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ABSTRACT

This review offers an in-depth examination of Deep Learning (DL) and Machine Learning (ML) techniques for
smart grid load forecasting, emphasizing language precision, methodological rigor, and the exploration of novel
contributions. The language used in this review is both technical and accessible, balancing complex concepts
with clear explanations to cater to both specialists and general readers. It meticulously dissects contemporary DL
models, including neural networks and ensemble methods, and evaluates their effectiveness through a detailed
review of algorithms and frameworks. The methodology section systematically compares these techniques
against traditional forecasting methods using performance metrics such as MAPE, RMSE, and MSE, ensuring a
comprehensive assessment of their accuracy and scalability. A significant contribution of this review is its ex-
amination of real-world applications and case studies, which demonstrate how ML and DL techniques address
practical challenges in energy management, such as grid stability and demand forecasting. Furthermore, the
review introduces novel perspectives on the integration of probabilistic forecasting and ensemble methods,
which offer innovative approaches for managing energy demand uncertainties. By identifying current limitations
and proposing future research directions, this review not only advances the understanding of DL and ML ap-

plications in smart grids but also provides a foundation for future developments in this evolving field.

1. Introduction

Instances of highly variable distributed generation sources (Hussain
et al., 2020a), such as electric vehicles (Ustun et al., 2012; Distributed
Energy Resources DER, 2011), photovoltaic systems (Distributed Energy
Resources DER, 2011; Hussain et al., 2020a), wind turbines (Dey et al.,
2020; Patil et al., 2022), and energy storage devices (Das et al., 2022a;
Hagq et al., 2023), present challenges to the stability of power and dis-
tribution networks (Nadeem et al., 2019). These sources contribute to
distributed generation, and their integration may potentially jeopardize
system stability (Latif et al., 2020; Hussain et al., 2020b; Barik et al.,
2021). The primary concern in many cases is the imbalance that can
arise between power supply and demand (Farooq and Rahman, 2022;
Safiullah et al., 2022). Such imbalances, observed in numerous case
studies, can lead to disruptions in the network (Aftab et al., 2021),
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manifesting as voltage fluctuations and, in severe cases, blackouts
(Ranjan et al., 2021a; Latif et al., 2021; Anonymous, 2021a). Further-
more, disturbances in the network are conceivable (Kamrul et al., 2024).

Potential network disruptions are a concern, which could lead to
significant complications (Ustun et al., 2021a). The implementation of
energy management systems allows achieving dual objectives: reducing
peak loads during unforeseen periods and improving the equilibrium
between supply and demand effectively (Hussain et al., 2022; Srivastava
et al., 2022; Das et al., 2022b; Ustun and Hussain, 2020). This goal is
accomplished through the establishment of energy management sys-
tems. Two fundamental categories can be applied to energy manage-
ment classification (Fekri et al., 2023). The first category pertains to the
supplier side, such as electric utilities, which involves the activation or
deactivation of certain generators in response to variations in load de-
mand (Ustun et al., 2022).
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The second category, termed demand-side management, focuses on
consumer-side management of the market (Chauhan et al., 2021; Ranjan
et al., 2021b). This entails consumers regulating their energy usage to
meet the electricity demand created by generation-side implementation
of demand-side management. This is done to meet the power demand.
The primary objective of implementing energy management is to reduce
operating and consumption costs (Singh et al., 2021), minimize energy
losses (Sahoo et al., 2023). Another objective is to improve network
reliability (Al-Shetwi et al., 2022; Dawn et al., 2021).

Load forecasting, illustrated in Figure 4, is resilient due to its capa-
bility to adjust to dynamic changes in energy demand and generation
patterns, thereby enhancing grid stability and reliability. By integrating
machine learning and deep learning techniques, forecast models can
accurately capture intricate trends and fluctuations. The resilience is
further bolstered by ensemble methods, which mitigate uncertainties
and enhance forecast performance. Additionally, probabilistic fore-
casting provides a proactive approach to managing unpredictability,
empowering decision-makers to make informed risk management de-
cisions. Overall, the resilience of load forecasting ensures efficient
resource allocation, grid optimization, and sustainable energy man-
agement, thereby contributing to a more robust and adaptable energy
infrastructure.

