es)



 U. Cali et al.

1 3

183 Page 34 of 47

In the Eq. 16, the n denotes the number of data points that are predicted, whereas x
i
 denotes 

the real measured values. Meanwhile, the notation x̂
i
 represents the predicted values by the 

assessed algorithms. In order to assess the performance of the models, precision, recall 
and F1 scores were utilized as performance metrics. The precision score represents the 
proportion of true positives with the total points identified as positive. Thus, anomalies that 
are identified by a model with a high precision score are more likely to be actual anoma-
lies. Meanwhile, the recall score represents the proportion of true positives divided by the 
sum of true positives and false negatives. Thus, a model with a high recall score is more 
adept at finding positive cases, albeit at the potential cost of misclassifying some negative 
instances as positive. Finally, the F1 score combines both precision and recall, as it repre-
sents the harmonic mean of both mentioned scores. The equations for the utilized perfor-
mance metrics can be denoted as:

4.9  Validation

To validate the effectiveness of the proposed methodology, the results obtained from the 
LSTM and CNN models will be compared with existing anomaly detection approaches in 
power systems. Additionally, sensitivity analyses will be conducted to assess the robustness 
of the models to variations in input parameters and to evaluate their performance under dif-
ferent operating conditions.

5  Experimental results

This section is further subdivided into 2 categories. In the first subsection, the results for 
the developed anomaly detection models will be highlighted and discussed. Meanwhile, 
in the second subsection, the results of the adversarial attacks will be highlighted and 
discussed.

5.1  Anomaly detection results

The outcomes of the assessed anomaly detection algorithms are detailed in Table 6. As can 
be seen from the performance metrics results, the models diverge significantly in terms of 
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anomaly detection capacity across the metrics. The CNN model with noise filtration exhib-
ited a behavior to classify an excessive number of points as anomalies, which impacts both 
the precision and F1 score. However, this tendency also leads to a scarcity of false nega-
tives, with a recall score of 94.20%. Meanwhile, the CNN model trained with the non-noise 
filtered data identified a limited number of anomalies, which was deemed to be the result of 
heightened noise levels during the training section, which in return led to a higher thresh-
old for anomaly detection. From the Fig. 9, it can be seen that the pure CNN struggles with 
false positives, especially after the FDI attack as the algorithm needs time to settle back to 
normal anomaly threshold levels after the attack has been performed.

Within the LSTM-based models, the utilization of noise filtration within the training 
dataset proves indispensable in order to achieve better accuracy scores for anomaly detec-
tion. As can be seen from the Table 6, the LSTM model surpasses the CNN model when 
the noise filtration is applied during the training phase. However, exhibits low performance 
compared to CNN when the noise filtration is omitted. With the noise filtration of train-
ing data, the F1-score of LSTM algorithm improves to 92.16 from 78.79%. One additional 
important finding can be found in Figs. 10 and 12. In both figures, it is evident that both 

Table 6  Performance results for 
the different models

Model Noise Recall (%) Precision (%) F1-Score(%)

filtration

CNN Yes 97.50 86.70 90.70

No 81.25 94.20 89.65

LSTM Yes 93.75 97.40 95.54

No 98.41 77.50 86.71

Bi-LSTM Yes 98.75 94.04 96.34

No 85.0 90.66 87.74

C-LSTM Yes 95.50 98.70 96.81

No 94.76 95.14 96.84

Fig. 9  The CNN model without noise filtration
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pure and BiLSTM have a bad fit compared to the ground truth data. However, both of their 
performance exceeds an F1-score of 90%.

Meanwhile, the hybridization of the LSTM with the CNN yields the best results by 
combining the advantages of both algorithms. From the Fig. 11, the results of the hybrid 
cLSTM can be observed. It is evident that despite the overshoots in the model predic-
tions compared to the ground truth data, this hybrid model had the best results among 
the assessed models, both with and without noise filtration during the training phase. The 
F1-score of the hybrid cLSTM algorithm can be seen in Table 6 as 96.89%.

