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The depletion of conventional energy sources has led to an increase in interest in

renewable energy across the globe. The usage of renewable energy has lowered

economic risk in the electricity markets. This study presents an approach to utilize

solar photovoltaic as a renewable energy source, fuel cells as the energy storage

system, and Flexible AC Transmission networks (FACTS) to reduce system risk in

deregulated networks. The difference between real and expected renewable energy

data is the primary cause of disequilibrium pricing (DP) in the renewable energy-

integrated system. Integration of the FCs with a Unified Power Flow Controller

(UPFC) can play an important role in coping with the disequilibrium pricing,

emphasizing optimizing profitability and societal welfare in a deregulated

environment. The paper also evaluates the system voltage outline and LBMP

(location-based marginal pricing) scenarios, both with and without the integration

of solar power. Two distinct factors, i.e., Bus Sensitivity Index (BSI) and Line

Congestion Factor (LCF), have been proposed to identify the key buses and lines

for solar power and Unified Power Flow Controller installation in the system. The

study also employs conditional-value-at-risk (CVaR) and value-at-risk (VaR) to assess

the system’s risk. Using a real-time IEEE 39-bus New England system, multiple

optimization algorithms including Sequential Quadratic Programming and the Slime

Mould Algorithm (SMA) are employed to estimate the financial risk of the considered

system. This analysis demonstrates that the risk coefficient values improve with the

placement of UPFC and fuel cells in the renewable incorporated system.
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solar PV, VAR, CVaR, FACTS, economic profit, deregulated system

1 Introduction

The improvements in the electrical industry have a considerable impact on the economy

of a country. The power industry includes power generation, transmission, and distribution.

These responsibilities were often managed by a single corporation, which was frequently

subject to government oversight. Critics argue that this monopolistic structure restricts
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competition, service quality, and pricing. Customers have little

options due to monopolies, necessitating government control.

Regulations seek to encourage competition, maintain standards,

and include stakeholders. Deregulation eliminates government

control of the power sector, intending to lower prices and

increase competition. Governments utilize deregulation to

encourage investment and competitiveness. The success of

deregulation is determined by elements like as rules, market

structure, and competition levels. Nowadays, the majority of

electricity is generated by thermal power plants. Due to the

paucity of non-renewable sources, there is a shift toward

renewable throughout the globe. Solar electricity is trendy but

difficult to implement. Increasing the use of renewables reduces

the requirement for thermal systems. The storage system stores the

excess energy for use during peak demand periods. Including

renewables increases economic profit. Furthermore, the

introduction of a deregulated system in the renewable-associated

electricity industry has resulted in increased competition among

market stakeholders, which increases system revenues.

In recent years, there have been many studies carried out on

renewable sources, and energy storage systems in deregulated

environments. Saranyaa et al. (Shri Saranyaa and Peer Fathima,

2023) have conducted a comprehensive study that explores the latest

drifts and approaches in estimating the levelised cost and balancing

the supply-demand ratio in renewable energy sources. The paper

(Huang et al., 2018) explores different uses of energy storage

systems, including lowering the total expenses of power making

from sporadic renewable resources, managing the deployment of

numerous batteries in electrical networks, and optimizing earnings

through capitalizing on temporal price variations. The innovative

collaborative planning framework outlined in (Tian et al., 2020)

aims to coordinate the mixing of renewable sources and ESS (energy

storage systems) in the energy industries. Paper (Shree Das et al.,

2023) provides an extensive examination of various components

within renewable combined deregulated systems. The research (Tian

et al., 2022) utilizes the Stackelberg game model to propose an

integrated investment strategy for renewable energy, transmission

networks, and energy storage within deregulated electricity markets.

To maximize results, Shreya et al. (Shree Das and Kumar, 2024)

provide a professional analysis of an effective bidding strategy for

power networks that incorporate wind farms and maximize social

welfare (SW) by using the Monte Carlo simulation algorithm. A new

method “nested sampling with exploration chains” for Bayesian

model evaluation has been depicted in (Kumar et al., 2023).

Paper (Kumar et al., 2016) focuses on solving the unit

commitment (UC) problem with ramp rate and prohibited zone

constraints using ‘Gaussian Harmony Search’ (GHS) and ‘Jumping

Gene Transposition’ (JGT) algorithm (GHS-JGT). Huang et al.

(Huang et al., 2019) present a concise summary of the variables

and coefficients employed in the optimization problem concerning

the economic dispatch of power systems incorporating battery

storage. The study outlined in reference (Wang et al., 2023)

introduces a framework proposing a strategy for stakeholders to

apportion BESSs (battery energy storage systems) in deregulated

distribution networks. A new and innovative approach has been

developed in (Huang et al., 2020) for expansion planning problem

that focuses on coordination and robustness. The main objective is

to enhance both systematic flexibility and market efficiency. Kaneko

(Kaneko et al., 2020) introduces a method to determine the prime

radial-loop arrangement for a delivery grid incorporating solar

photovoltaic (PV), to diminish power losses. The study (Huang

et al., 2021) outlines a control approach for energy storage systems

employing Deep Reinforcement Learning (DRL) to mitigate the

growing unpredictability stemming from renewable sources.

Zhaoyuan (Wu et al., 2020) presents an effective approach for

combining wind power and CSP (Concentrated Solar Power) in a

two-price balancing market. A single-phase single-stage topology for

grid-connected solar photovoltaic (PV) systems is emphasized in

(Kumar et al., 2020). The most effective economic dispatch is

investigated using dynamic programming theory in (Liu et al.,

2021), taking into account the physical properties of storage

systems as well as the impact of the market. To maximize system

economics, a technique for estimating the appropriate size of an ESS

for wind turbine (WT) and PV generators in South Korea is proposed

in (Kong et al., 2019). The study (Kun Ren et al., 2023) presents a new

method for determining the amount of energy storage required in

microgrid systems. To maximize storage use, the storage is sized

according to the highest cumulative charge or discharge in the stored

energy’s temporal profile. Biggins et al. (Biggins et al., 2023) look into

the financial implications of putting a solar facility with ESS in various

parts of the United Kingdom. The study (Jabbari Ghadi et al., 2020)

looks at the usage of CAES (compressed air energy storage) in

advanced distribution systems (ADSs) and how it helps the grid.

The use of optimization-based approaches in power market

bidding is investigated in the research (Li et al., 2023) to

synchronize wind energy with battery energy storage devices. A

reconfigurable wireless power transfer system with constant current

for charging multiple batteries is discussed by (Liang et al., 2024), but it

does not extensively elaborate on the scalability of the system for larger

numbers of batteries. The study in (Dawn et al., 2019) offers a risk

assessment technique for evaluating the financial stability of power

systems in the face of erratic wind power. A coordinated bidding

approach in power markets and reserve capacity and frequency control

bidding in ancillary service markets is proposed in Paper (Aldaadi et al.,

2021) for a combined wind farm (WF) and CAES system. To lower

system risks in a power network, Das et al. (Das Arup et al., 2022)

recommend combining renewable energy sources with FACTS devices.