The power utilities with different generation modalities (DGM)
experience complexities & minimal error in predicting future load
forecasting. It features diverse components including residential homes,
commercial offices, and industrial facilities, all connected to a central
power distribution tower. This highlights the process of collecting data
through smart meters installed at each component location. This data is
then transmitted to a central system for aggregation and analysis. The
core of the process involves using advanced algorithms to forecast en-
ergy demand and supply needs based on historical and real-time data. By
optimizing electricity distribution, smart grids enhance energy man-
agement, improve efficiency, and balance supply and demand through
data-driven insights.

On the other hand, it has a significant future in which the majority of
the research that is being done right now is concentrated on the devel-
opment of complex algorithms and models in order to improve the
management of the energy that is on the grid. This is being done in order
to make the grid run more efficiently. The reason for this is that it has a
good future ahead of it. For the purpose of satisfying the requirements of
the customers and making their lives easier, it is essential that there be
an increase in the quantity of power that is generated. The reason for this
is that the need for energy is only going to continue to increase all across
the world. On the other hand, the demand for electricity may result in
difficulties for the operators of the electric utilities and the system as a
whole. This predicament is the result of a variety of variables, the most
important of which are the unpredictability of the electric load and the
fact that there are more customers overall. In addition, there is a
considerable possibility that high peak demands may occur at a variety
of different times, which may pose a risk to the system’s capacity to
carry out its functions (Al-Quraan et al., 2023; Alsirhani et al., 2023).

For effective energy planning and management in power systems,
load forecasting is crucial. It is divided into a number of groups ac-
cording to the time prediction horizon.

Very Short-Term Load Forecasting (VSTLF): This category typically
involves predicting load demand over minutes to a few hours ahead.
VSTLF is crucial for real-time operations, such as unit commitment,
dispatch scheduling, and grid stability. Techniques like autoregressive
integrated moving average (ARIMA), artificial neural networks (ANN),
and support vector machines (SVM) are commonly employed for VSTLF
due to their ability to capture short-term dependencies and rapid load
fluctuations.

Short-Term Load Forecasting (STLF): STLF extends the prediction
horizon to a day, a week, or up to a month ahead. It aids in optimizing
resource allocation, energy trading, and economic dispatch. STLF
models often integrate weather forecasts, historical load data, and
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calendar effects. Methods such as ARIMA, exponential smoothing, and
STLF applications frequently use machine learning techniques like
gradient boosting and random forests.

Medium-Term Load Forecasting (MTLF): MTLF typically spans from
several months to a year ahead. It facilitates capacity planning, infra-
structure investment decisions, and policy formulation. MTLF models
incorporate factors such as economic indicators, population growth, and
industrial activities. Time series analysis, econometric models, and
regression techniques are commonly used in MTLF.

Long-Term Load Forecasting (LTLF): LTLF involves predicting load
demand several years or decades into the future. It informs long-term
investment strategies, grid expansion plans, and renewable energy
integration. LTLF models consider factors like demographic trends,
technological advancements, and regulatory changes. Econometric
models, scenario-based analysis, and system dynamics approaches are
employed in LTLF due to the complexity and uncertainty of long-term
forecasts.

