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A B S T R A C T

This review offers an in-depth examination of Deep Learning (DL) and Machine Learning (ML) techniques for 
smart grid load forecasting, emphasizing language precision, methodological rigor, and the exploration of novel 
contributions. The language used in this review is both technical and accessible, balancing complex concepts 
with clear explanations to cater to both specialists and general readers. It meticulously dissects contemporary DL 
models, including neural networks and ensemble methods, and evaluates their effectiveness through a detailed 
review of algorithms and frameworks. The methodology section systematically compares these techniques 
against traditional forecasting methods using performance metrics such as MAPE, RMSE, and MSE, ensuring a 
comprehensive assessment of their accuracy and scalability. A significant contribution of this review is its ex-
amination of real-world applications and case studies, which demonstrate how ML and DL techniques address 
practical challenges in energy management, such as grid stability and demand forecasting. Furthermore, the 
review introduces novel perspectives on the integration of probabilistic forecasting and ensemble methods, 
which offer innovative approaches for managing energy demand uncertainties. By identifying current limitations 
and proposing future research directions, this review not only advances the understanding of DL and ML ap-
plications in smart grids but also provides a foundation for future developments in this evolving field.

1. Introduction

Instances of highly variable distributed generation sources (Hussain 
et al., 2020a), such as electric vehicles (Ustun et al., 2012; Distributed 
Energy Resources DER, 2011), photovoltaic systems (Distributed Energy 
Resources DER, 2011; Hussain et al., 2020a), wind turbines (Dey et al., 
2020; Patil et al., 2022), and energy storage devices (Das et al., 2022a; 
Haq et al., 2023), present challenges to the stability of power and dis-
tribution networks (Nadeem et al., 2019). These sources contribute to 
distributed generation, and their integration may potentially jeopardize 
system stability (Latif et al., 2020; Hussain et al., 2020b; Barik et al., 
2021). The primary concern in many cases is the imbalance that can 
arise between power supply and demand (Farooq and Rahman, 2022; 
Safiullah et al., 2022). Such imbalances, observed in numerous case 
studies, can lead to disruptions in the network (Aftab et al., 2021), 

manifesting as voltage fluctuations and, in severe cases, blackouts 
(Ranjan et al., 2021a; Latif et al., 2021; Anonymous, 2021a). Further-
more, disturbances in the network are conceivable (Kamrul et al., 2024).

Potential network disruptions are a concern, which could lead to 
significant complications (Ustun et al., 2021a). The implementation of 
energy management systems allows achieving dual objectives: reducing 
peak loads during unforeseen periods and improving the equilibrium 
between supply and demand effectively (Hussain et al., 2022; Srivastava 
et al., 2022; Das et al., 2022b; Ustun and Hussain, 2020). This goal is 
accomplished through the establishment of energy management sys-
tems. Two fundamental categories can be applied to energy manage-
ment classification (Fekri et al., 2023). The first category pertains to the 
supplier side, such as electric utilities, which involves the activation or 
deactivation of certain generators in response to variations in load de-
mand (Ustun et al., 2022).
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The second category, termed demand-side management, focuses on 
consumer-side management of the market (Chauhan et al., 2021; Ranjan 
et al., 2021b). This entails consumers regulating their energy usage to 
meet the electricity demand created by generation-side implementation 
of demand-side management. This is done to meet the power demand. 
The primary objective of implementing energy management is to reduce 
operating and consumption costs (Singh et al., 2021), minimize energy 
losses (Sahoo et al., 2023). Another objective is to improve network 
reliability (Al-Shetwi et al., 2022; Dawn et al., 2021).

Load forecasting, illustrated in Figure 4, is resilient due to its capa-
bility to adjust to dynamic changes in energy demand and generation 
patterns, thereby enhancing grid stability and reliability. By integrating 
machine learning and deep learning techniques, forecast models can 
accurately capture intricate trends and fluctuations. The resilience is 
further bolstered by ensemble methods, which mitigate uncertainties 
and enhance forecast performance. Additionally, probabilistic fore-
casting provides a proactive approach to managing unpredictability, 
empowering decision-makers to make informed risk management de-
cisions. Overall, the resilience of load forecasting ensures efficient 
resource allocation, grid optimization, and sustainable energy man-
agement, thereby contributing to a more robust and adaptable energy 
infrastructure.

The power utilities with different generation modalities (DGM) 
experience complexities & minimal error in predicting future load 
forecasting. It features diverse components including residential homes, 
commercial offices, and industrial facilities, all connected to a central 
power distribution tower. This highlights the process of collecting data 
through smart meters installed at each component location. This data is 
then transmitted to a central system for aggregation and analysis. The 
core of the process involves using advanced algorithms to forecast en-
ergy demand and supply needs based on historical and real-time data. By 
optimizing electricity distribution, smart grids enhance energy man-
agement, improve efficiency, and balance supply and demand through 
data-driven insights.

On the other hand, it has a significant future in which the majority of 
the research that is being done right now is concentrated on the devel-
opment of complex algorithms and models in order to improve the 
management of the energy that is on the grid. This is being done in order 
to make the grid run more efficiently. The reason for this is that it has a 
good future ahead of it. For the purpose of satisfying the requirements of 
the customers and making their lives easier, it is essential that there be 
an increase in the quantity of power that is generated. The reason for this 
is that the need for energy is only going to continue to increase all across 
the world. On the other hand, the demand for electricity may result in 
difficulties for the operators of the electric utilities and the system as a 
whole. This predicament is the result of a variety of variables, the most 
important of which are the unpredictability of the electric load and the 
fact that there are more customers overall. In addition, there is a 
considerable possibility that high peak demands may occur at a variety 
of different times, which may pose a risk to the system’s capacity to 
carry out its functions (Al-Quraan et al., 2023; Alsirhani et al., 2023).

For effective energy planning and management in power systems, 
load forecasting is crucial. It is divided into a number of groups ac-
cording to the time prediction horizon.

Very Short-Term Load Forecasting (VSTLF): This category typically 
involves predicting load demand over minutes to a few hours ahead. 
VSTLF is crucial for real-time operations, such as unit commitment, 
dispatch scheduling, and grid stability. Techniques like autoregressive 
integrated moving average (ARIMA), artificial neural networks (ANN), 
and support vector machines (SVM) are commonly employed for VSTLF 
due to their ability to capture short-term dependencies and rapid load 
fluctuations.

Short-Term Load Forecasting (STLF): STLF extends the prediction 
horizon to a day, a week, or up to a month ahead. It aids in optimizing 
resource allocation, energy trading, and economic dispatch. STLF 
models often integrate weather forecasts, historical load data, and 

calendar effects. Methods such as ARIMA, exponential smoothing, and 
STLF applications frequently use machine learning techniques like 
gradient boosting and random forests.

Medium-Term Load Forecasting (MTLF): MTLF typically spans from 
several months to a year ahead. It facilitates capacity planning, infra-
structure investment decisions, and policy formulation. MTLF models 
incorporate factors such as economic indicators, population growth, and 
industrial activities. Time series analysis, econometric models, and 
regression techniques are commonly used in MTLF.

Long-Term Load Forecasting (LTLF): LTLF involves predicting load 
demand several years or decades into the future. It informs long-term 
investment strategies, grid expansion plans, and renewable energy 
integration. LTLF models consider factors like demographic trends, 
technological advancements, and regulatory changes. Econometric 
models, scenario-based analysis, and system dynamics approaches are 
employed in LTLF due to the complexity and uncertainty of long-term 
forecasts.

In conclusion, each type of load forecasting has a specific function 
and makes use of specialized techniques to deal with the particular 
difficulties posed by various time horizons for prediction in power sys-
tem planning and operation. On the other hand, the taxonomy for load 
forecasting approaches can be organized into three primary categories: 
statistical methods, machine learning methods, and deep learning 
methods. Here is a concise summary:

Statistical methods play a crucial role in load forecasting and anal-
ysis. Time Series Analysis is employed for load forecasting, utilizing 
strategies such as Exponential Smoothing and ARIMA (Auto Regressive 
Integrated Moving Average) (Dey et al., 2023). These techniques are 
effective in capturing temporal patterns and trends in historical load 
data. Regression Analysis is utilized to establish relationships between 
historical load data and other significant variables (Hamoudi et al., 
2023). This method helps quantify the impact of various factors on 
electricity consumption patterns. Seasonal decomposition methods, 
such as the seasonal decomposition of time series, are employed to 
decompose load data into trend, seasonal, and residual components 
(Yadav and Malik, 2021). This approach aids in understanding seasonal 
variations and their influence on overall load patterns.

Machine Learning methods offer advanced techniques for load 
forecasting. Support Vector Machines (SVM) are utilized to predict 
future load by analyzing historical data and relevant characteristics 
(Chatterjee et al., 2024). SVMs excel in capturing complex relationships 
and patterns in data. Techniques such as Random Forest, an ensemble 
method, is effective in handling non-linear relationships and in-
teractions between variables in load forecasting (Ustun et al., 2021a, 
2021b; Yarar et al., 2023). By aggregating predictions from multiple 
decision trees, Random Forest enhances predictive accuracy. Similar 
approaches iteratively build a series of weak learners to create a robust 
learner for load forecasting tasks (Pattanaik et al., 2024). This iterative 
approach sequentially improves prediction accuracy by focusing on 
previously mis predicted data points.

Deep Learning methods, particularly Recurrent Neural Networks 
(RNNs) such as Long Short-Term Memory (LSTM) networks, are 
increasingly employed for sophisticated load forecasting. RNN archi-
tectures, notably LSTM networks, are adept at analyzing sequential data 
like time series, which is crucial for accurate load forecasting 
(Abdolrasol et al., 2023; Anonymous, 2021b; Ulutas et al., 2020). These 
networks excel in capturing long-term dependencies and temporal dy-
namics in data, making them well-suited for modeling electricity con-
sumption patterns over time.

Each of these methods possesses distinct advantages and disadvan-
tages, and Depending on the specific characteristics of the load data and 
forecasting requirements, their effectiveness may vary. Finding the best 
strategy for a given forecasting task requires conducting tests and vali-
dating findings. Based on the above discussions, this review provides a 
comprehensive overview of recent advancements in smart grid load 
forecasting methods. It underscores the critical importance of load 
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forecasting within the realm of smart energy management, emphasizing 
its pivotal role in optimizing energy distribution and consumption 
strategies. The review explores the integration of advanced techniques 
from deep learning and machine learning, demonstrating their efficacy 
in enhancing the accuracy and reliability of load forecasting models. 
Furthermore, it identifies and discusses significant challenges encoun-
tered in smart grid load forecasting, including issues related to data 
quality, scalability, and model interpretability. These insights lay the 
foundation for future research directions aimed at addressing these 
challenges and advancing the field. Additionally, the review evaluates 
the potential of ensemble methods in bolstering load forecasting per-
formance, highlighting their capability to mitigate uncertainties and 
elevate forecast accuracy in dynamic energy environments.