The impact ofWF and FACTS devices on system economics and risk is

investigated using different optimization techniques. To optimize

system profit and minimize system risk, the study (Bhusan Basu

et al., 2023) examines the challenges associated with integrating

wind energy into current electrical systems and offers the best

operating strategy for an FC and TCSC (thyristor-controlled series

compensator) in a wind-associated system. In (Ranganathan and

Rajkumar, 2021), a self-adaptive firefly algorithm-based method for

determining the ideal locations and configurations for UPFC placement

in transmission networks has been presented. A technological and

financial strategy for the best location of FACTS devices in transmission

networks is suggested in Ref (Zadehbagheri et al., 2023). to lower power

losses and increase network load capacity. A new active-disturbance-

rejection-controller optimized using magnetotactic bacteria

optimization and further improved with artificial neural networks is

used for power quality improvement in (Safiullah et al., 2022). Electric

vehicles (EVs) require recharging, which can be challenging in remote

areas, therefore solar panels are being considered for EV charging in

emergencies (Hussain et al., 2020). The paper (Xiang et al., 2018) gives a
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thorough review of techniques utilized to stabilized hybrid AC DC

distributed renewable energy systems. Different control strategies

utilized to stabilize isolated and interconnected multi-area hybrid

power systems are presented in detail in (Ranjan et al., 2021).

Following a thorough review of the literature, it was discovered that

there are several research gaps that are being addressed in the current

study. The research gaps identified in the literature are as follows.

• Saranyaa et al. (Shri Saranyaa and Peer Fathima, 2023) and

Shreya et al. (Shree Das and Kumar, 2024) highlight cost

estimation and bidding strategies, primarily from the

perspective of individual components or market

participants but there is a need for complete models that

integrate various system components and market participants

to maximize overall system profit while considering

interactions and dependencies.

• The existing research, such as the collaborative planning

framework in (Tian et al., 2020) and the Stackelberg game

model in (Tian et al., 2022) assumes static market conditions

but more studies are required to develop adaptive models that

can dynamically respond to market changes and technological

advancements, ensuring sustained economic profitability.

• While papers (Dawn et al., 2019) and (Das Arup et al., 2022)

discuss risk assessment and mitigation for specific elements

like wind power and FACTS devices, but comprehensive

system-wide risk mitigation strategies are limited.

• Studies such as (Kumar et al., 2016), (Liu et al., 2021), and

(Ranganathan and Rajkumar, 2021) utilize various optimization

techniques to address specific issues like unit commitment and

FACTS device placement but there is room for further

exploration of advanced optimization algorithms that can

simultaneously address multiple objectives in a deregulated

environment with high renewable energy penetration.

• Research (Huang et al., 2018), (Shree Das et al., 2023), and

(Wang et al., 2023) explores different uses and impacts of

energy storage and renewable energy but often within a

specific regulatory framework. More studies are needed to

understand how different regulatory policies affect economic

outcomes and risk profiles, and how market participants can

optimize their strategies in varying regulatory environments.

By addressing these gaps, future research can provide more

robust, adaptable, and comprehensive solutions for economic profit

maximization and system risk mitigation in deregulated power

systems which has been performed in the present work. The

chief objective of this work is to minimize the adverse effect of

disequilibrium pricing while optimizing the social welfare of a solar-

associated deregulated electrical network. A hybrid scheduling

method has been proposed in this work to maximize the cost-

effective functioning of FACTS devices in conjunction with solar PV

and energy storage systems to accomplish this goal.

• In a deregulated solar energy system, GENCOs and DISCOs

(Generation and distribution companies) establish power

supply agreements before power scheduling operation day,

depending on irradiance and temperature of solar PV. If real

solar radiation and temperature differ from predicted,

GENCOs may face price imbalances. The Independent

System Operator (ISO) has the authority to either penalize

or reward GENCOs based on these discrepancies.

• GENCOs are using energy storage devices tomanage this power

shortage issue and minimize the difference between actual and

forecast solar power output. Using storage devices can reduce

power fluctuations, reduce stress on thermal plants, and

increase economic benefits. A thermal-solar-fuel cell hybrid

system has been implemented in this work to reduce cost

imbalances and provide additional electricity to the grid.

• This study also looks into how combining a UPFC and FC

might assist minimize the effects of price imbalances. The

study examines the impact of solar power integration on

system voltage profiles and Locational Based Marginal

Prices (LBMP) in a deregulated context.

• The system risks were evaluated using VaR and CVaR, with

the addition of FC and UPFC leading to risk reduction.

Economic risks were assessed using SQP and SMA

optimization techniques. The study stresses the relationship

between VaR, CVaR, social welfare, and generation costs.

• SQP is based on linear programming, while SMA is a meta-

heuristic optimization method. To confirm and demonstrate

the universal applicability of the proposed technique, both

linear and meta-heuristic optimization approaches were

investigated. Instead of SMA, different optimization

approaches can be utilized, but the proposed strategy will

still provide the same moderated output pattern.

• The work was completed using the IEEE 39-Bus New England

system, however, other big and small systems will produce the

same output situations, demonstrating the usefulness of the

proposed work.

This work incorporates the FC and UPFC, as well as solar

electricity, to increase societal welfare while minimizing system risk.

The fundamental novelty of this study is the introduction of SMA

optimization techniques to tackle the considered problem. The

structure of the paper is as follows:

Section 1: The key target of this section is to explore the

difficulties of the background investigation, as well as the key

components that underpin this work.

Section 2: Within this portion of the paper, the mathematical

strategy that has been employed to authenticate the work being

presented is comprehensively expounded.

Section 3: This section aims to offer a comprehensive summary

of the objective functions and the associated constraints that exist

within the power systems.

Section 4: This section provides a detailed explanation of the

recommended approach for evaluating the socio-economic impact

of the deregulated electricity system.

Segment V: In this concluding section, a comprehensive

demonstration is provided for the outcomes of the previously

mentioned segments, which encompass the integration of solar

PV, UPFC, and FCs.

2 System modeling

This section introduced the components of the study systems.

Here, all the related mathematical models that are essential to
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organize the presented work are discussed with accompanying

constraints. This part also includes a brief explanation of several

optimization approaches.

2.1 Solar power

The following mathematical formula determines how much

power (P) a solar photovoltaic (PV) array produces:

P � Ipv × V (1)

where V is the supply voltage and Ipv is the photovoltaic current.

Ipv � npIph − npIsat e
qF

AikT − 1[ ] − npF

rsh
(2)

F �
Vpv

ns

+
Ipvrs

np

(3)

Iph �
S

1000
Isc + ki T − Tr{ }[ ] (4)

Isat � Irr
T

Tr

[ ]
3

e
qEg
Aik

1

Tr

−
1

T
[ ] (5)

The number of parallel and series-connected PV cells is

represented by np and ns. Iph and Isat are the notation for the

photocurrent and reverse saturation current. Ai, T, k, and q

represent the ideality factor, absolute solar cell temperature,

Boltzmann constant, and electron charge. Vpv stands for

photovoltaic voltage. F is a derived variable from Vpv , Ipv , ns, np,

and rs (PV cell series internal resistance). In Equations 2, 3, ηpIph
shows the current generated by all the PV cells connected in parallel

due to incident sunlight, whereas e
(

qF
AikT

)
− 1 describes the exponential

increase in current with the voltage (F) across the cell. This

exponential behavior is characteristic of a diode and
npF

rsh
denotes

the current loss due to shunt resistance, which accounts for leakage

currents through alternative paths other than the intended circuit.