In conclusion, each type of load forecasting has a specific function
and makes use of specialized techniques to deal with the particular
difficulties posed by various time horizons for prediction in power sys-
tem planning and operation. On the other hand, the taxonomy for load
forecasting approaches can be organized into three primary categories:
statistical methods, machine learning methods, and deep learning
methods. Here is a concise summary:

Statistical methods play a crucial role in load forecasting and anal-
ysis. Time Series Analysis is employed for load forecasting, utilizing
strategies such as Exponential Smoothing and ARIMA (Auto Regressive
Integrated Moving Average) (Dey et al., 2023). These techniques are
effective in capturing temporal patterns and trends in historical load
data. Regression Analysis is utilized to establish relationships between
historical load data and other significant variables (Hamoudi et al.,
2023). This method helps quantify the impact of various factors on
electricity consumption patterns. Seasonal decomposition methods,
such as the seasonal decomposition of time series, are employed to
decompose load data into trend, seasonal, and residual components
(Yadav and Malik, 2021). This approach aids in understanding seasonal
variations and their influence on overall load patterns.

Machine Learning methods offer advanced techniques for load
forecasting. Support Vector Machines (SVM) are utilized to predict
future load by analyzing historical data and relevant characteristics
(Chatterjee et al., 2024). SVMs excel in capturing complex relationships
and patterns in data. Techniques such as Random Forest, an ensemble
method, is effective in handling non-linear relationships and in-
teractions between variables in load forecasting (Ustun et al., 2021a,
2021b; Yarar et al., 2023). By aggregating predictions from multiple
decision trees, Random Forest enhances predictive accuracy. Similar
approaches iteratively build a series of weak learners to create a robust
learner for load forecasting tasks (Pattanaik et al., 2024). This iterative
approach sequentially improves prediction accuracy by focusing on
previously mis predicted data points.

Deep Learning methods, particularly Recurrent Neural Networks
(RNNs) such as Long Short-Term Memory (LSTM) networks, are
increasingly employed for sophisticated load forecasting. RNN archi-
tectures, notably LSTM networks, are adept at analyzing sequential data
like time series, which is crucial for accurate load forecasting
(Abdolrasol et al., 2023; Anonymous, 2021b; Ulutas et al., 2020). These
networks excel in capturing long-term dependencies and temporal dy-
namics in data, making them well-suited for modeling electricity con-
sumption patterns over time.

Each of these methods possesses distinct advantages and disadvan-
tages, and Depending on the specific characteristics of the load data and
forecasting requirements, their effectiveness may vary. Finding the best
strategy for a given forecasting task requires conducting tests and vali-
dating findings. Based on the above discussions, this review provides a
comprehensive overview of recent advancements in smart grid load
forecasting methods. It underscores the critical importance of load
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forecasting within the realm of smart energy management, emphasizing
its pivotal role in optimizing energy distribution and consumption
strategies. The review explores the integration of advanced techniques
from deep learning and machine learning, demonstrating their efficacy
in enhancing the accuracy and reliability of load forecasting models.
Furthermore, it identifies and discusses significant challenges encoun-
tered in smart grid load forecasting, including issues related to data
quality, scalability, and model interpretability. These insights lay the
foundation for future research directions aimed at addressing these
challenges and advancing the field. Additionally, the review evaluates
the potential of ensemble methods in bolstering load forecasting per-
formance, highlighting their capability to mitigate uncertainties and
elevate forecast accuracy in dynamic energy environments.

2. Review of load forecasting in power systems

The load forecasting problem in conventional and smart grids varies
substantially due to the distinct characteristics and capacities of each
grid system. Traditional systems commonly employ rudimentary sta-
tistical models and historical data to forecast future power demand in
load forecasting. These models frequently fail to consider the ever-
changing nature of energy consumption patterns and have limited ca-
pacity to adjust to changing circumstances.

In addition, traditional grids do not possess the capacity to see and
act in real-time, which creates difficulties in administering demand-
response programmes and incorporating renewable energy sources.
Load forecasting in smart grids use sophisticated technologies like sen-
sors, smart metres, and communication networks to collect up-to-date
information on electricity consumption, generation, and system condi-
tions. Smart grid load forecasting utilises advanced machine learning
and deep learning algorithms to analyse extensive data and detect
intricate trends in energy consumption. This allows for more precise and
detailed forecasts of electricity consumption, which helps improve the
administration and optimisation of the power grid.