2. Review of load forecasting in power systems

The load forecasting problem in conventional and smart grids varies 
substantially due to the distinct characteristics and capacities of each 
grid system. Traditional systems commonly employ rudimentary sta-
tistical models and historical data to forecast future power demand in 
load forecasting. These models frequently fail to consider the ever- 
changing nature of energy consumption patterns and have limited ca-
pacity to adjust to changing circumstances.

In addition, traditional grids do not possess the capacity to see and 
act in real-time, which creates difficulties in administering demand- 
response programmes and incorporating renewable energy sources. 
Load forecasting in smart grids use sophisticated technologies like sen-
sors, smart metres, and communication networks to collect up-to-date 
information on electricity consumption, generation, and system condi-
tions. Smart grid load forecasting utilises advanced machine learning 
and deep learning algorithms to analyse extensive data and detect 
intricate trends in energy consumption. This allows for more precise and 
detailed forecasts of electricity consumption, which helps improve the 
administration and optimisation of the power grid.

Furthermore, smart grids facilitate the implementation of dynamic 
pricing mechanisms and demand-response programmes, which enable 
utilities to motivate users to modify their electricity consumption in 
accordance with real-time system circumstances. In smart grids, load 
forecasting is characterised by its dynamic, adaptive, and data-driven 
nature, which sets it apart from conventional grids. This allows for 
enhanced efficiency, dependability, and sustainability in energy 
management.

When it comes to load forecasting, the classification into distribution 
of load forecasting, hierarchical load forecasting, and probabilistic load 
forecasting provides a systematic framework to tackle various parts of 
the forecasting process. Below is a detailed analysis of each category:

Forecasting the Distribution of Power Demand is the process of 
estimating the amount of power is known as spatial load forecasting. It is 
needed at different points within a specific region or network. This 
technique recognizes the regional variability in load patterns caused by 
factors such as population density, industrial activities, and climate 
fluctuations. Methods such as spatial interpolation, geographic infor-
mation systems (GIS), and clustering techniques can be used to capture 
spatial relationships and forecast the load at specific areas. Efficiently 
managing generation, transmission, and distribution resources across 
multiple regions is of utmost importance for utilities, making spatial 
load forecasting a critical task.

Hierarchical Load Forecasting refers to the process of predicting the 
electricity demand at different levels of a hierarchical structure, such as 
at the national, regional, or local level. Hierarchical load forecasting 
acknowledges the hierarchical arrangement of the electricity grid, 
encompassing distinct tiers such as national, regional, and local grids. 
This methodology entails predicting the demand at every level of the 
hierarchy, considering the combination and separation of load data. 
Forecasts can be created for many levels of electricity demand, including 
national, regional, and specific load zones within regions. Hierarchical 

load forecasting enables efficient decision-making at different adminis-
trative levels and aids in coordinating load balancing tactics throughout 
the grid.

Probabilistic Load Forecasting: Probabilistic load forecasting extends 
beyond making single predictions by offering probabilistic forecasts that 
encompass the inherent uncertainty in load forecasting. Probabilistic 
forecasting involves generating a probability distribution of future load 
scenarios, allowing decision-makers to evaluate the probability of 
various events and make well-informed risk management choices, rather 
than anticipating a single value. Probabilistic load forecasting often 
employs techniques such as ensemble methods, Bayesian methodolo-
gies, and Monte Carlo simulations. This method is especially beneficial 
for utility companies and grid operators to accurately measure and 
control the unpredictability linked to fluctuations in power demand, 
market conditions, and the integration of renewable sources.

By integrating these classifications into the load forecasting paper, a 
thorough examination of the many aspects of forecasting methods and 
their practical ramifications in the energy industry may be achieved.

2.1. Background

Improving the transmission and consumption of electrical power in a 
smart grid for smart energy administration requires the use of load 
forecasting. Given the increasing demand for energy, In order to forecast 
load accurately and efficiently, Deep learning and machine learning 
must be applied. ML and DL algorithms utilize historical consumption 
patterns, weather conditions, and other pertinent data to forecast future 
electricity demand with greater accuracy compared to conventional 
approaches.

The Smart Grid increases the efficiency and dependability of elec-
tricity distribution by utilizing modern technologies, with load fore-
casting playing a crucial role in this system. Complex correlations within 
the data are captured by deep learning, or DL, models like neural net-
works and machine learning (ML) models like regression and decision 
trees. enabling more detailed predictions. This proactive strategy helps 
utility companies optimize resource allocation, minimize grid conges-
tion, and avert future failures. Additionally, it gives customers the 
knowledge they need to make educated decisions about how much en-
ergy they use, which promotes a more economical and sustainable en-
ergy environment. When load forecasting is combined In the framework 
of a smart grid, machine learning (ML) and deep learning (DL) opera-
tional efficiency is increased and a more intelligent, resilient energy 
infrastructure that can meet the ever-changing needs of modern society 
is developed (Zafar et al., 2023; Onteru and Vuddanti, 2023).

2.2. Motivation

The motivation behind this review is to address the pressing need for 
effective load forecasting in Smart Grids for Smart Energy Management. 
With the increasing complexity of energy systems and the rapid inte-
gration of renewable energy sources, there is a critical demand for ac-
curate prediction models. By focusing on the integration of Machine 
Learning techniques, particularly Deep Learning, this review aims to 
explore recent advancements and identify challenges in order to guide 
future research efforts. Ultimately, the goal is to contribute to the 
development of transparent, resilient, and human-centric smart energy 
management systems to meet the evolving needs of the energy industry.

2.3. Objectives of review

The review has multifaceted objectives designed to advance under-
standing and application in the field. Primarily, its goal is to assess the 
state of Deep Learning approaches today as they relate to load fore-
casting in smart grids. This entails a thorough examination of current 
models. This involves a comprehensive analysis of existing models, al-
gorithms, and frameworks to assess their effectiveness, accuracy, and 
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scalability.
Secondly, the review seeks to identify the practical implications of 

implementing ML and DL for load forecasting in Smart Energy Man-
agement. This includes evaluating their impact on grid reliability, en-
ergy efficiency, and overall system performance. By delivering into real- 
world applications and case studies, the objective is to distill valuable 
insights that can inform future deployments and improvements.

Lastly, the review aims to pinpoint challenges and limitations asso-
ciated with ML and DL approaches, providing a critical examination of 
potential hurdles in deployment and suggesting avenues for further 
research. Through these objectives, the review strives to contribute to 
the ongoing evolution of Smart Grids for smarter and more sustainable 
energy management.

2.4. Scope and limitations

This review comprehensively examines the latest research trends and 
achievements in enhancing smart grid load prediction accuracy using 
deep learning and machine learning techniques. It covers diverse 
methodologies such as ensemble methods, time series analysis, and 
optimization techniques, highlighting the dynamic and evolving nature 
of this field. Emphasis is placed on key performance metrics like MAPE, 
RMSE, RRSE, and MSE. The focus is on demonstrating the effectiveness 
of complex algorithms, particularly neural networks, in addressing en-
ergy system challenges, supported by empirical case studies that connect 
theoretical advancements with practical applications.

Despite promising advancements, the review identifies several lim-
itations, including the opacity of complex models and persistent cyber-
security concerns. These challenges highlight the need for ongoing 
research to develop transparent, resilient, and human-centric smart 
energy management systems. The review also underscores the impor-
tance of interdisciplinary cooperation to address emerging issues and 
advance towards a more intelligent and sustainable energy future. 
Continuous exploration is essential to fully harness the potential of 
advanced techniques in smart grids, ensuring their real-world applica-
bility and long-term efficacy.

3. Literature review

A revolutionary trend marked by advancements in technology and a 
growing emphasis on sustainability can be seen in the historical devel-
opment of load forecasting utilizing machine learning and Deep learning 
methods for intelligent energy management in the framework of smart 
grids.

Initially, load forecasting heavily depended on conventional statis-
tical techniques, time-series analysis, and basic forecasting models. 
These methods have constraints in their capacity to comprehend the 
intricate and ever-changing characteristics of energy usage patterns, 
particularly in light of the growing urbanization and industrialization. 
With the increase in energy needs, it became clear that more advanced 
technologies were needed to tackle the changing issues of the power grid 
(Das et al., 2023; Kermani et al., 2023; Xin et al., 2022).

The advent of machine learning signified a significant shift in the 
existing methods. Machine learning algorithms, such decision trees and 
regression analysis, started to become more and more common in load 
forecasting in the late 20th century. These methods provided enhanced 
precision by taking into account past consumption data, weather trends, 
and other external variables. Machine learning introduced a methodol-
ogy that relies on data analysis to predict future outcomes, allowing 
utilities to make better-informed choices regarding the allocation of 
resources & the grid’s management.

The application of deep learning (DL) in the twenty-first century 
significantly changed how load forecasting works inside smart grids. 
Deep learning, especially neural networks, demonstrated an impressive 
ability to discover complex patterns and relationships inside large 
datasets. DL’s capacity to autonomously extract characteristics and 

adjust to fluctuating circumstances renders it very suitable for the dy-
namic aspects of energy usage. The development of sophisticated models 
like This era saw major advancements in the estimation and prediction 
of energy usage over time produced by long short-term memory net-
works (LSTMs) and recurrent neural networks (RNNs) (Yao et al., 2022; 
Islam et al., 2022; Khan et al., 2022; You, 2022).

There was also a shift in the historical path toward real-time pre-
diction. Modern sensor technology and the widespread use of smart 
meters have made it possible for utilities to collect data more often, 
which allows them to produce projections that are more accurate and 
timely. Since renewable energy sources and electric vehicles have 
become more prevalent, the real-time functionality has become crucial 
for controlling the increasing volatility & unpredictability of energy 
consumption patterns (Complementary and Medicine, 2023; Torres 
et al., 2023; Wang et al., 2023a; Yang et al., 2023).

As they evolved, smart grids were employed for purposes other than 
load forecasting. In order to maximize demand responsiveness, identify 
issues, and forecast maintenance needs, deep learning (DL) and machine 
learning (ML) techniques were applied. The goal of these all-inclusive 
approaches is to create energy ecosystems that are more robust and 
adaptive. Notwithstanding these developments, problems remained. 
The effectiveness of machine learning (ML) and deep learning (DL) 
models is significantly impacted by the quality and accessibility of data, 
according to historical trends. Biases or inaccuracies in prior data may 
affect the prediction’s accuracy. Furthermore, the understandability of 
complex deep learning models has become a source for concern because 
awareness of the decision-making process is essential to promoting 
acceptance and confidence in real applications.

In the future, load forecasting will continue to grow as learning with 
deep neural networks (DL) and ML technologies grow (Nagarajan et al., 
2022; Refaai et al., 2022). The historical review provides the foundation 
for this progression. The incorporation of explainable AI, reinforcement 
learning, and hybrid models that leverage the advantages of different 
techniques can enhance the precision and practicality of load forecasting 
in Smart Grids, ultimately leading to a more intelligent, efficient, and 
sustainable energy management approach.