This current is proportional to the voltage (F) and inversely

proportional to the shunt resistance rsh. Equation 4 calculates Iph
using incident solar power (S), short-circuit current (Isc), and cell

temperature. ki is the short-circuit current temperature coefficient,

Tr is the reference temperature, and Irr is the rated saturation

current. The energy band gap is denoted as Eg.

2.2 Risk analysis tools

Risk assessment tools utilized in this study encompass VaR and

CVaR. These assessment techniques are performed based on

probabilistic lessons and assurance confidence stages (α). VaR

quantifies the minimum loss at the (1-α) percentile, whereas

CVaR illustrates the average loss mechanisms.

The expression f(X,Y) represents the loss components associated

with the judgment vector X, drawn from a specific subset X of R, and

the arbitrary vector Y in R. The probability p(Y) represents the

likelihood of loss of components f(X,Y), which is constrained by a

maximum threshold (ξ) (Biggins et al., 2023). Equations 6, 7 shows

mathematical formulation of VaR and CVaR:

VaR � Max ξϵR: ψ X, ξ( )≥ α{ } (6)

CVaR � Max
1

1 − α
∫

f X,Y( )≥ ξ
f X,Y( )p Y( )dY (7)

Figure 1 illustrates the visual representation of the risk

assessment parameters. The highest level of risk within the

system is indicated by the maximum negative VaR and CVaR

values. To minimize both system loss and system risk, it is

advisable to move towards the right side.

2.3 LBMP

The LBMP is the price that benefits both product providers

and purchasers. In other terms, the LBMP is the price at which

the market becomes balanced. LBMP is often referred to as the

MCP (market clearing price). In addition, the MCP is the price

where the demand and supply curves connect, as shown

in Figure 2.

The demand curve defines the quantity of a product or item

that buyers are willing to purchase, whereas the supply curve

describes the quantity of a product or commodity that is made

and provided to the market at various prices. The quantity of a

product in the market decreases when its price is higher, while

the quantity of that product grows when its price is lower. The

relationship between the price and quantity of a product is

inversely related to a demand curve, meaning that the

demand curve slopes downward. On the supply curve,

however, the quantity of a product gradually grows when its

FIGURE 1

Graphical representation of VaR and CVaR.

FIGURE 2

Graphical representation of MCP.
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price is higher, and swiftly declines when its price is lower. The

MCP is the point at which the demand and supply curves cross.

There will be no surpluses or shortages in the market at the MCP

point. As a result, the product’s price becomes equal to

its quantity.

2.4 UPFC

The UPFC is a commonly used device for managing power

and voltage flow in electrical transmission systems. It can adjust

the series reactance of the transmission line and inject or extract

shunt reactive power at the connected bus. It improves power

system stability and reliability and promotes efficient energy use.

The UPFC is crucial for power utilities and grid operators to

connect and integrate different power systems and grids globally.

The UPFC’s reactance value is determined by the transmission

line’s reactance at its installation location as shown in Equations

8, 9.

XLine � Xij + XUPFC (8)

XUPFC � KUPFCpXLine (9)

The reactance of a transmission line (XLine) is determined by

combining the reactance of the line (Xij) and the reactance of the

connected UPFC (XUPFC). The equation includes a variable

representing the UPFC’s compensation level (KUPFC) (Dawn and

Tiwari, 2016).

2.5 FC modeling

The FC model has two parts: an electrolyzer and an FC. The

electrolyzer turns water into hydrogen. The FC converts

hydrogen into electricity. The chemical interaction between

hydrogen and oxygen is important for the FC. It makes

electricity, heat, and water. Hydrogen is stored in tanks for

short and long-term use. Hydrogen storage is better than

other storage options. The FC system works during low and

high-demand periods (Bhusan Basu et al., 2022).

During low-demand phases, hydrogen is produced by

the electrolyzer and stored for later use. The energy

absorbed by the electrolyzer (Eelz) is calculated as in

Equation 10 below:

Eelz �
hvlH2

× E
p
H2

ηelz
(10)

In this equation, E
p
H2

represents the hydrogen generated

by the electrolyzer, ηelz indicates the electrolyzer’s efficiency,

and hvlH2
specifies the minor heating rate of hydrogen.

In peak demand, the FC uses the kept hydrogen to

generate energy. The FC’s energy (Efc) is expressed by

the equation:

Efc � ηfc × fcconH2
× hvlH2

(11)

In Equation 11, fcconH2
indicates hydrogen intake in the FC,

whereas ηfc reflects FC efficiency.

2.6 SMA

Shimin Li, in the year 2020, was the mastermind behind the

groundbreaking development of the SMA (Das A. et al., 2022). This

revolutionary strategy is based on a population-centric approach,

harnessing the innate swinging motion of the

Physarumpolycephalum, commonly known as the slime mould. The

term “slimemould” itself is derived from the concept of fungus, and it is

under this umbrella that some fundamental processes are executed to

yield the most optimal results, just like other heuristic optimization

methods. It is worth noting that slime moulds exhibit a fascinating

behavior of selecting the food source with the highest concentration,

taking into account factors such as weight, speed, and accuracy.

Furthermore, these peculiar biological attributes of slime moulds

enable them to simultaneously consume multiple sources of

nourishment, truly showcasing their exceptional capabilities.

2.7 Parameter setting for SQP and SMA

Sequential Quadratic Programming (SQP) is an iterative

method for nonlinear optimization. The key parameters to

set include.

• Initial Guess: An initial feasible solution for the power

flow problem.

• Tolerance Levels: Criteria for convergence, typically for objective

function value change and constraint satisfaction.

• Maximum Iterations: The maximum number of

iterations allowed.

• Line Search Parameters: Parameters for the line search

algorithm used within SQP.

• Penalty Parameters: Penalty factors for handling constraints.

Slime Mould Algorithm (SMA) is a nature-inspired algorithm,

and the key parameters include.

• Population Size:Number of candidate solutions (slime molds).

• Maximum Iterations: The total number of generations the

algorithm will run.

• Weighting Coefficients: Parameters that control the influence

of attraction, repulsion, and diffusion behaviors in SMA.

• Convergence Criteria: Threshold for stopping the algorithm

based on changes in the best solution.

2.7.1 Sensitivity analysis
Performing a sensitivity analysis involves systematically varying

these parameters to observe their impact on the performance of the

algorithms. Here’s a step-by-step process.

• Identify Key Parameters: Select a few critical parameters from

both SQP and SMA (e.g., population size, maximum

iterations, tolerance levels).

• Vary One Parameter at a Time: Change one parameter while

keeping others constant to isolate its effect.

• Measure Performance: Evaluate the performance using metrics

such as convergence rate, solution quality (e.g., total

generation cost), and computational time.
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• Analyze Results: Plot the results to visualize how changes in

each parameter affect the performance. Look for patterns or

thresholds where performance significantly improves

or degrades.

• Iterate: Based on the findings, refine the parameter settings

and repeat the process if necessary to find the optimal

combination.