Furthermore, smart grids facilitate the implementation of dynamic
pricing mechanisms and demand-response programmes, which enable
utilities to motivate users to modify their electricity consumption in
accordance with real-time system circumstances. In smart grids, load
forecasting is characterised by its dynamic, adaptive, and data-driven
nature, which sets it apart from conventional grids. This allows for
enhanced efficiency, dependability, and sustainability in energy
management.

When it comes to load forecasting, the classification into distribution
of load forecasting, hierarchical load forecasting, and probabilistic load
forecasting provides a systematic framework to tackle various parts of
the forecasting process. Below is a detailed analysis of each category:

Forecasting the Distribution of Power Demand is the process of
estimating the amount of power is known as spatial load forecasting. It is
needed at different points within a specific region or network. This
technique recognizes the regional variability in load patterns caused by
factors such as population density, industrial activities, and climate
fluctuations. Methods such as spatial interpolation, geographic infor-
mation systems (GIS), and clustering techniques can be used to capture
spatial relationships and forecast the load at specific areas. Efficiently
managing generation, transmission, and distribution resources across
multiple regions is of utmost importance for utilities, making spatial
load forecasting a critical task.

Hierarchical Load Forecasting refers to the process of predicting the
electricity demand at different levels of a hierarchical structure, such as
at the national, regional, or local level. Hierarchical load forecasting
acknowledges the hierarchical arrangement of the electricity grid,
encompassing distinct tiers such as national, regional, and local grids.
This methodology entails predicting the demand at every level of the
hierarchy, considering the combination and separation of load data.
Forecasts can be created for many levels of electricity demand, including
national, regional, and specific load zones within regions. Hierarchical
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load forecasting enables efficient decision-making at different adminis-
trative levels and aids in coordinating load balancing tactics throughout
the grid.

Probabilistic Load Forecasting: Probabilistic load forecasting extends
beyond making single predictions by offering probabilistic forecasts that
encompass the inherent uncertainty in load forecasting. Probabilistic
forecasting involves generating a probability distribution of future load
scenarios, allowing decision-makers to evaluate the probability of
various events and make well-informed risk management choices, rather
than anticipating a single value. Probabilistic load forecasting often
employs techniques such as ensemble methods, Bayesian methodolo-
gies, and Monte Carlo simulations. This method is especially beneficial
for utility companies and grid operators to accurately measure and
control the unpredictability linked to fluctuations in power demand,
market conditions, and the integration of renewable sources.

By integrating these classifications into the load forecasting paper, a
thorough examination of the many aspects of forecasting methods and
their practical ramifications in the energy industry may be achieved.

2.1. Background

Improving the transmission and consumption of electrical power in a
smart grid for smart energy administration requires the use of load
forecasting. Given the increasing demand for energy, In order to forecast
load accurately and efficiently, Deep learning and machine learning
must be applied. ML and DL algorithms utilize historical consumption
patterns, weather conditions, and other pertinent data to forecast future
electricity demand with greater accuracy compared to conventional
approaches.

The Smart Grid increases the efficiency and dependability of elec-
tricity distribution by utilizing modern technologies, with load fore-
casting playing a crucial role in this system. Complex correlations within
the data are captured by deep learning, or DL, models like neural net-
works and machine learning (ML) models like regression and decision
trees. enabling more detailed predictions. This proactive strategy helps
utility companies optimize resource allocation, minimize grid conges-
tion, and avert future failures. Additionally, it gives customers the
knowledge they need to make educated decisions about how much en-
ergy they use, which promotes a more economical and sustainable en-
ergy environment. When load forecasting is combined In the framework
of a smart grid, machine learning (ML) and deep learning (DL) opera-
tional efficiency is increased and a more intelligent, resilient energy
infrastructure that can meet the ever-changing needs of modern society
is developed (Zafar et al., 2023; Onteru and Vuddanti, 2023).