Fig. 10  LSTM—detected anomalies with pred with noise filter

Fig. 11  C-LSTM—detected anomalies with noise filtration
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5.2  Adversarial attack results

In this section, we will discuss the results of the experiments conducted to evaluate the 
robustness of different AI models (LSTM, cLSTM, biLSTM, and CNN) in the context 
of anomaly detection for power systems when subjected to adversarial attacks with vary-
ing EPS values. The metrics used for evaluation include prediction performance metrics, 
focusing on the “Undefended” and “Defended” models, which represent the models’ 
performance without and with defenses against adversarial attacks, respectively. For the 
LSTM model, the results show a clear trend as the EPS value increases. In the “Unde-
fended” model, the prediction performance metrics start with relatively high values at 
an EPS of 0.41 but steadily deteriorate as EPS increases. The “Defended” model, which 
incorporates countermeasures against adversarial attacks, exhibits a significant improve-
ment in prediction performance compared to the “Undefended” model. The defended 
model consistently outperforms the undefended one across all EPS values, with a substan-
tial reduction in prediction errors. In the case of the cLSTM model, we observe a similar 
pattern in the “Undefended” model’s performance as the EPS value increases. Prediction 
performance metrics start at reasonable levels at an EPS of 0.41 but degrade with higher 
EPS values. The “Defended” model for cLSTM also exhibits a clear improvement over 
the “Undefended” model, indicating the effectiveness of the defenses against adversarial 
attacks. The defended model consistently outperforms the undefended one, with a notice-
able reduction in prediction errors. The results for the biLSTM model indicate a more var-
ied performance as the EPS value changes. In the “Undefended” model, prediction per-
formance metrics show fluctuations as EPS values increase, with some values improving 
while others worsen. In contrast, the “Defended” model consistently improves prediction 
performance across different EPS values. It is noteworthy that for specific EPS values, the 
defended model outperforms the undefended one by a substantial margin. For the CNN 
model, the results show that the “Undefended” model’s performance deteriorates with 
increasing EPS values, as evidenced by a rise in prediction errors. The “Defended” model, 
on the other hand, consistently performs better than the “Undefended” model across all 

Fig. 12  Bi-LSTM—detected anomalies with noise filtration
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EPS values, with a substantial reduction in prediction errors. The improvement in predic-
tion performance is particularly pronounced at higher EPS values.

Our study utilizes MSE as the primary evaluation metric for assessing the performance 
of anomaly detection models. MSE is particularly appropriate for our task as it is suscep-
tible to outliers, which aligns well with detecting anomalies characterized by significant 
deviations from normal patterns. This metric ensures that our models effectively capture 
and quantify deviations in PMU measurements, providing a transparent and interpretable 
measure of prediction accuracy for continuous data.

The experiments highlight the vulnerability of AI models in power system anomaly 
detection to adversarial attacks, with prediction performance degrading as EPS values 
increase. However, the introduction of defenses significantly enhances the models’ resil-
ience, leading to improved prediction accuracy and reliability, especially at higher EPS 
values. These findings underscore the importance of developing and implementing robust 
countermeasures to protect power systems from adversarial threats and maintain the secu-
rity and reliability of critical infrastructure. The central objective of our experimental 
inquiry was to evaluate the robustness of four distinct computational models: Long Short-
Term Memory (LSTM), convolutional LSTM (cLSTM), bidirectional LSTM (biLSTM), 
and Convolutional Neural Network (CNN). This assessment was conducted in the context 
of a diverse array of adversarial attack methodologies. Our primary aim was to scrutinize 
the models’ performance under a spectrum of adversarial perturbations parameterized by 
epsilon (EPS) values. The performance evaluation metric of choice was the Mean Squared 
Error (MSE), which quantifies the dissonance between the predictive outcomes of the mod-
els and the verifiable ground truth labels. The outcomes of our extensive experimentation 
are thoughtfully encapsulated within Tables  8, 9, 10, and  11, with an additional visual 
representation offered by Fig. 13. Each table contains empirical insights, displaying MSE 
values from various adversarial strategies. These stratagems encompass the Basic Itera-
tive Method (BIM), Madry, Momentum Iterative Method (MIM), and Projected Gradient 
Descent (PGD) and are executed across a gamut of epsilon values.

The specific parameter settings for these attacks are summarized in Table 7.
The robustness of each model was evaluated by comparing the MSE before and after the 

application of adversarial attacks. Lower increases in MSE indicate better robustness.
To provide an accurate reference, we use MSE (Normal) to symbolize the baseline MSE 

calculated based on unaltered data under clean conditions. The columns on either side 
of this reference in the tables represent the MSE values obtained after the models were 
exposed to various adversarial attack methods. If one looks at Table 8, we carefully exam-
ine the performance of the LSTM model. The rows in this table indicate the epsilon val-
ues that show the level of adversarial perturbation introduced. The MSE(Normal) column 
represents the model’s baseline performance when dealing with uncontaminated data. The 
other columns show the MSE values when the model is exposed to different adversarial 
strategies. Tables 9, 10, and 11 show the MSE values for the cLSTM, biLSTM, and CNN 