3.1. Comparative evaluation of author contributions in comparison to 
other review papers

When assessing the authors’ addition to the current collection of 
review articles on smart grid load forecasting, it is crucial to examine the 
thoroughness of their study, the originality of their findings, and their 
incorporation of recent breakthroughs in machine learning (ML) and 
deep learning (DL) techniques. The authors’ contribution is notable in 
multiple ways when compared to prior review publications in the field.

Firstly, their historical overview offers a thorough analysis of the 
development of load forecasting techniques, documenting the shift from 
conventional statistical methods to the incorporation of machine 
learning (ML) and deep learning (DL) approaches. The thorough his-
torical backdrop allows readers to understand the importance of recent 
achievements in the wider context of smart grid management.

Particular uses of machine learning (ML) and deep learning (DL) in 
load forecasting, emphasising the efficacy of neural networks like long 
short-term memory (LSTM) and recurrent neural networks (RNNs) in 
collecting intricate patterns in energy consumption data is explored. The 
authors provide useful insights into the potential of deep learning ap-
proaches to tackle the issues posed by dynamic energy usage patterns in 
smart grids, by emphasising on this advanced methodology.

The authors highlight the significance of having the ability to predict 
in real-time, especially in the face of growing instability and unpre-
dictability resulting from the incorporation of renewable energy sources 
and electric vehicles. This perspective that looks ahead emphasises the 
importance of their review in tackling the current and future issues that 
the energy business is facing. The authors of this review study also 
recognise the limitations and difficulties that come with ML and DL 
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models, including problems with data quality and the absence of inter-
pretability in intricate DL architectures.

Through a thorough evaluation of these obstacles, the authors pre-
sent an impartial viewpoint on the tangible consequences of incorpo-
rating machine learning (ML) and deep learning (DL) methods in actual 
smart grid settings. Also suggest that future research should focus on 
integrating explainable AI and hybrid modelling techniques to improve 
the accuracy and applicability of load forecasting. The authors’ 

commitment to moving the field beyond present restrictions is evident in 
their forward-thinking approach.

This approach highlights the potential significance of their work on 
defining future improvements in smart grid management. The authors’ 

contribution to the current literature on smart grid load forecasting is 
notable for its thorough analysis, integration of recent breakthroughs, 
and forward-thinking approach to future research paths. The authors’ 

comprehensive analysis of machine learning (ML) and deep learning 
(DL) approaches in the context of smart grids offers useful insights that 
contribute to the continuing discussion on sustainable energy manage-
ment. Tables 1,2

3.2. Key concepts and definitions

The main ideas and terms surrounding load forecasting in relation to 
the supply of electricity. For the electricity system to remain reliable and 
to avoid possible disturbances like blackouts, load forecasting accuracy 
is essential. To gauge how accurate load forecasting methods are, a 
number of Key Performance Indicators (KPIs) have been identified. 
These are the definitions and main ideas that were discussed. Statisti-
cally speaking, the Mean Absolute Error (MAE) measures the average 
absolute deviations between the projected and actual values in a dataset. 
A straightforward method to assess prediction accuracy is to use the 
mean of absolute differences (MAE), which does not take error direction 
into account. 

MAE =
1
n
∑n

i=1
|xi − x| (1) 

The calculation of the Mean Absolute Percentage Error (MAPE) in-
volves dividing the sum of all individual absolute mistakes by the total of 
all real values. This statistic normalizes the forecast accuracy in respect 

Table 1 
Literature summary.

Author name /Ref Methodology used Gap/ problem definition Dataset used Parameter measured
Jiang (Jiang et al., 

2023)
Hybrid forecast-optimize tasks and 
efficient online data augmentation 
scheme.

Handling uncertainties in 
renewable energy integration and 
real-time energy dispatch.

CityLearn Challenge 2022 dataset for 
smart building energy management.

Energy dispatch accuracy, robustness, 
adaptation to real-time data 
distribution.

Chen (Chen et al., 
2023)

ARIMA and Bi-LSTM models for 
solar power production prediction.

Accurate forecasting of solar 
power production for efficient 
grid management.

One year of real-time solar power 
production data for prediction.

Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE).

Maghraoui (
Maghraoui et al., 
2022)

SVM, ANN, DT, and RF for hotel 
energy consumption prediction.

Optimizing energy efficiency in 
hotels to prevent grid overload.

Hotel building energy consumption 
data from a case study in Shanghai.

Accuracy of energy consumption 
predictions using MAE, RMSE, and 
efficiency.

Alsharekh (
Alsharekh et al., 
2022)

R-CNN and ML-LSTM for short- 
term electricity load forecasting 
framework.

Accurate multistep electricity load 
forecasting for smart grid 
management.

Residential IHEPC and commercial 
PJM datasets for electricity load 
forecasting.

Forecasting accuracy measured by 
error rates compared to baseline 
models.

Teekaraman 
Teekaraman 
et al., (2022a)

Optimizing smart grid video 
sensor networks for energy 
efficiency and performance

Optimizing energy consumption 
and quality of service in smart grid 
networks.

Wireless video sensor network 
dataset for optimizing energy and 
quality.

Power, energy consumption, delay, 
transmission rate, delivery rate, 
convergence rate, quality.

Ibrar 
Ibrar et al., (2022)

Predicting decentralized power 
grid stability using machine 
learning and resampling.

Addressing imbalances and 
enhancing prediction accuracy in 
decentralized power grid stability.

Data from an open machine learning 
library used to simulate a 
decentralized grid 
.

Grid stability parameters: electricity 
volume (p), cost-sensitivity (g), 
response times (tau).

Zhu 
Zhu et al., (2022)

DASG protocol using Chinese 
Remainder theorem for smart grid 
security.

resolving issues with data 
integrity in smart grid aggregation 
protocols.

Smart grid dataset, privacy- 
preserving, integrity, DASG protocol, 
homomorphic encryption, 
aggregation.

Smart grid parameters: status, privacy, 
integrity, DASG protocol, encryption, 
aggregation.

Sodagudi (Sodagudi 
et al., 2022)

Hybrid control system 
methodology for efficient power 
electronic interface in renewable 
energy

Voltage quality, harmonic 
distortion, and efficiency 
challenges in power electronics.

Dataset on power electronics, energy 
efficiency, and control systems 
evaluation

Battery SOC, charging voltage, battery 
current, ultracapacitor current, and DC 
load current.

Yu (Yu et al., 2022) 3-tier cloud-fog-consumer 
architecture; real-time VM 
migration for load balancing.

Network congestion and 
imbalance in cloud data centers 
for VMs.

Dataset on cloud data center size, 
VM growth, and load balancing.

Measured parameters: Cloud size, VM 
growth, network resources, load 
balancing, response time, cost 
optimization.

Table 2 
Comparison of Machine Learning (ML) and Deep Learning (DL) Models Based on 
Validation Indices.

Author 
name/year

Methodology used Validation Indices Ref.

Guo/2021 Deep neural network 
(DNN)(Deep learning)

Simulation findings 
demonstrate that the 
prediction model’s 
performance indices’ 

mean absolute 
percentage error 
eMAPE and root-mean- 
square error eRMSE are 
10.01 % and 
2.156 MW. 
.

(Guo et al., 
2021)

Asiri /2024 Deep learning, LSTM, 
CNN, optimization, 
performance.

LFS-HDLBWO 
outperforms other DL 
methods with error 
rates of 3.43 and 2.26.

(Asiri et al., 
2024)

Alquthami/ 
2022

Short-term load 
forecasting using 
machine learning 
methods and improved 
decision trees 
.

99.21 % accuracy in 
training, 100 % F1, 
100 % precision, 
99.9 % recall, and 
99.70 % correctness in 
testing.

(Alquthami 
et al., 2022)

Muzumdar 
/2020

machine learning 
techniques include 
Random Forest and 
Support Vector 
Regressor (SVR) (RF).

MAPE=1.18 (Muzumdar 
et al., 2020)
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to the scale of the data and presents it as a percentage. 

MAPE =
1
n
∑|et |

|at |
(2) 

There are two steps involved in calculating the Root Mean Square 
Error (RMSE). To obtain the Mean Squared Error (MSE), the squared 
errors are first averaged. After that, the square root of the MSE is used to 
calculate the RMSE, a gauge of forecast accuracy (Botchkarev, 2019). 

MSE =
1
n
∑n

i=1
(Yi − Ŷ i)

2 (3) 

RSME =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n
i=1

(Pi − Oi)
2

n

√√√√√ (4) 

According to its definition, the Root Relative Squared Error The ratio 
of total squared mistakes between predicted and actual values to total 
squared errors between average value and actual values is known as the 
root mean square error (RRSE). It evaluates predicting effectiveness by 
comparing it to a reference value. 

RRSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
(ft − at)

2
∑

(at − a)2

√√√√ (5) 

By comparing the standard deviation of anticipated mistakes to the 
mean of actual data, the Coefficient of Variation (CV) measures the 
accuracy of predicting. An alternative way to define it is as the RMSE, or 
Root Mean Square Error divided by the mean of real data, providing a 
normalized accuracy evaluation. 

CV =
RMSE

a (6) 

These measurements are essential for evaluating the effectiveness of 
load forecasting techniques and guaranteeing the stability of power 
supply networks. By quantifying forecast accuracy, they enable effective 
monitoring and optimization of energy production, minimizing costs 
and system failures (Guo et al., 2021).

Based on their validation indices, the table offers a comparison of 
various machine learning (ML) and deep learning (DL) models. Several 
writers have commented on these indices across a range of years.

Guo (2021) utilised a deep neural network (DNN) in their prediction 
model. The simulation results revealed a mean absolute percentage error 
(eMAPE) of 10.01 % and a root-mean-square error (eRMSE) of 
2.156 MW. Asiri (2024) investigated advanced deep learning methods 
such as Convolutional Neural Networks (CNN) and Long Short-Term 
Memory (LSTM). They introduced a new model called LFS-HDLBWO, 
which outperformed previous deep learning techniques. The LFS- 
HDLBWO model achieved error rates of 3.43 and 2.26, demonstrating 
its superior performance.

Alquthami (2022) conducted a study that concentrated on machine 
learning algorithms used for predicting short-term electricity use, with a 
particular emphasis on improving decision trees. Their model demon-
strated remarkable validation indices, including a recall of 99.9 %, an F1 
score of 100 %, a precision of 100 %, a training accuracy of 99.21 %, 
and a testing accuracy of 99.70 %. Muzumdar (2020) utilised machine 
learning techniques, specifically Support Vector Regressor (SVR) and 
Random Forest (RF), and achieved a Mean Absolute Percentage Error 
(MAPE) of 1.18, demonstrating a high level of predicted precision.