2.2. Motivation

The motivation behind this review is to address the pressing need for
effective load forecasting in Smart Grids for Smart Energy Management.
With the increasing complexity of energy systems and the rapid inte-
gration of renewable energy sources, there is a critical demand for ac-
curate prediction models. By focusing on the integration of Machine
Learning techniques, particularly Deep Learning, this review aims to
explore recent advancements and identify challenges in order to guide
future research efforts. Ultimately, the goal is to contribute to the
development of transparent, resilient, and human-centric smart energy
management systems to meet the evolving needs of the energy industry.

2.3. Objectives of review

The review has multifaceted objectives designed to advance under-
standing and application in the field. Primarily, its goal is to assess the
state of Deep Learning approaches today as they relate to load fore-
casting in smart grids. This entails a thorough examination of current
models. This involves a comprehensive analysis of existing models, al-
gorithms, and frameworks to assess their effectiveness, accuracy, and
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scalability.

Secondly, the review seeks to identify the practical implications of
implementing ML and DL for load forecasting in Smart Energy Man-
agement. This includes evaluating their impact on grid reliability, en-
ergy efficiency, and overall system performance. By delivering into real-
world applications and case studies, the objective is to distill valuable
insights that can inform future deployments and improvements.

Lastly, the review aims to pinpoint challenges and limitations asso-
ciated with ML and DL approaches, providing a critical examination of
potential hurdles in deployment and suggesting avenues for further
research. Through these objectives, the review strives to contribute to
the ongoing evolution of Smart Grids for smarter and more sustainable
energy management.

2.4. Scope and limitations

This review comprehensively examines the latest research trends and
achievements in enhancing smart grid load prediction accuracy using
deep learning and machine learning techniques. It covers diverse
methodologies such as ensemble methods, time series analysis, and
optimization techniques, highlighting the dynamic and evolving nature
of this field. Emphasis is placed on key performance metrics like MAPE,
RMSE, RRSE, and MSE. The focus is on demonstrating the effectiveness
of complex algorithms, particularly neural networks, in addressing en-
ergy system challenges, supported by empirical case studies that connect
theoretical advancements with practical applications.

Despite promising advancements, the review identifies several lim-
itations, including the opacity of complex models and persistent cyber-
security concerns. These challenges highlight the need for ongoing
research to develop transparent, resilient, and human-centric smart
energy management systems. The review also underscores the impor-
tance of interdisciplinary cooperation to address emerging issues and
advance towards a more intelligent and sustainable energy future.
Continuous exploration is essential to fully harness the potential of
advanced techniques in smart grids, ensuring their real-world applica-
bility and long-term efficacy.

3. Literature review

A revolutionary trend marked by advancements in technology and a
growing emphasis on sustainability can be seen in the historical devel-
opment of load forecasting utilizing machine learning and Deep learning
methods for intelligent energy management in the framework of smart
grids.

Initially, load forecasting heavily depended on conventional statis-
tical techniques, time-series analysis, and basic forecasting models.
These methods have constraints in their capacity to comprehend the
intricate and ever-changing characteristics of energy usage patterns,
particularly in light of the growing urbanization and industrialization.
With the increase in energy needs, it became clear that more advanced
technologies were needed to tackle the changing issues of the power grid
(Das et al., 2023; Kermani et al., 2023; Xin et al., 2022).

The advent of machine learning signified a significant shift in the
existing methods. Machine learning algorithms, such decision trees and
regression analysis, started to become more and more common in load
forecasting in the late 20th century. These methods provided enhanced
precision by taking into account past consumption data, weather trends,
and other external variables. Machine learning introduced a methodol-
ogy that relies on data analysis to predict future outcomes, allowing
utilities to make better-informed choices regarding the allocation of
resources & the grid’s management.