3 Objectives

In a regulated power system, there is no clearness between the

GENCOS and the consumers regarding the economic aspect.

This scenario may be advantageous for the GENCOS but creates

huge trouble for the consumers. To mitigate this issue the

deregulated system is been introduced to boost the profit of

the consumers by creating perfect rivalry among the market

companies. Customers benefited from the deregulated market

(i.e., received a social benefit) as a result of enhanced

transparency and competitiveness. ISO (Independent System

Operator) performs a significant function in this scenario by

regulating the power market. The LBMP is fixed through the

optimization technique after the ISO gathers the quotes from

GENCOS and DISCOS. The competitive electricity market is

considered to be a crucial part of the day-ahead market that

supports society economically. In a renewable integrated system,

ISO must receive information from GENCOS on upcoming

power generation in the day-ahead market. If there is a

mismatch between projected and actual solar power output,

ISO may impose fines or incentives to the solar plant to make

up the gap, which is known as the disequilibrium price.

3.1 Objective function 1

The purpose of this work is to maximize the profit of a solar-

integrated deregulated electric system, despite the negative

consequences of a price disequilibrium may reduce it. To mitigate

the negative consequences of disequilibrium pricing, a solution for

improving the performance of solar PV systems in combination with

FCs and UPFC has been developed. The FC serves as an additional

source of energy, reducing the strain caused by both predicted and

actual solar energy. The FC strives to uphold the agreements reached

between GENCOS and ISO by seeking to limit the amount of power

difference generated by the solar plant. The recommended solution was

implemented using SQP. A test system is taken into account using the

NBUS number of buses, NPTL power transmission lines, NLD loads, and

NG generators. To exploit social value and income while diminishing

generation costs and system financial risk in the framework of

disequilibrium pricing, the study attempts to successfully incorporate

UPFC and FC across a renewable combined system. The operational

research including a renewable integrated system must take the

disequilibrium pricing into account. The system earns more

benefit from a positive disequilibrium price than it does from a

negative disequilibrium price. Such an outcome is seen as a result

of the grid operators applying incentives and punishments to

GENCOs at the same time. The goal of this research is to

increase system profit while lowering the risk to the economy.

Equation 12 shows the objective functions:

PMAX x, t( ) � RT x, t( ) + DP x, t( ) − GCT x, t( ) (12)

Here, the goal is to exploit overall system profit, represented by

PMAX (x,t), at a time ‘t’. The earning profit belongs to the generating

company. Therefore, these values will be maximized after the

renewable integration. However, as the system transitions from

regulated to deregulated, these values will fall. Three factors

interact to determine the overall profit: total revenue (RT(x,t),

disequilibrium pricing (DP(i,t), and total generation price

(GCT(i,t), which includes both thermal and solar generation).

RT x, t( ) � ∑N

x�1
PR x, t( ). LBMP x, t( ) (13)

DP x, t( ) � ∑N

x�1
EC x, t( ) + SC x, t( )

PE x, t( )

PR x, t( )
( ).2( ). (PR x, t( )

− PE x, t( ) (14)

Equations 13, 14 demonstrate the total income and disequilibrium

price computation, where PR signifies the real power provided by the

solar power plant at the stated time ‘t’ and PE represents the predicted

power generated at the same time. SC represents the shortfall charge

rate, whereas EC shows the excess charge rate. The disequilibrium

price is calculated by adding the difference between the real and

predicted power, as well as the product of the charge rates. In a solar-

integrated system, the discrepancy between predicted and actual sun

irradiation and temperature is used to calculate disequilibrium

pricing. In a competitive power system, the disequilibrium price

has a direct impact on the system’s economics.

GCT x, t( ) � GCTher x, t( ) + GCsolar x, t( ) + ICUPFC (15)

Equation 15 calculates the system’s overall generation cost by

combining the generating cost of conventional and solar power

plants of a certain bus at a particular time and also the cost of UPFC

employed in the system. Here, GCT(x,t) stands for the system’s overall

generation cost at bus-n and time ‘t’. GCTher(x,t) represents the

generation cost of conventional power sources like thermal energy.

The cost of solar energy generation is denoted by GCsolar(x,t). ICUPFC

represents the investment cost of the system’s UPFC.

GC x, t( ) � ∑N

x�1
ax + bxPR x, t( ) + cxP

2
R x, t( )( ) (16)

The coefficients of the quadratic cost function for the nth

generator are ax, bx, and cx, which are utilized in Equation 16 to

express GC(x,t). The FC may be used to reduce power disparities

and compensate for discrepancies between real solar power (RSP)

and expected solar power (ESP).

SC x, t( ) � 1 + γ( ).LBMP x, t( ),EC � 0; if PE x, t( )> PR x, t( ) (17)

EC x, t( ) � 1 − γ( ).LBMP x, t( ), SC � 0; if PE x, t( )< PR x, t( ) (18)

EC x, t( ) � SC x, t( ) � 0; if PE x, t( ) � PR x, t( ) (19)

Here ‘γ’ is the price disequilibrium coefficient. Equations 17–19

illustrate the link between excessive and insufficient charge rates by

accounting for the real and expected temperature and solar

irradiance. It ranges from 0 to 1. In this study, a value of 0.9 is

taken into account.
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The social benefit is inversely proportional to the power

producers’ benefit. So, the social benefit will be more when the

power generator’s profit is less and vice versa.

3.2 Objective function 2

Min . VaR � Max{ ξϵ _R: ψ X, ξ( )≥ α} (20)

Min . CVaR � Max
1

1 − α
∫

f X,Y( )≥ ξ
f X,Y( )p Y( )dY (21)

Equations 20, 21 show the roles of VaR and cVaR, respectively.

The system risk has an inverse connection with VaR and CVaR. This

implies that the system risk level is determined by the lowest or

highest negative VaR and CvaR values, respectively.

Therefore, risk can be decreased by shifting towards the

right side from the left side tail of the system risk feature

(illustrated in Figure 1), implying an upward trend in the

values of VaR and CVaR. One of the primary aims of

the present effort is to lower the generation cost. Social

welfare is maximized when VaR and cVaR values lie on the

rightmost tail of the curve, suggesting the generation cost is the

lowest. Thus, there is an apparent connection between social

wellbeing, VaR, and cVaR. The numerous limitations identified

in the references allowed the optimal power flow (OPF) solution

to be achieved.

3.2.1 Operating constraints of FC
An FC generates reliable and clean power. The electrolyzer uses

excess electricity during the power demand period to produce

energy that may be kept in a hydrogen reservoir. And the stored

electricity may be used to meet the demand when the grid is running

low on power. Equation 22 shows the lowest and highest limitations

for the electrolyzer’s power usage:

PCELZ
Min

≤PCELZ ≤ PCELZ
Max (22)

The limitation of the electrolyzer’s hydrogen output is also given

by Equation 23:

HMin
2 ELZ ≤H

.
2ELZ ≤HMax

2 ELZ (23)

In addition, while the system is in FCmode, the stored hydrogen

creates electricity to satisfy peak demand. As a result, the constraints

are defined as in Equations 24, 25:

PFC Min
Gen ≤PFC

Gen ≤P
FC Max
Gen (24)

HMin
2 FC CONS ≤H.