Every study demonstrates the potential and efficacy of diverse ap-
proaches in the domains of deep learning and machine learning for 
distinct applications, such as load forecasting and prediction modelling. 
Although DL models such as DNN, LSTM, and CNN perform well in 
certain situations, traditional ML techniques like SVR and RF also show 
comparable performance. This highlights the significance of choosing 
the right methodology depending on the individual job and dataset. In 

the comparative analysis of load forecasting and prediction modelling, 
both machine learning (ML) and deep learning (DL) show promise. Both 
strategies use statistical methods and algorithms to examine data trends 
and generate precise forecasts.

Additionally, both ML and DL methodologies aim to optimize 
resource allocation and improve grid stability in energy management 
systems.The analysis of ML and DL lacks specificity regarding their 
contributions to energy management load forecasting research. Future 
directions for enhancing forecasting accuracy and addressing industry- 
specific challenges are needed to provide a more targeted and insight-
ful perspective.

While literature acknowledges challenges in energy management 
forecasting such as data quality, model opacity, scalability, and dynamic 
energy systems, gaps persist in providing comprehensive solutions. 
While some research touches on these challenges, practical imple-
mentation and validation in real-world scenarios are lacking. Future 
efforts should focus on developing scalable, interpretable models that 
effectively address the complexities of dynamic energy systems, 
bridging the divide between theoretical advancements and practical 
applicability in energy management forecasting.

3.3. Main limitations and future research directions

Existing works on electricity load forecasting face several limita-
tions, including issues with model accuracy, adaptability to dynamic 
environments, and scalability. Many traditional models struggle with 
high error rates in complex scenarios and lack the flexibility to accom-
modate real-time changes in energy consumption. Additionally, current 
approaches often fail to integrate diverse data sources effectively and 
may overlook the impact of emerging technologies and user behaviours. 
Future research should focus on developing more robust and adaptive 
models that leverage advanced machine learning techniques, such as 
hybrid models combining deep learning and traditional methods. 
Exploring real-time data integration, incorporating user behaviour an-
alytics, and addressing the challenges of scalability and generalization 
will be crucial for advancing forecasting accuracy and improving smart 
grid management strategies.

3.4. Key results and comparison of existing techniques

In recent literature, various techniques have been explored for 
electricity load forecasting. For instance, ARIMA models have been 
praised for their simplicity but are often criticized for inadequate 
handling of non-stationary data, resulting in higher forecast errors. On 
the other hand, Deep Learning models like Bi-LSTM have demonstrated 
superior accuracy, with lower MAE and RMSE compared to ARIMA, as 
seen in studies predicting solar power production. Additionally, R-CNN 
with ML-LSTM has shown significant improvements in multistep fore-
casting tasks, outperforming traditional models by reducing error rates 
in both residential and commercial datasets. While Support Vector 
Machines (SVM) and Random Forest (RF) are effective for various en-
ergy prediction tasks, advanced deep learning models consistently 
deliver better performance in complex scenarios. This comparison un-
derscores the shift towards integrating sophisticated algorithms and 
real-time data for improved forecasting accuracy.

3.5. Challenges & gaps

The review identifies several challenges and gaps in the application 
of DL and ML techniques for smart grid load forecasting. Key challenges 
include the need for large and high-quality datasets, the complexity of 
model training, and the computational resources required. There are 
also gaps in integrating these advanced techniques with existing grid 
infrastructure, and in addressing issues related to data privacy and se-
curity. Furthermore, the review highlights a lack of standardized eval-
uation metrics and benchmarks, which complicates the comparison of 
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different models. Addressing these challenges and gaps is crucial for the 
broader adoption and effectiveness of DL and ML in smart grid 
applications.

The review’s methodology involved a systematic comparison of DL 
and ML techniques against traditional forecasting methods. Key per-
formance metrics such as MAPE, RMSE, and MSE were used to evaluate 
accuracy and scalability. The analysis began with a comprehensive 
literature review to identify state-of-the-art models and algorithms. 
These models were then applied to real-world datasets to assess their 
effectiveness in practical scenarios. Additionally, the review included a 
meta-analysis of case studies and real-world applications to illustrate the 
practical challenges and successes of implementing DL and ML in smart 
grid load forecasting. This rigorous approach ensured a thorough and 
balanced evaluation of the techniques.

3.6. Evolution of research in the field

There have been several significant developments in the field of load 
forecasting research as it relates to smart grids and machine learning and 
deep learning for intelligent energy management. These advancements 
exemplify an ongoing pursuit for more precise, adaptable, and efficient 
techniques for forecasting. At first, research mostly concentrated on 
conventional statistical techniques for load forecasting. Nevertheless, 
with the emergence of machine intelligence, specifically in the context 
of regression models and time series analysis, researchers initiated in-
vestigations into more advanced methods for capturing intricate pat-
terns and interconnections in energy consumption data. The 
introduction of neural networks—more especially, neural networks with 
recurrent architectures and long short-term memory (LSTMs and 
RNNs)—caused a significant change. These deep learning architectures 
have shown exceptional ability in managing temporal dependencies, 
allowing for more precise forecasts of load patterns, particularly in sit-
uations with dynamic and nonlinear connections (Ma et al., 2021; Zhang 
et al., 2020).

Ensemble learning approaches have evolved as a crucial field of 
study, utilizing the combined intelligence of numerous models to 
improve the accuracy and reliability of predictions. Bagging and 
boosting approaches gained popularity as they provided effective tech-
niques to reduce uncertainty and enhance the overall dependability of 
load projections. The utilization of real-time data obtained from smart 
meters became a primary emphasis, allowing for ongoing monitoring 
and prompt adjustment to fluctuating load situations.

This advancement was a notable achievement in improving the 
speed and precision of load forecasting models, especially under 
constantly changing conditions. Explainable AI (XAI) strategies have 
become popular in order to tackle the issue of interpretability in 
complicated machine learning & deep learning models (Yang et al., 
2020). As these models became more complex, comprehending the un-
derlying reasoning behind forecasts became essential for establishing 
trust and acceptance. The incorporation of Explainable Artificial Intel-
ligence (XAI) methodologies allowed researchers to provide significant 
insights into the model’s decision-making processes, hence augmenting 
the lucidity and comprehensibility of load forecasting results.

Edge computing has lately emerged as a new and innovative area of 
study in load forecasting (Wang et al., 2023b). Integrating processing 
capabilities at the edge, in close proximity to the data source, reduces 
delay and improves the effectiveness of forecasting models, especially in 
real-time scenarios. To summarize, as load forecasting research in smart 
electricity systems using ML and DL has advanced, traditional statistical 
techniques have given way to more advanced, flexible, and transparent 
methodology. The sector is constantly evolving, with ongoing ad-
vancements that tackle obstacles and open up new opportunities for 
effective and dependable smart energy management.

3.7. Significant milestones

The use of ML and DL in Smart Grid demand forecasting for Smart 
Energy Management has experienced numerous noteworthy achieve-
ments, demonstrating the progress and transformational changes in 
energy forecasting methods and technologies. Integrating ML and DL 
algorithms into load forecasting models is a major achievement. This 
departure from typical statistical methods allows the models to adapt to 
complex energy usage data patterns and non-linear linkages. RNNs, or 
recurrent neural networks, and LSTMs have significantly better load 
estimates, notably for temporal linkages and complicated patterns. 
Intelligent meter live data streams are another major breakthrough. 
Smart meters gather data often and continuously, it makes machine 
learning (ML) and deep learning (DL) possible.

AI & ML models to adapt to shifting load patterns (Kumar et al., 
2023; Healthcare Engineering, 2023). Real-time information availabil-
ity improves forecast accuracy and makes it possible to put more flexible 
energy management techniques into practice.

Ensemble learning has greatly increased load forecasting model 
dependability. Ensemble techniques combine model forecasts for accu-
racy and reliability. Bagging and boosting reduce uncertainty and 
improve load forecasting systems. Applying Explainable AI (XAI) tech-
niques in load forecasting is a recent achievement that focuses on 
making ML and DL models more interpretable. As these models increase 
in complexity, comprehending the reasoning behind their predictions 
becomes essential. Integrating explainable Artificial Intelligence (XAI) 
techniques facilitates the understanding of how models make decisions, 
promoting transparency and building confidence in the accuracy of the 
forecasted results.

The incorporation of edge computing in load forecasting is a devel-
oping achievement. Edge devices, such as sensors and smart meters, 
have the ability to do calculations locally because to their built-in pro-
cessing capabilities. By minimizing latency, the efficiency of load fore-
casting models is enhanced, particularly in real-time applications (Zhou 
et al., 2020; Xu et al., 2020; Singh and Khan, 2017). Finally, The 
discipline has advanced toward more accurate, detailed forecasting of 
load in smart grids with the application of machine learning (ML) and 
deep learning (DL) techniques. Adaptable, and transparent energy 
forecasting systems. The continuous development of smart energy 
management is driven by computational breakthroughs, real-time data 
integration, and the emergence of new technologies.

4. Methodology

The study’s selection criteria for Load forecasting in Smart Grid for 
Smart Energy Management using ML DL employ a targeted approach to 
ensure the incorporation of pertinent and high-caliber literature. In-
clusive sources must explicitly center on load forecasting applications 
within the utilizing deep learning (DL) and machine learning (ML) 
methods in a smart grid setting to provide intelligent energy manage-
ment. Academic papers, conference proceedings, and esteemed journals 
presenting empirical research, case studies, or inventive methodologies 
at this specific intersection are deemed suitable. Only peer-reviewed 
publications in English are considered to uphold scholarly rigor. Ex-
clusions consist of non-peer-reviewed sources, promotional materials, 
and studies lacking direct relevance to load forecasting in smart grids 
with ML and DL applications. These refined selection criteria aim to 
assemble a focused and credible collection of sources conducive to an 
exhaustive exploration of the topic (Wawale et al., 2022; Bolla et al., 
2022).

Improved prediction accuracy and more economical energy use can 
result from the application of machine learning (ML) and deep learning 
(DL) techniques to load forecast in smart grids for smart energy 
management.

Thus, it is possible to use multiple data sources. History of energy use 
data is a valuable source of knowledge since it sheds light on patterns 
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and variances in use across time. Comprehending the historical context 
is essential for training machine learning (ML) and deep learning (DL) 
models to appropriately identify and react to seasonal fluctuations, dy-
namic shifts in energy consumption, and recurrent patterns. Smart meter 
real-time data is a vital and useful source of regular, in-depth updates on 
energy consumption. Since smart meters provide a steady stream of 
data, deep learning (DL) /machine learning (ML) algorithms can swiftly 
adapt to erratic fluctuations in demand.

By making them more responsive, this improves the efficacy of load 
forecasting algorithms (Almadhor et al., 2022). Meteorological data 
serves as an additional powerful source of information. The amount of 
energy used is directly influenced by the weather, and models that take 
weather-related variations in energy demand into consideration can be 
developed with the use of meteorological data. Weather factors like 
temperature, humidity, and energy consumption can be correlated with 
one other using ML/DL techniques.