Table 7  Parameter settings for 
adversarial attacks

Attack method Iteration count Step size Epsilon ( �)

BIM 10 0.01 0.1

Madry Attack 40 0.01 0.1–0.3

MIM 10 0.01 0.1

PGD 40 0.01 0.1–0.3
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models across different epsilon variations and adversarial attacks. The MSE is a useful 
tool that helps us analyze and understand the results of our experiments. It shows how well 
our models can withstand challenges and unexpected events. A lower MSE value means 
that our models are more resilient and can handle disruptions without deviating signifi-
cantly from our expected predictions. On the other hand, a higher MSE value indicates that 
our models are more vulnerable and may not accurately predict outcomes when faced with 
unexpected events.

Similar patterns can be observed in Tables 9, 10, and 11. Each table provides detailed 
information about the results of the cLSTM, biLSTM, and CNN models, respectively. The 
tables carefully record the MSE values for different epsilon values and types of attacks, 
giving insight into how these models respond to adversarial attacks. Through these experi-
ments, we have discovered a wealth of empirical findings that provide valuable insights 
into how models can better withstand attacks. The MSE judges the model’s performance, 
with a lower value indicating a higher level of resilience against adversarial perturbations. 
This demonstrates the model’s ability to persevere in challenging situations and stay on 
track towards expected outcomes. Conversely, an elevated MSE value reveals vulnerabili-
ties in the model’s predictive capabilities and highlights the impact of adversarial forces. 
We can gain valuable insights by carefully analyzing the MSE values across a range of 
attack scenarios. This allows us to identify each model’s unique strengths and weaknesses 
and helps us develop effective defense mechanisms. Armed with this knowledge, we can 
work to fortify our models against adversarial attacks. These findings shed light on the path 
towards creating machine learning models that are strong and genuinely resilient.

(a) LSTM (b) CLSTM

(c) biLSTM (d) CNN

Fig. 13  MSE values for assessed attack types across the utilized algorithms for defended and undefended 
models
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The robustness of four distinct models—LSTM, cLSTM, biLSTM, and CNN—under-
went experimentation to assess their performance against various adversarial attack meth-
ods. These experiments yielded insightful findings regarding the models’ ability to with-
stand different levels of adversarial perturbations. Mean Squared Error (MSE) values were 
calculated for each model and attack method combination, revealing their strengths and 
weaknesses concerning adversarial examples. Models with lower MSE values exhibited 
greater resilience, while those with higher values were deemed more vulnerable. These 
findings can be utilized to develop effective defense mechanisms that enhance the models’ 
robustness and reliability in practical applications. By comprehending the impact of differ-
ent attack methods and corresponding model responses, researchers can devise strategies 
to improve the models’ ability to withstand adversarial attacks, ensuring their reliability 
and trustworthiness. The knowledge gained from these experiments will contribute to the 
advancement of adversarial robustness research in the field of machine learning and assist 
in the development of more secure and dependable models.