2FC CONS ≤H
Max
2 FC CONS (25)

B. Optimal power flow constraints.

The real power balance equation is shown in Equation 26:

∑NG

i�1
Pgi − Ploss − PL � 0 (26)

Pgi denotes the real power generation, Ploss and PL is the system’s real

power exported to the grid and real power utilized by the

system’s loads.

Ploss � ∑NPTL

j�1
GJ Vi| |

2 + Vj

∣∣∣∣ ∣∣∣∣2 − 2 Vi| | Vj

∣∣∣∣ ∣∣∣∣ cos δi − δj( )[ ] (27)

The power losses in the system are calculated using Equation

27. Here, Ploss is the system’s power loss, GJ is the conductance

in the transmission line jth in the system, Vi and Vj are

the voltage magnitudes at the receiving and transmitting

points. The voltage phase angles at the transmitting and

receiving ends of the jth transmission line are denoted by δi
and δj respectively.

Pi –∑NBUS

K�1
ViVKYik| | cos θiK − δi − δk( ) � 0 (28)

Qi +∑NBUS

K�1
ViVKYik| | sin θiK − δi − δk( ) � 0 (29)

The active power flow from bus-i to all other buses in

the system is computed using Equation 28 while reactive

power is computed using Equation 29. Vi is the magnitude

of the voltage at bus i; Vk is the magnitude of the voltage

at bus k; and Yik is the admittance between buses i and k.

The phase angle difference between buses i and k is

represented by θiK. The voltage phase angles at buses i and k

are represented by δi and δk .

3.2.1.1 In-equality constraints

Pgi
min

≤ Pgi ≤Pgi
max i � 1, 2, 3 . . . . . .NBUS (30)

Qgi
min

≤Qgi ≤Qgi
max i � 1, 2, 3 . . . . . .NBUS (31)

Vi
min

≤Vi ≤Vi
max i � 1, 2, 3 . . . . . .NBUS (32)

ϕi
min

≤ϕi ≤ϕi
max i � 1, 2, 3 . . . . . .NBUS (33)

TLl ≤TLl
max i � 1, 2, 3 . . . . . .NPTL (34)

Pgi
min and Pgi

max are the smallest and most extreme actual power

generated at the PV bus. Qgi
min and Qgi

max are the least and supreme

reactive power values. Pgi and Qgi indicate actual and reactive

power. Equations 30, 31 confirm that the PV bus’s actual

and reactive power generated remains within the required

limitations as shown in Equation 32. The lowest and extreme

voltage magnitudes are represented by Vi
min and Vi

max. The

inequality Vi
min

≤Vi ≤Vi
max assures that the magnitude of the

voltage at the PQ bus stays within the parameters indicated in

Equation 33. ϕi
min and ϕi

max are the lowest and extreme phase

angles that are capable of being maintained at the PQ bus,

respectively. The optimum possible transmission of the

associated line that links the line TLl is represented by TLl
max

as shown in Equation 34.

3.2.2 UPFC constraints

KUPFC
min

≤KUPFC ≤KUPFC
max (35)

QUPFC
min

≤QUPFC ≤QUPFC
max (36)

Equations 35, 36 relates to value constraints on a variable named

KUPFC and QUPFC. The given value indicates the UPFC’s control

parameter. ‘min’ and ‘max’ are the symbols that represent the least

and supreme values of KUPFC and QUPFC.
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4 Flow chart of the proposed method

The flow charts for the proposed method are shown in

this section.

The steps involved in the approach that is being provided are

as follows.

• Scenario generation by considering different abnormal

conditions in the power system.

• Measurement of VaR and CVaR for all scenarios.

• Choose the most risky scenarios based on the VaR and

CVaR values.

• Optimal placement of solar plant based on BSI values and

check the system economy and risk improvement.

• UPFC placement based on LCF values and check the system

economy and risk improvement.

• Compare the LBMP and voltage profile with and without

considering the solar plant.

• FC placement in the system and verify the profit

improvement scenario.

The process for calculating the system profit and

disequilibrium pricing is shown in Figure 3. UPFC is a

device that modifies the impedance of the transmission line

and injects or absorbs reactive power from the bus to regulate

the flow of power in power systems. An ideal method for

allocating UPFCs in a power system is shown in Figure 4.

The procedure computes the objective for each case and

inserts a UPFC into the system’s specified line. The goal of

the optimization problem is expressed mathematically by the

objective function. Lowering the cost of power generation in the

power system is the goal function in this instance. Lastly, using

FIGURE 3

Flow-chart for DP calculation.
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the smallest goal function, the algorithm chooses the best UPFC

configuration.

5 Results and discussions

The proposed technique is put to the test using the IEEE

39-bus New England practical system. The New England

practical system, which consists of 39 buses, is a real-world

power system used for study and analysis. It is made up of

39 buses, ten generators, and 25 loads (Biggins et al., 2023).

Figure 5 displays the connection diagram of the considered

system. The proposed technique is being evaluated for its

efficacy in solving a specific problem or accomplishing a

specific objective. The outcomes of these tests will assist in

determining whether the proposed technique is a feasible

solution to the problem at hand.

The complete implementation and validation of the suggested

technique took five separate case studies on the system into

account. The steps to accomplish the proposed work are

outlined here.

Case 1. Create scenarios and investigate the connection between

VaR and CVaR along with system objectives.

Case 2. Choosing the maximum critical circumstances and the

utmost complex buses (for solar power installation).

Case 3. Identifying the system’s most congested line and placing the

UPFC at that point.

FIGURE 4

Flow-chart for placement of UPFC.
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Case 4. Investigate the influence of real and expected solar power

on system economics and hazards.

Case 5. Place the FC in the examined system and calculate its profit.

Case 1: It involves generating several scenarios (120 in total)

based on different factors such as generator outages, transmission

line outages, and load increments. Out of these 120 possibilities,

40 are rated as having the highest risks. The degree of risk for these

selected scenarios is calculated using VaR and CVaR. Table 1

displays the 40 scenarios studied, as well as the objective function

value (i.e., system generation cost). The ‘Scenario (Line Outage)’ in

Table 1 represents the chosen cases in which different line outages

have been considered. The power system operation is very uncertain

due to the chances of abnormalities in the system. Given this

premise, many situations were chosen to test the effectiveness of

the suggested technique. VaR is a statistical term that calculates the

greatest possible loss that an investment or portfolio might incur

over a certain period with a particular level of confidence. It is

determined using the probabilistic distribution of the portfolio’s

returns. CVaR, also known as Expected Shortfall, is a risk metric that

calculates the expected loss above the VaR threshold. It gives a more

thorough risk assessment than VaR alone. In this scenario, the VaR

and CVaR values are calculated using the LBMP of each bus in the

system. The application of VaR and CVaR in this situation aids in

identifying the scenarios with the largest risks, which can then be

further evaluated to find the ideal location of solar plants and

FACTS devices to reduce risks and increase societal welfare.

To make the research more efficient and well-represented, the

40 scenarios selected were divided into two-halves, each including

20 scenarios. Figures 6, 7 illustrate the link between VaR, CVaR, SW,

and the objective function. VaR and CVaR are risk value estimates

that are inversely proportional to system risk. The objective function

is a measure of multiple system costs, and its smallest value is

desirable to reduce total system costs. Figures 6A, C demonstrate

that the objective function is inversely related to VaR and CVaR.