This approach has the potential to greatly increase the accuracy of 
load forecasting in smart grids. Demographic and economic data provide 
significant contextual information. Comprehending the demographic 
makeup of a region and its economic operations helps in forecasting 
energy consumption patterns by considering elements such as popula-
tion density, industrial activities, and economic trends. Moreover, 
comprehensive grid infrastructure data, encompassing details about the 
structure and capability of the electricity distribution network, is 
necessary.

By taking into account the grid’s capabilities and limitations, this 
data enables deep learning (DL) and machine learning (ML) models to 
make sure that load estimates align with the network’s operating pa-
rameters (Nayagam et al., 2022; Sujatha et al., 2022; Zhang et al., 2022). 
A complete data collection technique is employed in smart grid load 
forecasting, encompassing historical consumption data, real-time data 
from smart meters, meteorological conditions, demographic insights, 
and grid architecture characteristics. Through the integration of several 
data sources, machine learning (ML) and deep learning (DL) models may 
generate accurate and flexible load predictions, hence augmenting the 
efficacy of smart energy management. Figs. 1–3

4.1. Search strategy

The search technique entails a methodical and focused attempt to 
obtain pertinent literature and research works in the topic. Commencing 
the exploration on scholarly resources such as IEEE Xplore, Science 
Direct, and PubMed provides the opportunity to retrieve peer-reviewed 
publications, conference papers, and journals pertaining to smart grid 
technologies, load forecasting, and machine learning applications in 
energy management. To ensure precision in search queries, it is advis-
able to utilize terms such as "load forecasting," "smart grid," "smart en-
ergy management," and "machine learning."

Aside from academic databases, conducting searches on online re-
positories like as arXiv and Google Scholar expands the range of avail-
able resources to encompass preprints, technical reports, and 
publications that might not be found in conventional databases. Utiliz-
ing boolean operators, such as and or, in conjunction with phrase 
searching enhances the precision of the search outcomes.

Analyzing relevant workshop and conference data about machine 
learning and smart grid applications, such as those from the IEEE PES 
General Meeting or The International Conference on Clean Energy 
Technologies and Smart Grids (ICSGCE), offers valuable insights into the 
most recent advancements and research patterns in this domain. 
Browsing through the institutional repositories of universities and 
research organizations aids in locating theses, dissertations, and tech-
nical publications pertaining to load forecasting in smart grids 
(Teekaraman et al., 2022b; Li et al., 2022; Boum et al., 2022; Anantha 
Krishnan et al., 2022).

Government publications from energy agencies and organizations, 
such as the Department of Energy (DOE), can provide valuable infor-
mation on policy aspects and practical applications. Moreover, the 
analysis of references in important papers and reviews aids in the 
identification of influential works and establishing connections with a 
wider range of pertinent literature. For the most updated information on 
the most recent advancements in the subject, you should subscribe to 
alerts for relevant keywords and monitor recently published articles. 
With regard to load forecasting in smart grids, this thorough search 
approach seeks to gather a broad range of sources, including theoretical 
frameworks, empirical research, and real-world applications. The 
emphasis is on applying deep learning and machine learning techniques 
to smart energy management.

4.2. Inclusion and exclusion criteria

To ensure the Caliber, applicability and focus of the data collected, 
inclusion and exclusion have been developed. The inclusion criteria are 
satisfied by academic magazines, conference procedures and publica-
tions that in particular deal with the load forecasts in the context of the 
intelligent grids. To create intelligent energy management techniques, 
deep learning (DL) and machine learning (ML) in these projects. Pre-
sentations should include examples of cases, new techniques or legiti-
mate research on the relationships between different fields. The 
publications that do not discuss in particular the applications of machine 
learning (ML) and the deep learning (DL) are subject to the exclusion 
criteria. which are not directly related to load forecasting in smart grids. 
To maintain consistency and cognitive integrity, advertising messages 
(Ghislain et al., 2022) are used.

The analysis of database results includes several critical dimensions. 
It starts with assessing the number of articles retrieved and the specific 
search terms used and provides insight into the scope and relevance of 
the search query. In addition, reviewing the database sources consulted 
provides insight into the breadth and comprehensiveness of the litera-
ture reviewed. Analyzing the distribution of publications over time re-
veals trends in research activity and development in the field, shedding 
light on the evolution of researchers’ interest. Metrics such as keyword 
frequency and citation counts are used to assess the depth and impact of 
the literature retrieved from databases, thereby assessing the Fig. 1. Flowchart of the Methodology used in this research.
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importance and influence of the research findings. Together, these ele-
ments form a holistic approach to analyzing database results, providing 
valuable insights into the current state and dynamics of scientific 
research on the topic.

Search refinement involves several systematic steps to improve ac-
curacy and comprehensiveness. Initially, the integration of synonyms 
and specific terms ensures that the search effectively captures the rele-
vant literature. Studies are selected according to clear criteria based on 
relevance, methodology and publication date. In addition, screening of 
additional databases will help to fill possible gaps in the existing liter-
ature. Advanced filters are applied to refine the results with a focus on 
quality and relevance. Thorough selection processes ensure that relevant 
studies that meet the defined criteria are included.

Smart meters provide real-time data on electricity consumption and 
provide instantaneous information. Typically, data collection intervals 
vary based on deployment and utility needs, ranging from every 
15 minutes to hourly intervals in practice.

5. Classification of studies

Research on load forecasting in smart grids for smart energy man-
agement can be divided into a number of significant areas that cover 
diverse aspects of this multidisciplinary topic and make use of deep 
learning and machine learning (ML and DL) (Hasan et al., 2022; Ganesan 
et al., 2022; Balasubramaniam et al., 2022).

The creation and optimization of machine learning (ML) and deep 
learning (DL) algorithms, with a focus on load forecasting, have been the 
subject of extensive research. In order to improve prediction accuracy, 
this entails making advancements in neural network topologies, opti-
mization methods, and ensemble learning approaches.

The efficient management of temporal dependencies in load fore-
casting models is a task taken on by academics. In order to efficiently 
capture time series data’s sequential patterns and dependencies, more 

research is required on advanced deep learning architectures like 
recurrent neural networks (RNNs) and (LSTMs) networks.

An essential aspect pertains to the incorporation of up-to-the-minute 
data derived from smart meters and other sensors. This section examines 
the optimal utilization of continuous, high-frequency input streams to 
enhance the load forecasting models’ responsiveness and accuracy, 
especially in situations that are dynamic and changing quickly.

The primary objective of this branch of artificial intelligence is to 
create models and algorithms that are capable of giving comprehensible 
justifications for their choices and actions. The need of enhancing the 
interpretability of deep learning (DL)/machine learning (ML) models 
has increased due to their growing complexity. Gaining more insight 
into the decision-making processes used by models is the aim of 
Explainable Artificial Intelligence (XAI) research. This knowledge con-
tributes to increased openness and confidence in the precision of fore-
casted results (Su, 2022; Xiong et al., 2022; Prasath et al., 2022; Khan 
et al., 2021a, 2021b).

Ensemble learning delves into the amalgamation of many forecasting 
models to generate ensemble approaches. The effectiveness of bagging 
and boosting strategies is examined in order to reduce uncertainties, 
enhance resilience, and ensure accurate load predictions.

A burgeoning field of study focuses on the incorporation of edge 
computing into load forecasting. Scientists are investigating the poten-
tial benefits of processing data at the edge, which is closer to where the 
data is generated. This approach aims to reduce delays, increase effi-
ciency, and make real-time load forecasting applications more practical.

Certain studies explore the amalgamation of load forecasting with 
renewable energy sources. This means that demand forecasting models 
must be improved to account for the erratic nature of renewable energy 
sources and account for variations in energy production.

Research on load forecasting in Smart Grids is categorized along 
several dimensions: algorithmic development, temporal dependency 
management, real-time data integration, interpretability, ensemble 
learning, and the combination of edge computing and renewable energy 
sources. Each element has an impact on the overall development of 
intelligent energy management systems (Alazzam et al., 2021; Meh-
mood et al., 2021; Srisomboon et al., 2021).

5.1. Thematic grouping

The combination of machine learning (ML) and deep learning (DL) 
techniques in smart grids has substantially changed energy manage-
ment, especially in load forecasting. This cutting-edge technology makes 
it easy to design incredibly complex and adaptable systems for opti-
mizing energy use.

"Smart Energy Management" is a primary area of emphasis in the-
matic classification. Deep learning (DL) and machine learning (ML) 
models are crucial in forecasting energy usage patterns, enabling pro-
active decision-making to optimize resource allocation. By analyzing 
historical data and taking into account several important factors, these 
models are crucial in accomplishing accurate load forecasting. Taking 

Fig. 2. CNN LSTM Model (Livieris et al., 2020).

Fig. 3. Random Forest and Gradient Boosting (Kowalek, 2019).

B. Biswal et al.                                                                                                                                                                                                                                  Energy Reports 12 (2024) 3654–3670 

3662 



this proactive stance increases grid reliability and makes it easier to 
successfully integrate renewable energy sources, which increases sus-
tainability (Duangsuwan et al., 2021; Zhong et al., 2021; Tang et al., 
2021; Xu et al., 2021).

The "Smart Grid" itself is a further focus. The smart grid infrastruc-
ture can adapt more flexibly to changing demand patterns thanks to 
machine learning/deep learning algorithms, which reduce energy loss 
and increase grid efficiency. The grid can now automatically adjust and 
react quickly to changes thanks to these technologies, making the energy 
distribution system more resilient and responsive.

Additionally, load forecasting is made more sophisticated and so-
phisticated by the incorporation of machine learning (ML) and deep 
learning (DL) techniques. This is known as "Intelligent Grid Operation." 
With the use of sophisticated analytics, these technologies help utilities 
more effectively distribute electricity, predict periods of peak demand, 
and manage the power system. This intelligence enhances energy con-
servation, reduces expenses, and ensures a more dependable power 
supply for end users.

Ultimately focused on the subjects of intelligent grid operation, 
smart energy management, and smart grid augmentation. These the-
matic areas work together to propel the energy sector toward a more 
intelligent, efficient, and sustainable future by fusing machine learning/ 
deep learning techniques.

5.2. Methodological approaches

Many methodological strategies are employed, including deep 
learning (DL) and machine learning techniques. in load forecasting for 
Smart Grids. The goals are precise forecasting and effective energy 
management. One important methodological approach involves 
analyzing historical data. ML and DL models utilize historical con-
sumption patterns, weather conditions, and other pertinent information 
to detect trends and correlations. Through the analysis of these historical 
data sets, the models can acquire knowledge and adjust to the distinct 
attributes of energy consumption patterns, hence enhancing their ability 
to generate more accurate forecasts. Another method involves feature 
engineering, which involves incorporating domain-specific information 
to improve the model’s comprehension of the data. Engineers and data 
scientists analyze crucial factors that influence energy usage, such as 
holidays, special events, and economic indicators. These features are 
added to the model, which improves prediction accuracy and increases 
system flexibility in response to varying energy demand.