6  Conclusion and discussions

The experimental results demonstrate the vulnerability of the LSTM, cLSTM, biLSTM, 
and CNN models to adversarial attacks. The MSE values obtained under various attack 
methods and epsilon values highlight the models’ susceptibility to adversarial perturba-
tions. Higher MSE values indicate increased deviation from the expected outputs and 
signify a more significant impact of the attacks on the models’ predictions. The findings 
suggest that the trustworthiness of the models varies across different attack methods and 
epsilon values. The Madry attack shows promising results in generating strong adver-
sarial examples that generalize well across models and defenses. On the other hand, 
the BIM, MIM, and PGD attacks also pose significant threats to the models’ perfor-
mance, exhibiting increased MSE values as the magnitude of the adversarial perturba-
tions (epsilon) increases. Our findings indicate that LSTM models consistently achieve 
the lowest MSE values against all four adversarial attacks, demonstrating their supe-
rior ability to generalize in the presence of perturbations. This is likely due to LSTM 
models’ ability to capture long-range dependencies in the input data, which helps them 
to better understand the underlying relationships between inputs and outputs. BiLSTM 
models generally have higher MSE values than LSTM and cLSTM models against BIM 
and MIM attacks, but they exhibit comparable performance against Madry and PGD 
attacks. This suggests that biLSTM models are more effective at handling additive per-
turbations compared to multiplicative perturbations. These results emphasize the impor-
tance of developing effective defense mechanisms to enhance the models’ robustness 
against adversarial attacks. Future research efforts should focus on exploring and imple-
menting advanced defense techniques, such as adversarial training, ensemble methods, 
and model distillation. These techniques aim to improve the models’ ability to with-
stand adversarial perturbations and maintain accurate predictions even in the presence 
of sophisticated attacks. Additionally, investigating the transferability of adversarial 
examples across different models and datasets would provide valuable insights into the 
generalization capabilities of the attacks. Furthermore, exploring the impact of different 
hyperparameters, such as learning rates, batch sizes, and network architectures, on the 
models’ vulnerability to adversarial attacks could yield further insights into improving 
robustness. One area for improvement of this study is its reliance on historical data, 
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which may not capture the full range of possible anomalies that could occur in real-time 
operation. Additionally, the performance of the anomaly detection algorithms may vary 
depending on the specific characteristics of the power grid and the types of anomalies 
present. It should be noted that the generalizability of the results to other power systems 
should be considered with caution. The study’s results show that looking into the bal-
ance between how accurate AI-based anomaly detection models are and how safe they 
are against possible cyberphysical attacks for the critical infrastructure being thought 
about is essential. This article also shows how different AI models can be used together 
and in order, both at the same time and against each other, for many different tasks, such 
as finding strange things, carrying out cyberattacks, and preventing them. Overall, this 
study sheds light on the importance of understanding and mitigating the vulnerabilities 
of AI models to adversarial attacks. By developing more robust and resilient models, we 
can enhance the reliability and trustworthiness of AI systems in real-world applications.

7  Future work

In future research, several avenues can be explored to advance the understanding and 
defense against adversarial attacks. Here are some potential directions:

Adversarial training with diverse attack scenarios: Extending the current experi-
ments by incorporating a more comprehensive range of adversarial attacks, such as 
Carlini and Wagner attack or Jacobian-based Saliency Map Attack, can provide a more 
thorough evaluation of the model’s robustness. Adversarial training on these diverse 
attack scenarios can lead to the developing of more resilient models. Defense mecha-

nisms: Investigating and developing novel defense mechanisms, including gradient reg-
ularization, input preprocessing techniques, and randomized smoothing, can contribute 
to creating models more resistant to adversarial perturbations. Evaluating the effective-
ness of these defenses against a broader range of attack methods is crucial. Real-world 

applications: Extending the evaluation of adversarial robustness to real-world applica-
tions, such as autonomous driving or medical diagnosis, can help assess the models’ 
performance under more practical and complex scenarios. This research can lead to the 
development of AI systems that are reliable and secure in critical domains. Adversarial 

detection and explainability: Designing techniques for detecting adversarial examples 
and explaining the model’s decision-making process in the presence of such examples 
are essential for building trust in AI systems. Exploring methods to identify and inter-
pret adversarial attacks can help develop more transparent and accountable AI models. 
By pursuing these avenues of research, we can enhance the robustness of machine learn-
ing models against adversarial attacks and foster the development of reliable and secure 
AI systems in various domains.

Integrating emerging technologies such as quantum and edge computing could sig-
nificantly improve processing capabilities and reduce the latency of anomaly detection 
systems. Expanding the application of these AI models to other critical infrastructure 
sectors, such as transportation and healthcare, could improve resilience against anoma-
lies and cyber-attacks. Implementing adaptive learning mechanisms to allow models to 
evolve with new anomalies and threats could enhance long-term effectiveness. Inves-
tigating the ethical implications and security vulnerabilities of deploying AI-based 
anomaly detection in critical infrastructures is also essential. Ensuring these systems are 
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effective, secure, and compliant with privacy regulations is crucial. Addressing these 
research questions can advance anomaly detection in critical infrastructure systems, 
enhancing their resilience and security against adversarial threats.

Appendix

See Table 8, 9, 10, and 11.