This indicates that the smallest value of the objective function

corresponds to the greatest value of VaR and CVaR, and vice versa.

Figures 6B, D show that social wellbeing has a direct relationship

with VaR and CVaR. Because the considered objective function (F)

reflects numerous system expenses, its smallest value is wanted to

achieve the lowest total system cost. As a result, the risk is reduced to

the minimum value of the goal function, which is also desirable.

Case 2: Because of the negative-maximum (or minimum) values

of VaR and CVaR, scenario no. 27 is the most catastrophic situation

(i.e., outage of transmission lines linked between buses 1–2, 3–18,

10–13, and 12–11) among all created scenarios in the system (shown

in Figures 6, 7). The increased risks lead to lower social welfare and

profit because increased system risk needs additional security

measures for system stability, necessitating more economic

consideration. To minimize the objective function, the values of

VaR and CVaR must be maximized (or negative-minimized).

Scenario 27 is chosen to maximize societal welfare while

reducing system hazards through appropriate solar plant

locations. Considering the variability in solar power generation

due to the different environmental parameters, six different solar

power capacities have been considered i.e. 1, 1.5, 2, 2.5, 3, and 5MW.

The objective is to determine the best location for these solar power

sources in the system. Solar plants must be placed on the system’s

most vulnerable buses. To appropriately situate the solar plant in the

system, the Bus Sensitivity Index (BSI) was introduced in this work.

FIGURE 5

Single-line illustration of considered new england system (Biggins et al., 2023).
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This algorithm determines the most sensitive bus in the system and

where solar plants should be located to enhance total value across

the network. A priority list is created by grouping the BSI values in

decreasing order (as seen in Table 2). The bus with the highest BSI

rating is the most sensitive one in the system. BSI is mathematically

defined as in Equation 37:

BSIm �
LBMPm,Base − LBMPm,LO( )∣∣∣∣ ∣∣∣∣

LBMPMax ,LO

(37)

Where, BSIm denotes the bus sensitivity index at bus-m.

LBMPm,Base and LBMPm,LO are the values of bus-m’s LBMP in

the base conditions and with a line outage situation. LBMPMax ,LO is

the extreme value of LBMP in the system after all contingency

requirements have been met.

The top six buses with the highest BSI values (excluding

generator buses) are chosen for solar plant deployment. Bus

number 32 is also among the top six buses in terms of BSI

values, but it is omitted since it has a conventional generator. So,

solar plants are placed on buses no. 5, 6, 7, 8, 10 and

11 respectively. All conceivable combinations of selected six

values of solar power have been installed in the system and

the values of VaR, CVaR, as well as the overall system

generating price, have been measured.

Table 3 shows the top ten finest solar plant site alternatives in the

system, along with their VaR, CVaR, and system generation price

(including SGC). Scenario 9 has the lowest values for VaR, CVaR,

and overall cost. When solar plants are added to the system, the

lowest cost (55933.34 $/h) is achieved, as opposed to the base case

cost (56109.55 $/h). Table 1, Table 3, Figure 6, and Figure 7 show

that the establishment of a solar power plant in the analyzed system

reduces system risk and generating costs. Figure 8 show a

comparison of VaR, CvaR, and system total generating costs

before and after solar installation. The comparison of the top

10 solar power location combinations (given in Table 3) is

displayed in these graphs.

In this instance, the worst conditions (i.e., combination no. 19)

were chosen to test the efficiency of the provided strategy in the

following phase (i.e., employing the optimal UPFC installation).

Case 3: This phase provided an approach for reducing a power

system’s economic risk by optimizing the location of solar plants

and FACTS devices. The previous stage in this work revealed that

putting solar power plants in certain places can help to reduce

economic risk by increasing the value of risk assessment criteria.

The purpose of this scenario is to determine the optimal position

for FACTS devices in the system. The optimal placement of FACTS

devices can contribute to the power system’s stability and

efficiency. In this study, a new factor, the Line Congestion

Factor (LCF) shown in Table 4, was developed to identify the

most crowded transmission line in the system and where FACTS

devices should be placed to reduce the negative impact of system

congestion on the customer.

The mathematical formulation of LCF is shown in Equation 38:

TABLE 1 Objective function value for considered scenarios.

Sl Scenario (line outage) Obj. Func. ($/h) Sl Scenario (line Outage) Obj. Func. ($/h)

1 Base 55682.67 21 15_16 55720.93

2 1_39 55784.6 22 12_13, 15_16 55721.04

3 1_2 55776.26 23 9_39, 12_11, 15_16 55724.53

4 2_3 56062.95 24 1_2, 12_11, 15_16 55945.72

5 2_25 55739.51 25 1_2, 3_18, 12_11 55750.08

6 3_4 55695.96 26 1_2, 3_18, 12_11, 14_15 55854.71

7 4_5 55710.79 27 1_2, 3_18, 10_13, 12_11 57152.71

8 4_14 55750.56 28 1_2, 3_18, 10_13, 13_14 57066.59

9 5_8 55715.28 29 1_2, 3_18, 10_13, 12_13 57060.19

10 6_7 55753.40 30 1_2, 2_25, 3_18, 10_13 57009.78

11 6_11 56108.01 31 1_2, 3_4, 3_18, 10_13 56670.63

12 7_8 55696.81 32 1_2, 4_5, 3_18, 10_13 56498.90

13 8_9 55686.32 33 1_2, 5_8, 3_18, 10_13 56413.19

14 9_39 55681.67 34 1_2, 3_18, 16_17 55954.52

15 10_11 56109.55 35 1_2, 3_18, 16_21 55924.14

16 10_13 56201.74 36 1_2, 3_18, 14_15, 16_21 56103.60

17 12_11 55682.66 37 1_2, 3_18, 14_15, 28_29 55876.51

18 12_13 55682.66 38 1_2, 3_18, 14_15, 26_28 55876.70

19 13_14 56883.21 39 1_2, 3_18, 14_15, 23_24 56101.94

20 14_15 55718.36 40 1_2, 3_18, 14_15, 22_23 55857.74
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LCFmn �
LPFmn,Max − LPFmn( )∣∣∣∣ ∣∣∣∣

LPFmn

(38)

Here, LCFmn is the LCF for the transmission line connecting

between buses m and n. LPFmn,Max signifies the maximum line flow

in the system, and LPFmn represents the actual line rating of the line

joining buses m and n. As in the last cases, other factors LCF were

used here to detect the supreme congested lines to place UPFC

optimally. Table 10 displays the significant list of congested lines

present in the considered system in increasing order of LCF values.

Lines 20, 5, 37, 35, and 14 have been identified as the most crowded

lines with the lowest LCF values. Now, UPFCs have been installed on

particular transmission lines i.e. 5, 14, 20, 35, and 37 across the

system. The results for the best location of UPFC devices are

presented in Table 5.