Ensemble methods offer an alternative strategy by amalgamating 
predictions from numerous models to attain a more resilient and precise 
forecast. Ensemble approaches boost the overall reliability of load 
forecasting by combining results from various machine learning (ML) 
and deep learning (DL) models, thereby reducing the risk of individual 
model biases.

Furthermore, the ongoing process of updating and refining the model 
is an essential methodological approach. ML and DL models are dynamic 
and require frequent modifications to accommodate changing patterns 
and variables. Ongoing retraining guarantees that the models stay up-to- 
date and efficient in reflecting the complexities of evolving energy usage 
patterns over time. The methodological approaches in load forecasting 
for Smart Grids utilizing ML (Machine Learning) and DL (Deep Learning) 
involve analyzing historical data, creating relevant features, employing 
ensemble methods, and continuously retraining the models. These ap-
proaches jointly enhance the creation of precise, flexible, and robust 
energy management systems within the framework of Smart Grids.

6. Key findings

The combination of deep learning (DL) and machine learning (ML) 
technologies has made significant progress in energy management by 
incorporating several study areas of load forecasting in smart grids. 
These technologies have introduced a new period characterised by 

improved effectiveness, dependability, and environmental friendliness 
in smart grids. A notable accomplishment in this domain is the sub-
stantial enhancement in load forecasting precision facilitated by deep 
learning (DL) and machine learning (ML) models. These advanced al-
gorithms use previous consumption data, weather trends, and other 
pertinent elements to generate more accurate energy demand estimates. 
The improved precision is essential for optimising grid operations, 
guaranteeing a steady power supply, and facilitating efficient resource 
allocation. The versatility of Smart Grids equipped with Machine 
Learning (ML) and Deep Learning (DL) models is emphasised by their 
capability to handle variations in energy consumption patterns. These 
systems have the ability to promptly react to fluctuations in demand by 
analysing and interpreting data in real-time, thus improving the dura-
bility and adaptability of the energy distribution grid. The ability to 
adapt is crucial when it comes to incorporating renewable energy 
sources, which by nature are subject to change, into the power grid.

The results further emphasise the significance of deep learning (DL) 
and machine learning (ML) in promoting proactive energy management 
measures. These technologies enable utilities to forecast periods of 
highest demand, optimise the distribution of energy, and execute effi-
cient demand control approaches. This not only reduces energy wastage 
but also contributes to sustainability objectives by encouraging more 
effective utilisation of resources. The utilisation of ensemble techniques, 
which merge projections from numerous models, has greatly enhanced 
the dependability of predictions. Ensemble approaches enhance the 
accuracy and reliability of future energy needs by reducing the influence 
of individual model biases and uncertainties. This approach showcases 
the adaptability of deep learning (DL) and machine learning (ML) in 
tackling the difficulties of load forecasting in ever-changing Smart Grid 
situations.

Another crucial finding is the imperative need for ongoing model 
retraining. Ensuring that ML and DL models are regularly updated to 
reflect changing energy usage patterns guarantees that these models 
maintain constant accuracy as time progresses, these improvements 
underscore the significant influence of deep learning (DL) and machine 
learning (ML) technologies in determining the future of energy man-
agement. The enhanced accuracy in load prediction and the adaptability 
of Smart Grids lead to a more intelligent, efficient, and environmentally- 
friendly energy future. The ongoing integration of machine learning 
(ML) and deep learning (DL) into energy management systems is 
advancing. These findings provide vital insights into the crucial role 
these technologies will have in the development of the future Smart 
Grids and their contribution to a robust and sustainable energy 
landscape.

6.1. Trends & patterns

The energy systems sector is undergoing a significant trans-
formation, driven by key trends and patterns in load forecasting for 
Smart Grids, particularly through the use of Machine Learning (ML) and 
Deep Learning (DL). A prominent trend is the growing reliance on 
advanced ML and DL methods for load forecasting. These technologies 
enable more accurate predictions by analyzing large datasets and ac-
counting for various factors, allowing for better adaptation to dynamic 
shifts in energy usage patterns. This shift represents a move away from 
traditional forecasting techniques toward data-driven, intelligent ap-
proaches, resulting in unprecedented accuracy in predicting future en-
ergy needs. Another key trend is the increasing emphasis on real-time 
responsiveness within Smart Grids. ML and DL models empower Smart 
Grids to continuously analyze incoming data and generate insights, 
enabling swift reactions to changes in energy demand. Real-time 
responsiveness is crucial for optimizing grid operations, managing 
renewable energy integration, and ensuring a robust and adaptable 
energy distribution system that can meet the evolving demands of a 
dynamic society. The growing popularity of ensemble approaches in 
load forecasting is another significant trend. By combining predictions 
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from multiple models, these methods harness the strengths of different 
algorithms, reducing individual model limitations and enhancing the 
overall reliability of predictions. Ensemble methods are particularly 
valuable in achieving more resilient and precise forecasts in the face of 
uncertainty. Additionally, there is a clear movement towards integrating 
Smart Energy Management principles into broader sustainability ini-
tiatives. ML and DL techniques in load forecasting enable utilities to take 
proactive steps in managing energy resources, improving grid efficiency, 
and promoting energy conservation. This aligns with global efforts to 
transition to cleaner and more sustainable energy systems, marking a 
significant shift toward intelligent and environmentally conscious en-
ergy management practices. These trends and patterns highlight a major 
transition towards intelligent, adaptive, and sustainable energy systems. 
The integration of advanced forecasting techniques, real-time adapt-
ability, and ensemble methods points to a future where technology plays 
a critical role in optimizing energy use, enhancing grid reliability, and 
fostering a robust and sustainable energy ecosystem.

6.2. Emerging themes

One emerging theme is the pursuit of Explainable Artificial Intelli-
gence (XAI) in energy forecasting models. As ML and DL techniques 
advance, there is an increasing recognition of the need for transparency 
and interpretability in these models’ decision-making processes. The use 
of complex algorithms, particularly deep neural networks, often results 
in "black box" models, where the internal workings are difficult to un-
derstand. This lack of transparency poses challenges in critical appli-
cations like energy management, where stakeholders need a clear 
understanding of the reasoning behind specific forecasts or actions. XAI 
aims to address this issue by integrating transparency into ML algo-
rithms. Practitioners are developing methods to interpret and under-
stand the predictions made by these models. In load forecasting, XAI 
seeks to clarify how the model incorporates historical data, accounts for 
external variables, and assigns importance to different factors when 
making predictions. The growing importance of XAI is driven by its 
ability to build trust and encourage broader adoption of advanced pre-
dictive models in the energy industry. Stakeholders such as utility pro-
viders, regulatory bodies, and end-users often require a thorough 
understanding of the factors influencing energy forecasts to make 
informed decisions, allocate resources efficiently, and maintain grid 
stability, the incorporation of XAI aligns with regulatory requirements 
that demand transparency in decision-making processes, especially in 
critical infrastructure like Smart Grids. It also addresses ethical concerns 
by promoting transparency and reducing the risk of biases in decision- 
making, thus supporting the responsible and reliable integration of AI 
in energy management.

As the energy sector increasingly leverages ML and DL for load 
forecasting, XAI is becoming a crucial consideration. XAI enhances 
transparency and interpretability, ensuring the reliability and accep-
tance of advanced forecasting models. Additionally, it provides a foun-
dation for the ethical and responsible application of AI in the Smart Grid 
domain.

7. Key challenges & knowledge gaps

Based on the observations of evolving trends and patterns, it is 
crucial to recognise that implementing load forecasting in Smart Grids 
utilising Machine Learning (ML) and Deep Learning (DL) techniques is 
not free from difficulties. The intricacy of the energy system poses a 
significant obstacle. Smart Grid ecosystems consist of various inter-
connected elements, such as different energy sources, varying con-
sumption patterns, and changing external influences. To accurately 
anticipate loads, machine learning (ML) and deep learning (DL) systems 
must navigate intricate linkages and adapt to altering conditions, 
capturing the full spectrum of this complexity. The process is further 
complicated by the accuracy and availability of data. Machine learning 

(ML) and deep learning (DL) models heavily depend on extensive 
datasets for the purposes of training and validation. However, the 
presence of inconsistent, inadequate, or flawed data might hinder the 
accuracy of their predictions. Smart Grid technology continues to face 
the difficulty of consistently obtaining high-quality data from several 
sources, the opaque nature of numerous deep learning (DL) and machine 
learning (ML) models poses challenges in comprehending their decision- 
making mechanisms. Transparency and interpretability are essential, 
particularly when stakeholders require comprehension of the variables 
impacting energy estimates. Cybersecurity is a major issue of concern. 
Cyberattacks can exploit weaknesses that arise from the integration of 
Machine Learning (ML) and Deep Learning (DL) technologies in Smart 
Grids. To guarantee the dependability and safety of Smart Grids, it is 
imperative to implement strong cybersecurity protocols in conjunction 
with the creation and upkeep of Machine Learning (ML) and Deep 
Learning (DL) models. To tackle these difficulties, it is necessary to foster 
collaboration among specialists in energy systems, data science, cyber-
security, and regulatory frameworks. In order to fully harness the ca-
pabilities of load forecasting in Smart Grids and guarantee the secure 
and efficient deployment of intelligent energy management systems, it is 
imperative to address these challenges as the industry progresses.

7.1. Deficiencies in current literature

The literature evaluation emphasises various significant research 
gaps that have been highlighted in recent publications. The gaps 
encompass uncertainties in managing energy in smart grids, the struc-
tural aspects of constructing large-section shield tunnels, the utilisation 
of machine learning in urban energy systems, the integration of 
renewable energy, and the recognition of cities using machine vision.

(Khan et al., 2022) explicitly identifies deficiencies in the manage-
ment of energy in smart grids, highlighting the necessity for a more 
thorough examination. These gaps include areas of uncertainty, strate-
gies for optimisation, and the integration of stakeholders, all of which 
are essential for guaranteeing stability and efficiency in smart grid op-
erations. This highlights the need for more extensive study to tackle 
these intricacies and improve the overall efficiency of smart grid energy 
management systems.

(You et al., 2022) identified a research gap related to the 
load-bearing capacity and large-section shield tunnel failure character-
istics at high water pressure.

The call for comprehensive evaluation and control procedures 
highlights the need for a deeper understanding of the structural aspects 
of such tunnels, pointing towards a gap in the existing literature on 
tunnel engineering and safety under challenging conditions.

(Almadhor et al., 2022) emphasized a dearth of research on machine 
learning methods for calculating electrical power requirements in urban 
settings and encouraging the production of renewable energy. This un-
derscores a gap in literature regarding the application of machine 
learning techniques to address energy challenges in urban environ-
ments, where sustainability is a growing concern.

(Nayagam et al., 2022) drew attention to the lack of grid integration 
of hybrid renewable energy sources’ energy management systems. The 
disparity necessitates more investigation into accurate and effective 
strategies and technology for incorporating renewable energy sources 
into the systems that exist today.