Table 8  LSTM

BIM MIM MADRY PGD

EPS Undef. Defended Undef. Defended Undef. Defended Undef. Defended

0.41 2.038603 0.424041 2.038603 0.424039 2.038603 0.424032 2.038603 0.424030

0.82 2.510237 0.978672 2.510237 0.978562 2.510237 0.978307 2.510237 0.978600

1.23 3.006264 1.350685 3.006263 1.348693 3.006263 1.345158 3.006263 1.349458

1.63 3.501387 1.017411 3.501387 1.016827 3.501388 1.018399 3.501388 1.016745

2.04 4.011350 1.212153 4.011289 1.212072 4.011016 1.213226 4.011215 1.212370

2.45 4.519428 0.899939 4.519774 0.899127 4.519058 0.900515 4.542234 0.884025

2.86 5.070283 0.402693 5.071837 0.400386 5.130139 0.340077 5.199975 0.386309

3.27 5.927121 0.261244 5.927875 0.260158 6.097188 0.536793 6.042330 0.448423

3.68 6.829479 1.839760 6.826449 1.837342 6.841919 1.665468 6.712505 1.554542

4.08 7.309332 3.597418 7.276105 3.373633 7.309711 3.752743 6.968611 2.320992

Table 9  cLSTM

BIM MIM MADRY PGD

EPS Undef. Defended Undef. Defended Undef. Defended Undef. Defended

0.41 0.567433 0.103676 0.569134 0.106258 0.567307 0.103674 0.569535 0.106788

0.82 0.727147 0.232114 0.728438 0.235902 0.726714 0.232192 0.750101 0.285447

1.23 0.917919 0.432103 0.918342 0.433747 0.917765 0.431965 0.964079 0.562987

1.63 1.132826 0.698303 1.136438 0.709684 1.132608 0.697960 1.241917 1.030655

2.04 1.386425 1.068960 1.388759 1.078858 1.407622 1.106707 1.556927 1.619686

2.45 1.661776 1.564339 1.688646 1.616520 1.763487 1.737316 1.977576 2.544655

2.86 2.097034 2.586703 2.115149 2.609740 2.218876 2.782368 2.473083 3.777057

3.27 2.508255 4.075356 2.628392 4.337136 2.792792 4.642182 3.071305 5.691321

3.68 3.156483 6.631951 3.207705 6.768409 3.499580 7.366041 3.668923 8.043638

4.08 4.012347 9.904355 3.920264 9.756875 4.321109 10.597324 4.313021 10.626999
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Table 10  biLSTM

BIM MIM MADRY PGD

EPS Undef. Defended Undef. Defended Undef. Defended Undef. Defended

0.41 1.460959 0.350573 1.461585 0.351523 1.460959 0.349393 1.461768 0.351935

0.82 1.852657 0.887757 1.853901 0.851057 1.852648 0.847769 1.855811 0.872957

1.23 1.333940 1.092849 2.296755 1.607440 1.333913 1.089397 2.296225 1.778938

1.63 2.779864 2.777312 2.781956 2.681719 2.779762 2.774046 2.770984 3.061738

2.04 3.335863 4.510283 3.337653 4.384780 3.335725 4.488595 3.289842 4.551433

2.45 3.954246 6.665024 3.956228 6.517244 3.954098 6.641309 3.853755 6.239162

2.86 4.634205 8.932697 4.634704 8.779609 4.634131 8.920742 4.429744 8.019218

3.27 5.369992 11.070434 5.368169 10.927076 5.369952 11.051568 5.006110 9.598551

3.68 6.150044 12.909105 6.146178 12.740335 6.150092 12.897627 5.584798 10.927830

4.08 6.937686 14.391960 6.930556 14.237649 6.937732 14.390517 6.137514 12.151557

Table 11  CNN

BIM MIM MADRY PGD

EPS Undef. Defended Undef. Defended Undef. Defended Undef. Defended

0.41 1.089005 0.085219 1.066399 0.100179 1.113065 0.083216 1.086545 0.101014

0.82 1.055095 0.136559 1.094858 0.167576 1.378529 0.092103 1.237819 0.180064

1.23 1.015702 0.317642 1.048992 0.469688 1.607382 0.271097 1.347260 0.484505

1.63 1.039043 0.573274 1.035431 0.822781 1.595004 0.692889 1.527915 0.907190

2.04 1.364652 0.765247 1.320619 1.107039 1.672450 1.598169 2.064729 1.362050

2.45 1.853013 0.987222 1.764516 1.465397 1.901406 3.041248 2.770632 1.920396

2.86 2.413224 1.351913 2.315255 1.883981 2.102646 4.905322 4.247408 2.596251

3.27 3.036348 1.864545 2.931976 2.530704 2.223555 6.529574 4.949097 3.298850

3.68 3.683633 2.500685 3.517498 3.367022 2.254240 8.279675 6.622675 4.027385

4.08 4.603741 3.139967 4.310988 3.811644 2.437570 9.928660 8.877693 4.977233
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