In Table 5, QUPFC is the reactive power injected or withdrawn

from the ‘to bus’ to which the UPFC is attached. KUPFC and QUPFC

operating ranges have vacillated from −0.7 to 0.2 and −100 to 100,

respectively. To determine the ideal UPFC range, the UPFC was put

on a specific transmission line, and the values of KUPFC and

QUPFC were changed concurrently within the given range while

measuring the values of the objective function for all cases. Finally,

FIGURE 6

Relationship between VaR, CVaR, SW, and objective function

(A–D) for scenarios 1–20.

FIGURE 7

Relationship between VaR, CVaR, SW, and objective function

(A–D) for scenarios 21–40.
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the optimum range was calculated using the lower values of the

target function (where the aim function is to reduce the cost of

system generation).

The total generating cost for various UPFC deployments in the

system is shown in Table 5. When UPFC is installed on line no. 20,

the total generating cost is the lowest. After the deployment of UPFC

at line no. 20, the total associated generating cost is 55881.352 $/h.

This cost is less than the base scenario total generation cost of

56109.53 $/h. The use of UPFC in the system helps to reduce system

risk, as seen in Figure 9. The system risk and generation cost are

reduced at a higher rate with the installation of FACTS devices and a

solar plant in the system.

Case 4: Solar energy is a versatile energy source as it differs in

intensity based on location and timing. A specific location in

India, Vijayawada, was analyzed to address current issues. Data

on solar irradiance and temperature was gathered for 24 h with a

time difference of 3 h. The solar irradiance and temperature data

of 5 time spans in a day (i.e. 7 a.m., 10 a.m., 1 p.m., 4 p.m., and

7 p.m.) have been considered. At night, solar irradiance is zero.

So, that period was not considered for the study. By applying

Equations 1–5, the amount of solar power generated per hour was

calculated and presented in Table 6. Till date, only a small

number of researchers have recognized the significance of the

fluctuations in solar power generation when it comes to system

economics. However, it is essential to acknowledge this factor

when attempting to optimize the operation of the system within a

deregulated system, as it cannot be disregarded. In deregulated

systems, it is imperative to consider the concept of disequilibrium

price, which arises from the disparity between the actual and

expected solar power generation, to ensure the welfare of society.

Solar plants are required to furnish the ISO with their estimated

power generation scenario before the date of operation in a

deregulated electricity system. The ISO oversees electricity

generation from various stations based on this data. However,

TABLE 3 Optimal placement of solar plant.

Combination no. Solar plant placement (in MW) VaR CVaR Total cost including SGC ($/h)

Bus5 Bus6 Bus7 Bus8 Bus 10 Bus 11

3 2 2.5 3 5 1 1.5 −0.243 −0.2673 55942.66

8 2 2.5 3 5 1.5 1 −0.2437 −0.2681 55945.18

9 2.5 3 5 1.5 1 2 −0.2429 −0.2672 55933.34

13 1 2.5 3 5 1.5 2 −0.2437 −0.2681 55945.24

15 3 5 1.5 2 1 2.5 −0.2430 −0.2673 55943.15

19 1 3 5 1.5 2 2.5 −0.2444 −0.2688 55942.28

21 5 1.5 2 2.5 1 3 −0.2430 −0.2673 55943.01

24 2.5 1 3 5 1.5 2 −0.2437 −0.2681 55945.2

27 1.5 2 2.5 3 1 5 −0.243 −0.2673 55943.06

29 2.5 3 1 5 1.5 2 −0.2437 −0.2681 55945.38

TABLE 2 Bus sensitivity Index (BSI) priority list.

Bus no. LBMP Bus sensitivity index (BSI) Rank

Base case (1) After line outage (2) Difference (1–2)

10 18.37 13.97 4.4 0.2294415 1

32 18.37 14.108 4.262 0.2222454 2

11 18.417 19.031 0.614 0.0320175 3

7 18.592 19.153 0.561 0.0292538 4

8 18.621 19.177 0.556 0.0289931 5

5 18.535 19.088 0.553 0.0288366 6

6 18.51 19.062 0.552 0.0287845 7

31 18.494 19.046 0.552 0.0287845 8

12 18.419 18.943 0.524 0.0273244 9

9 18.589 19.109 0.52 0.0271158 10
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FIGURE 8

Comparison of value-at-risk (VaR), conditional value-at-risk (CVaR), and system total generating costs before and after solar placement.

TABLE 4 Line congestion factor (LCF) priority list.

Transmission line no. From bus (FB) To bus (TB) Line congestion factor (LCFmn) Priority rank

20 10 32 0 1

5 2 30 0.035 2

37 22 35 0.119 3

35 21 22 0.191 4

14 6 31 0.205 5

39 23 36 0.274 6

33 19 33 0.363 7

10 5 6 0.395 8

34 20 34 0.534 9

3 2 3 0.617 10
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because of the unpredictability of solar irradiance and

temperature, solar plants may fail to provide the anticipated

energy, breaching market contracts and imposing an economic

cost on generating enterprises, a situation known as

disequilibrium pricing. The disequilibrium price, which

measures the discrepancy between predicted and real solar

data, takes into account all differences in expected and actual

solar irradiance and temperature. When the difference between

predicted and actual solar data is biggest, the disequilibrium price

is highest. When the expected solar power exceeds the actual

solar power, the shortfall charge rate is applied; when the real

solar power surpasses the projected solar power, the excess

charge rate is applied. If the projected and actual solar power

are identical, the shortfall and excess charge rates are zero.

Shortfall and excess charge rates can be used to compute the

electrical system’s total disequilibrium price. The disequilibrium

price is negative if the ISO penalizes the producing station for a

lack of renewable energy supply, and positive if the ISO

compensates the generating station for having an excess

supply of renewable energy.

Table 6 compares the expected and actual levels of solar

power for considered 5 situations. There are times when the

predicted solar power surpasses the real, and vice versa.

Furthermore, there are times when the predicted and actual

numbers are the same. Because of these changes, the system

may experience positive, negative, or zero disequilibrium pricing,

which can affect the system’s total profit. Table 7 and Figure 10

show the profits earned by the deregulated system for all

TABLE 5 Optimal UPFC placement.

Line no. From bus (FB) KUPFC QUPFC Inv. Cost of UPFC ($/h) Total generation cost ($/h)

5 2 0.2 2 3.436 55886.604

14 6 −0.7 2 3.281 55886.006

20 10 0.2 2 3.837 55881.352

35 21 −0.25 2 2.387 55886.595

37 22 −0.1 2 3.949 55888.501

FIGURE 9

Comparison of VaR, CVaR and system generation cost before

and after UPFC placement.

TABLE 6 Real-time expected (esp) and actual (asp)solar power data (InMW).

Time 7 a.m. 10 a.m. 1 p.m. 4 p.m. 7 p.m.

ESP 0.065 0.72 1.75 1.7 0.01

ASP 0.09 0.67 1.63 1.7 0.02

TABLE 7 System profit with and without DP.

Case/Hour Profit without
DP ($/h)

Profit with
DP ($/h)

Base case 3229.568 3229.568

7 a.m. 3251.235 3262.247

10 a.m. 3290.261 3272.921

1 p.m. 3356.328 3340.834

4 p.m. 3362.429 3362.429

7 p.m. 3235.63 3239.683
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5 scenarios along with the base case, taking into consideration the

disequilibrium pricing at selected locations. The base case is

considered when there is no solar power available in the grid

(i.e., nighttime). The findings show that the unpredictability of

renewable energy sources has hurt system profit in a few

circumstances. This is not a desirable consequence for

electricity producers. To increase total system profit, it is

critical to reduce the cost of disequilibrium. This can be

accomplished by deploying an adequate renewable energy

forecasting technique or energy storage device to prevent

power system disequilibrium.