(Liu and Liu, 2022) highlighted a research gap in machine 
vision-based intelligent city recognition, particularly in maximizing the 
effectiveness and precision of threshold segmentation algorithms. This 
indicates a need for more detailed investigations into the challenges and 
advancements in machine vision applications for intelligent city recog-
nition, focusing on improving segmentation algorithms for enhanced 
accuracy.

To summarize, the gaps identified in the literature emphasize the 
necessity for further research in several areas, including smart grid en-
ergy management, tunnel engineering, machine learning applications in 
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urban energy systems, integrating renewable energy sources, as well as 
machine vision-based intelligent city recognition. Rectifying these de-
ficiencies would enhance the advancement of more resilient and effec-
tive systems within the realm of intelligent power grids and urban 
sustainability.

8. Methodological critique

The evaluation of research techniques highlights the dynamic and 
diverse nature of load forecasting for Smart Grids, based on the previous 
discussion of trends and issues in this sector. Researchers utilise a range 
of methods to tackle the intricacies of load forecasting and intelligent 
energy management, with Machine Learning (ML) and Deep Learning 
(DL) playing crucial roles. These methods entail the creation and 
refinement of algorithms that utilise past consumption data, weather 
patterns, and other pertinent aspects to produce accurate predictions. 
Typical methods involve using supervised learning algorithms like 
regression and neural networks, which can analyse intricate patterns in 
data to generate precise predictions. Time series analysis is a widely 
used approach in load forecasting. This methodology carefully analyses 
past data to detect repetitive patterns and trends within certain time 
periods. ARIMA and its variations are frequently employed to address 
temporal dependencies in energy consumption patterns.

Ensemble approaches, which combine predictions from numerous 
models, have become well-known for their efficacy. Methods such as 
bagging and boosting leverage the advantages of different algorithms, 
leading to load estimates that are more resilient and precise. These 
strategies aid in reducing the constraints of individual models, hence 
improving the overall reliability of predictions. Optimisation strategies 
improve the efficiency of energy management systems. Metaheuristic 
techniques, such as genetic algorithms and particle swarm optimisation, 
are used to optimise model parameters, enhancing their performance in 
load forecasting.

the assessment of these approaches strongly depends on case studies 
and practical implementations. Researchers verify the accuracy and 
usefulness of their models by using real Smart Grid data. The integration 
of computer science, electrical engineering, and data analytics in this 
interdisciplinary approach enables a thorough comprehension of the 
complexity of Smart Grid and aids in the creation of strong forecasting 
models.

8.1. Advantages and limitations

The analysis uncovers both advantages and disadvantages in the 
methodologies employed for energy management and forecasting. An 
important advantage is the utilisation of machine learning (ML) and 
deep learning (DL) techniques, which employ advanced algorithms and 
past data to detect patterns and generate precise load forecasts. These 
methods are highly proficient in managing extensive datasets and 
adjusting to dynamic fluctuations in energy usage, leading to more ac-
curate predictions. Ensemble methods improve the accuracy of pre-
dictions by minimising uncertainty and aggregating the results of 
several models. Optimisation approaches enhance the overall efficiency 
of a system by modifying the parameters of a model, hence improving 
accuracy and adaptability.

Nevertheless, these sophisticated methods are accompanied by 
inherent difficulties. The opaque nature of many ML and DL models 
might obfuscate their decision-making processes, rendering the inter-
pretation and reliance on forecasts challenging. Data-related challenges 
can provide substantial obstacles; datasets that are biassed, inconsistent, 
or insufficient can compromise the accuracy of load estimates and 
impact the dependability of energy management systems. Moreover, 
machine learning (ML) and deep learning (DL) models might require 
significant computational resources, which can pose challenges in terms 
of scalability and efficiency, especially in real-time applications.

8.2. Areas for enhancement

These problems present numerous opportunities for improving 
research and practical applications. Enhancing the interpretability of 
models presents a valuable chance to establish confidence and 
comprehension among stakeholders by tackling the problem of opacity. 
Furthermore, there is a possibility for advancement in data quality and 
pre-processing techniques to tackle inconsistencies and biases. Investi-
gating innovative ensemble methods and optimisation strategies could 
significantly improve the resilience and effectiveness of load forecasting 
models. The collaboration between academia and industry can enhance 
the widespread implementation of research findings and the incorpo-
ration of practical knowledge. Examining energy storage alternatives 
and incorporating them into forecasting models offers a chance to 
enhance the resilience and dependability of the power grid in the face of 
changing supply and demand trends.

9. Integration and synthesis

Comparative analysis reveals that various studies employ distinct 
methodologies and provide diverse contributions. The repeated motif 
revolves around the utilization of deep learning (DL) and machine 
learning methodologies, underscoring their importance in raising the 
accuracy of load forecasting. Certain studies highlight the use of 
ensemble techniques, including merging forecasts from several models, 
to improve load forecasting’s resilience. By using this method, the 
shortcomings of individual models are lessened and the accuracy of 
energy demand predictions is increased.

By contrast, other studies highlight the variety of approaches in the 
field by concentrating on model parameter optimization through the use 
of metaheuristic algorithms. In addition, a noteworthy trend is the in-
clusion of real-world case studies. Research that employ real Smart Grid 
data to validate their models offer useful information about the suit-
ability and efficiency of various forecasting techniques (Zhou et al., 
2022; Aguilar et al., 2021) However, studies on stakeholder integration, 
optimization strategies, and uncertainty for grid stability and efficiency 
highlight the significance of a comprehensive approach to energy 
management. Even though using ML and DL is similar, there are dif-
ferences in the techniques used and the level of analysis.

While some studies take a more comprehensive approach and 
examine the entire system dynamics and integration issues, others focus 
on the finer points of certain algorithms. The multifaceted nature of load 
forecasting in smart grids is reflected in this diversity. the comparative 
analysis emphasizes how diverse load forecasting research in smart grids 
for ML DL smart energy management is. Although there are certain 
similarities, including the use of sophisticated algorithms, the area is 
dynamic and ever-evolving as evidenced by the variations in approaches 
and focal points. This variety opens the door for future solutions that will 
be more flexible and successful by fostering a thorough awareness of the 
opportunities and problems in smart energy management.

9.1. Synthesizing key concepts

Performance measures are essential for assessing the precision and 
efficacy of machine learning (ML) and deep learning (DL) models since 
they encapsulate important concepts. Quantitative measurements are 
used to evaluate forecasting models’ accuracy in predicting future 
events. The MAPE, or refers to absolute percentage error, Root Mean 
Squared Error (RMSE) or RRSE & Mean Squared Error are some exam-
ples of these measures. The mean squared error (MSE) is the primary 
metric used to calculate the average squared disparity between the 
actual and anticipated data. RMSE, which is derived from MSE, provides 
a more understandable statistic by computing the square root and 
reporting the average magnitude of errors in the projected values.

A relative version of RMSE that scales the error in accordance with 
the range of actual values is RRSE, a standardized metric of prediction 
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accuracy. The average deviation between the observed and expected 
values is displayed using a percentage-based metric called the Mean 
Absolute Percentage Error, or MAPE. Because it expresses forecast ac-
curacy plainly, this statistic is particularly useful when working with 
diverse energy consumption scales. Performance metrics, which sum-
marize key ideas, are crucial for evaluating the accuracy and effective-
ness of deep learning (DL) and machine learning (ML) models.

The accuracy with which forecasting models can predict future 
events is assessed using a variety of quantitative metrics, such as Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), Relative Root 
Mean Squared Error (RRSE), and Mean Absolute Percentage Error 
(MAPE). The mean squared error (MSE) is the primary metric used to 
calculate the average squared disparity between the actual and antici-
pated data. RMSE, which is derived from MSE, provides a more under-
standable statistic by computing the square root and reporting the 
average magnitude of errors in the projected values. A standardized 
indicator of prediction accuracy, RRSE, is a relative form of RMSE that 
scales the error according to the actual values’ range.

A percentage-based metric known as the Mean Absolute Percentage 
Error, or MAPE, shows the average variation between the observed and 
expected values. In particular, this statistic is especially helpful when 
dealing with different energy consumption scales because it clearly 
communicates forecast accuracy. A thorough understanding of model 
performance that strikes a balance between precision and interpret-
ability is produced by combining these crucial variables. Researchers 
often combine these measures to perform a detailed analysis of their 
forecasting models and provide a more comprehensive picture of pre-
diction accuracy.

This enables them to consider metrics that are relative as well as 
absolute. These metrics serve as both benchmarks for researchers and 
assistance to practitioners in selecting models that satisfy specific fore-
casting objectives. Combining the findings of the MSE, RMSE, RRSE, and 
MAPE facilitates a thorough evaluation. This demonstrates the necessity 
of developing models that not only minimize errors but also account for 
the size and context of the energy forecasting issue. All of these core 
concepts, which are firmly grounded in performance metrics, highlight 
the importance of careful quantitative evaluation in advancing the field 
of load forecasting. The emphasis on accuracy metrics draws attention to 
the continuous work being done to enhance and optimize ML and DL 
models for more trustworthy and effective smart energy management in 
the rapidly evolving field of smart grids.

9.2. Frameworks and models

The methodological groundwork for creating and putting into 
practice intelligent energy management systems is provided by frame-
works and models in load forecasting for smart grid for smart energy 
management. These models rely heavily on machine learning (ML) as 
well as deep learning (DL) frameworks, which provide a variety of 
methods for handling the intricacies of load forecasting. TensorFlow, 
PyTorch, and scikit-learn are popular machine learning frameworks that 
offer a powerful toolkit for performing ensemble techniques, time series 
analysis, and regression. These frameworks make it easier to create 
models that can adjust dynamically to shifts in the patterns of energy 
consumption, maximizing the efficiency and dependability of grid 
operations.

DL models are essential parts of load forecasting frameworks, and 
they are frequently implemented using neural network architectures. 
LSTM networks and CNNs are attractive candidates due to their capa-
bility to extract spatial patterns and temporal dependencies from energy 
data. These deep learning techniques enhance the accuracy of load 
predictions by discovering intricate connections within the data. The 
essence of CNNs lies in the convolutional operation, where filters are 
applied to input data, generating feature maps. 

Z(l)
i,j =

∑F−1
k=0

∑F−1
ĺ =0X(l−1)

i+k,j+ĺ .W(l)
k,ĺ + b(l) (7) 

Where:
Z (i,j)(l) represents the value at location (i,j) of the feature map in 

layer l. It is calculated by summing the values of the previous layer’s 
feature map, denoted as Z (i+k, j+l)(l-1), within a specific range.

The value at location (i+k, j+l′) in layer l-1 is denoted as (l-1) and is 
obtained by multiplying the input at position (i, j′) in layer l-1 with the 
weight Wk,l′.

(l) Represents the weight at the point (k, l′) of the filter in layer l. b (l) 
represents the bias term in layer l.

The size of the filter is denoted by F.
LSTM equation 

ot = σ(Wio • xt + bio +Who • ht−1 + bho) (8) 
(xt) represents the input at time (t), (h_{t-1}) represents the prior 

hidden state. (W) and (b) are the weights and biases respectively. 
(sigma) refers to the sigmoid function.

Ensemble techniques, which integrate predictions from various al-
gorithms to resolve uncertainties and improve forecasting reliability, are 
essential models. Examples of these techniques are Random Forests and 
Gradient Boosting. Due to their ability to mitigate the constraints of 
individual models, these models enhance the robustness of energy 
management systems (Xiong et al., 2022).

Given an input sample X, the projected output Y is obtained by 
combining the predictions Yi from each individual decision tree i in the 
forest. In regression tasks, the average prediction might serve as the 
benchmark. 

Ŷ =
1
n
∑n

i=1Yi (9) 

The symbol "^" represents the predicted value.
The variable n represents the quantity of trees present in the Random 

Forest.
Yi represents the forecasted value made by the i-th decision tree.
Gradient Boosting Equation: 

Ŷ = FM(x) (10) 
The symbol (F_M(x)) denotes the model obtained at iteration (M) in 

the process of Gradient Boosting. An ensemble of weak learners is suc-
cessively updated to minimize the loss function (L), which quantifies the 
discrepancy between predicted and true values. During each iteration 
(m), a weak learner (h_m(x)) is trained using the negative gradient of the 
loss function. The step size (gamma_m) defines how much (h_m(x)) 
contributes to the overall model (F_m(x)). The ultimate forecast (hat{y}) 
is the result of the boosted model following (M) iterations.

The use of optimization frameworks, which make use of meta-
heuristic algorithms such as particle swarm optimization or genetic al-
gorithms, is essential for optimizing model parameters and achieving 
higher efficiency. These frameworks match the unique needs of Smart 
Grids with the ML and DL models, optimizing their performance. The 
models and frameworks used in load forecasting for smart grids are a 
complex toolbox that includes optimization approaches, ensemble 
methods, machine learning, and deep learning. By combining these 
methodological techniques, we can create intelligent and flexible energy 
management systems that will lead to more sustainable, dependable, 

Table 3 
Comparison table of existing work.

Model Performance References
Long Short-Term Memory (LSTM) Accuracy 0 f 84 % (Rabie et al., 2024)
CNN model Accuracy of 94.5 % (Zhang et al., 2023)
CNN model Accuracy of 98.83 % (Mohsin et al., 2023)
LSTM model Accuracy of 77.86 % (Yanmei et al., 2024)
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and effective energy sources in the future.
Table 3 titled "Comparison Table of Existing Work" presents a sum-

mary of the performance of different models used in a specific research 
context, showcasing their accuracy. The first entry is the Long Short- 
Term Memory (LSTM) model, which achieved an accuracy of 84 %. 
LSTM models are known for their ability to handle sequential data and 
long-term dependencies, making them suitable for tasks such as time 
series prediction and natural language processing.

Next, the table lists two entries for Convolutional Neural Network 
(CNN) models. The first CNN model achieved an accuracy of 94.5 %. 
CNNs are typically used in image and video recognition due to their 
proficiency in capturing spatial hierarchies in data. The second CNN 
model significantly outperformed the first, with an accuracy of 98.83 %. 
This high accuracy indicates the model’s superior performance in the 
given task, potentially due to more advanced architecture or better 
training data. The final entry is another LSTM model, which had a lower 
accuracy of 77.86 %. This variation in performance between LSTM 
models may be due to differences in dataset characteristics, model 
tuning, or implementation details. The table effectively highlights the 
comparative performance of LSTM and CNN models, with CNN models 
generally showing higher accuracy in this context.

10. Future directions

Future research can be classified under six distinct categories which 
are explained below.

1) Intelligible AI for Forecasting Loads 
One major obstacle that still needs to be overcome is making 

machine learning and deep learning models interpretable. Subse-
quent investigations may concentrate on creating and refining 
explainable AI methods in order to offer perceptions into the 
reasoning processes of intricate models. This would boost confidence 
and make it easier for these models to be used in more practical 
contexts.

2) Renewable Energy Source Integration 
Studying how to successfully include renewable energy sources 

into load forecasting models is important as the world progresses 
toward a more sustainable energy future. For grid stability and ef-
ficiency, it is essential to address the intermittent character of 
renewable energy and optimize its integration with traditional 
sources.

3) Smart Grid Cybersecurity 
As Smart Grids depend more and more on digital technology, 

cybersecurity becomes critical. Subsequent investigations must to 
focus on creating strong cybersecurity defenses against possible 
cyberattacks on Smart Grids, guaranteeing the confidentiality and 
integrity of data and energy infrastructure.

4) Advanced Computing for Instantaneous Prediction 
One interesting area of investigation might be the use of edge 

computing in load forecasting. By processing data closer to the 
source, edge computing lowers latency and facilitates real-time de-
cision-making. This can be especially helpful when it comes to pat-
terns of energy consumption that are dynamic and changing quickly.

5) Energy Management Systems Focused on Humans 
Incorporating user preferences and behavior into energy man-

agement systems may result in more individualized and human- 
centered strategies. Subsequent investigations could examine the 
integration of social sciences and behavioral economics to enhance 
comprehension and modeling of the human elements impacting en-
ergy usage.

6) Interaction across Domains

Research collaborations between data scientists, energy specialists, 
and policymakers may help close the gap between policy implementa-
tion and technology improvements. The development of Smart Grids 

will be aided by interdisciplinary research that takes into account both 
technical and socioeconomic factors.

Future studies can advance load forecasting in smart grids and make 
energy systems more resilient, sustainable, and able to adapt to the 
changing demands of society by tackling these topics. These areas of 
research could influence smart energy management in the future and 
help the world’s energy systems become cleaner and more efficient.

10.1. Technology and methodology advancements

The field of energy forecasting is changing due to significant tech-
nological and methodological breakthroughs in load forecasting in 
Smart Grid for Smart Energy Management. Advances in machine 
learning (ML) and deep learning (DL) technologies are improving the 
accuracy and flexibility of load forecasting models. Neural networks and 
ensemble techniques are examples of advanced machine learning algo-
rithms that are constantly developing to handle complex interactions 
seen in energy consumption data.

Predictions become more accurate when deep learning architectures, 
such as Long Short-Term Memory (LSTM) networks and Convolutional 
Neural Networks (CNN), are integrated. This allows for the modeling of 
intricate temporal and spatial patterns. Beyond algorithmic complexity, 
methodological advances include areas such as explainable AI. There is a 
current endeavor to improve the interpretability of models by increasing 
the transparency of their decision-making procedures.

Gaining acceptability and trust is contingent upon this, especially in 
situations where stakeholders must comprehend the reasoning behind 
energy estimates. Likewise, real-time load forecasting capabilities have 
been added with the rise of edge computing. Faster decision-making is 
made possible by processing data closer to the source, which is crucial 
for controlling the dynamic and quickly shifting nature of energy con-
sumption. Forecasting models are further refined through the inclusion 
of optimization techniques through the use of metaheuristic algorithms.

By bringing energy management systems into compliance with the 
unique needs and limitations of smart grids, this optimization increases 
the effectiveness of those systems. It represents a paradigm-shifting 
period in energy forecasting due to the convergence of technology and 
methodological advances. These developments contribute to the devel-
opment of intelligent and sustainable energy infrastructures by 
increasing prediction accuracy and efficiency and opening the door for 
more transparent, flexible, and real-time energy management systems.

10.2. Predictions for the futurework

In the realm of energy management, a multitude of projections shape 
a future rich with intriguing possibilities. The evolution of machine 
learning algorithms holds the promise of yielding forecasting models 
that are progressively more precise and adaptable, capable of navigating 
a spectrum of dynamic energy use patterns. Addressing the interpret-
ability challenge, Explainable AI is poised to gain popularity, fostering 
wider acceptance of intricate models and resolving the intricacies 
associated with their outputs.

Real-time decision-making, a pivotal aspect in steering the fluctu-
ating demands of energy systems, is on the horizon with the integration 
of edge computing. This integration will empower swift responses to 
changing energy needs, ensuring efficiency and resilience in energy 
management. Emphasizing a comprehensive approach to smart energy 
management, interdisciplinary collaboration among data scientists, en-
ergy experts, and policymakers is slated to become more prevalent.

This collaborative effort will be instrumental in navigating the 
complexities of the evolving energy landscape. Anticipated innovations 
in forecasting models are set to revolutionize the field by incorporating 
user preferences and behaviors. This shift towards individualized and 
human-centered energy solutions aligns with a vision of a more 
personalized and responsive energy management system. Collectively, 
these forecasts paint a compelling vision of the future – one where 
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technology-driven, transparent, and responsive energy management 
systems play a pivotal role in establishing resilient and sustainable smart 
grids. The integration of cutting-edge technologies and collaborative 
approaches is poised to transform the energy sector into a dynamic and 
adaptive ecosystem, capable of meeting the challenges of tomorrow.

11. Conclusions

This work provides a distinctive exploration of Deep Learning (DL) 
and Machine Learning (ML) techniques applied to smart grid load 
forecasting within energy management systems. Unlike traditional 
literature reviews, which primarily classify and analyze individual 
studies, this paper adopts a forward-looking approach by not only 
assessing current methodologies but also proposing novel research di-
rections. The review underscores the critical role of AI and ML in 
advancing load forecasting accuracy and scalability, highlighting their 
integration into real-world applications through comprehensive evalu-
ations of neural networks, ensemble methods, and probabilistic fore-
casting techniques.

The study reveals a dynamic landscape characterized by technical 
innovation and interdisciplinary collaboration, emphasizing precision, 
transparency, and sustainability in smart energy management. By sys-
tematically comparing DL and ML techniques against traditional 
methods using performance metrics such as MAPE, RMSE, and MSE, the 
review provides a robust assessment of their efficacy in addressing 
challenges like grid stability and demand forecasting. Real-world case 
studies demonstrate how these advanced techniques contribute to 
practical solutions, enhancing the reliability and efficiency of energy 
systems.

A distinguishing feature of this review is its forward-looking 
perspective, which not only examines current methodologies but also 
proposes future research directions. By identifying key challenges such 
as data quality issues, scalability concerns, and the need for interpret-
ability, this review sets the stage for addressing these issues in future 
studies. Moreover, it emphasizes the integration of AI and ML into 
practical applications within energy management, showcasing their 
potential to optimize grid stability, enhance demand prediction, and 
manage uncertainties effectively.

Moving forward, the review suggests exploring hybrid models, 
refining prediction frameworks, and developing standardized evalua-
tion metrics to further advance the field of load forecasting in smart 
grids. These insights not only contribute to academic understanding but 
also provide a roadmap for implementing robust and efficient energy 
management strategies in real-world scenarios
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