Case 5: The UPFC is used to maximize profit in deregulated

systems while also improving the power system’s efficiency and

economic performance. UPFC installation requires establishing the

best cost-effective position and capacity for these devices in the

power system, which may be done by mathematical programming.

Reduced transmission losses, increased transmission capacity, and

enhanced voltage stability can all lead to cheaper operating costs and

higher profits for market participants such as generators and

transmission companies. Furthermore, UPFC adoption can help

to relieve congestion in the transmission network, allowing for better

utilization of existing infrastructure and reduced consumer rates.

Overall, UPFC placement is a useful device for maximizing profit in

deregulated systems since it improves the economic performance

and efficiency of the power system for both market participants

and consumers.

It has been observed through the analysis of Table 7 and

Figure 10 that the presence of disequilibrium prices has had a

detrimental effect on the overall profit of the system in numerous

instances. To address this issue, a methodology has been put forth

FIGURE 10

Comparison of system profit with and without DP

TABLE 8 System profit with DP and FC (In $/h).

Case/
Hour

System profit with DP
and without FC

System profit with
DP and with FC

Base case 3229.568 3231.038

7 a.m. 3262.247 3264.168

10 a.m. 3272.921 3274.561

1 p.m. 3340.834 3343.129

4 p.m. 3362.429 3364.782

7 p.m. 3239.683 3241.962

TABLE 9 System profit with DP after installation of FC and UPFC(In $/h).

Case/
Hour

System profit with DP and
without FC

System profit with DP
&installation of FC

System profit with DP and installation of
FC and UPFC

Base case 3229.568 3231.038 3233.254

7 a.m. 3262.247 3264.168 3266.387

10 a.m. 3272.921 3274.561 3276.627

1 p.m. 3340.834 3343.129 3345.269

4 p.m. 3362.429 3364.782 3366.814

7 p.m. 3239.683 3241.962 3244.268
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in this section which aims to optimize the system profit by

strategically placing FC and UPFC components in the presence

of DP. The utilization of FC-integrated systems is required to

mitigate the detrimental impact of disequilibrium pricing on

system profitability. When there is excess solar power during

off-peak load hours, the FC system employs an electrolyzer to

produce hydrogen, which is subsequently used to create electricity

at other times. Furthermore, FC technology covers the gap between

expected and real solar power schedules, therefore increasing

overall power generation. To maximize the system’s profit, a

TABLE 10 System profit with DP, FC, and UPFC with different optimization methods (IN $/H).

Case/Hour Profit with DP and installation of FC and UPFC
using SQP

Profit with DP and installation of FC and UPFC
using SMA

Base case 3233.254 3238.367

7 a.m. 3266.387 3271.624

10 a.m. 3276.627 3281.238

1 p.m. 3345.269 3350.128

4 p.m. 3366.814 3371.974

7 p.m. 3244.268 3249.438

FIGURE 11

Voltage Comparison With And Without Solar Power (In p. u.).

FIGURE 12

LBMP comparison with and without solar power (in $/h).
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fixed energy capacity with a 2 MW FC system was installed on bus

number 8, which has the highest demand (excluding the

generator bus).

The results demonstrate that installing the FC system enhanced

the system’s profit greatly since FCs are employed as energy storage

to lessen the gap between expected and actual solar output. Table 8

depicts the profit for the deregulated system after accounting for

disequilibrium pricing and the use of FCs. The UPFC installation

can increase system profit by lowering system congestion costs.

Table 9 shows the system profit once the FC and UPFC are installed.

As a consequence, it is possible to deduce that the FC location is

sufficient to optimize system profit while minimizing the influence

of disequilibrium pricing in the system. UPFC increases system

profit by cutting transmission line congestion while increasing

power flow capacity through the current transmission channel.

The solar power installation adds to the system’s safety and

security. Figures 11, 12 compare the system voltage profile and

location-based marginal price profile with and without the presence

of a solar facility. It can be observed that the voltage profile is

attempting to get the maintain closer to 1 p. u., which will increase

the system’s safety. The lower LBMP pricing gives a greater

economic advantage to society as a result of the installation of

solar electricity in the deregulated system.

To assess the capabilities and usefulness of this presented

strategy, several optimization methods, like Slime Mould

Algorithm (SMA), have been used in combination with

Sequential Quadratic Programming (SQP). Table 10 and

Figure 13 show the system’s profitability using various

optimization methodologies. According to the study,

integrating a solar plant with an FC system increased system

profitability above doing so without. The use of the SMA

optimization technique in a solar-FC hybrid system to

reduce disequilibrium pricing and system economic risk is a

significant advancement in this work. In all analyzed cases of

system profit maximization, SMA algorithms beat other

optimization methods.

All prior examples (from Step 1 to Step 4) have employed the

SQP. The SMA optimization approach, together with SQP, has been

implemented in this part of the work. Based on the findings, it is

possible to infer that combining UPFC and FC with the action of

SMA can give improved economic safety to the power network.

6 Conclusions and future work

This work introduces a novel technique for reducing economic

risks and determining the best site and parameter settings for UPFC

and solar facilities in a deregulated environment. The proposed

approach employs two novel indices based on location-based

marginal pricing and transmission line flows to identify critical

buses and lines in the system. These variables are then used to

optimize the location of solar plants and UPFC to reduce economic

risk. To assess the approach’s efficacy, a realistic IEEE 39-bus New

England system was tested. The results show that the suggested

technique efficiently decreases risk, optimizes system profit,

improves social welfare, and lowers overall generating costs. The

addition of solar power with UPFC reduces system risk, resulting in

higher system revenues and less congestion. Furthermore, the

addition of UPFC to the solar-powered system increases the

LBMPs of buses across the network, helping customers by

lowering energy costs. The study’s findings give useful insights

for power sector professionals, allowing them to make educated

decisions that maximize income while guaranteeing the energy

system’s stability and efficiency. The paper discusses the

utilization of an FC storage system to offset deviations in the

real-time power market caused by the integration of solar power.

The SMA algorithm is identified as the most effective optimization

technique in terms of improving the system’s economic

performance. There is a lot of potential for future study in this

area, and some of it is mentioned in this paper, such as extended

testing on bigger and more varied networks that may be

undertaken. The study in this paper focuses on solar PV,

FIGURE 13

System profit comparison with DP, FC and UPFCWIth different optimization methods.
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however, it may also be undertaken with other renewable sources

such as wind energy, etc. Assessing the environmental benefits of

the suggested approach, particularly in terms of emission reduction

and sustainability, can offer a comprehensive picture of its benefits.

The study proposes a promising approach to mitigating system

risk and improving the location of UPFC and solar power plants in a

deregulated system. But, some limitations can be considered for

future research such as the extensive consideration of the economic

and policy situation in different regions, which could affect the

applicability and effectiveness.
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