The application of deep learning (DL) in the twenty-first century
significantly changed how load forecasting works inside smart grids.
Deep learning, especially neural networks, demonstrated an impressive
ability to discover complex patterns and relationships inside large
datasets. DL’s capacity to autonomously extract characteristics and
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adjust to fluctuating circumstances renders it very suitable for the dy-
namic aspects of energy usage. The development of sophisticated models
like This era saw major advancements in the estimation and prediction
of energy usage over time produced by long short-term memory net-
works (LSTMs) and recurrent neural networks (RNNs) (Yao et al., 2022;
Islam et al., 2022; Khan et al., 2022; You, 2022).

There was also a shift in the historical path toward real-time pre-
diction. Modern sensor technology and the widespread use of smart
meters have made it possible for utilities to collect data more often,
which allows them to produce projections that are more accurate and
timely. Since renewable energy sources and electric vehicles have
become more prevalent, the real-time functionality has become crucial
for controlling the increasing volatility & unpredictability of energy
consumption patterns (Complementary and Medicine, 2023; Torres
et al., 2023; Wang et al., 2023a; Yang et al., 2023).

As they evolved, smart grids were employed for purposes other than
load forecasting. In order to maximize demand responsiveness, identify
issues, and forecast maintenance needs, deep learning (DL) and machine
learning (ML) techniques were applied. The goal of these all-inclusive
approaches is to create energy ecosystems that are more robust and
adaptive. Notwithstanding these developments, problems remained.
The effectiveness of machine learning (ML) and deep learning (DL)
models is significantly impacted by the quality and accessibility of data,
according to historical trends. Biases or inaccuracies in prior data may
affect the prediction’s accuracy. Furthermore, the understandability of
complex deep learning models has become a source for concern because
awareness of the decision-making process is essential to promoting
acceptance and confidence in real applications.

In the future, load forecasting will continue to grow as learning with
deep neural networks (DL) and ML technologies grow (Nagarajan et al.,
2022; Refaai et al., 2022). The historical review provides the foundation
for this progression. The incorporation of explainable Al, reinforcement
learning, and hybrid models that leverage the advantages of different
techniques can enhance the precision and practicality of load forecasting
in Smart Grids, ultimately leading to a more intelligent, efficient, and
sustainable energy management approach.

3.1. Comparative evaluation of author contributions in comparison to
other review papers

When assessing the authors’ addition to the current collection of
review articles on smart grid load forecasting, it is crucial to examine the
thoroughness of their study, the originality of their findings, and their
incorporation of recent breakthroughs in machine learning (ML) and
deep learning (DL) techniques. The authors’ contribution is notable in
multiple ways when compared to prior review publications in the field.

Firstly, their historical overview offers a thorough analysis of the
development of load forecasting techniques, documenting the shift from
conventional statistical methods to the incorporation of machine
learning (ML) and deep learning (DL) approaches. The thorough his-
torical backdrop allows readers to understand the importance of recent
achievements in the wider context of smart grid management.

Particular uses of machine learning (ML) and deep learning (DL) in
load forecasting, emphasising the efficacy of neural networks like long
short-term memory (LSTM) and recurrent neural networks (RNNs) in
collecting intricate patterns in energy consumption data is explored. The
authors provide useful insights into the potential of deep learning ap-
proaches to tackle the issues posed by dynamic energy usage patterns in
smart grids, by emphasising on this advanced methodology.

The authors highlight the significance of having the ability to predict
in real-time, especially in the face of growing instability and unpre-
dictability resulting from the incorporation of renewable energy sources
and electric vehicles. This perspective that looks ahead emphasises the
importance of their review in tackling the current and future issues that
the energy business is facing. The authors of this review study also
recognise the limitations and difficulties that come with ML and DL
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models, including problems with data quality and the absence of inter-
pretability in intricate DL architectures.

Through a thorough evaluation of these obstacles, the authors pre-
sent an impartial viewpoint on the tangible consequences of incorpo-
rating machine learning (ML) and deep learning (DL) methods in actual
smart grid settings. Also suggest that future research should focus on
integrating explainable Al and hybrid modelling techniques to improve
the accuracy and applicability of load forecasting. The authors’
commitment to moving the field beyond present restrictions is evident in
their forward-thinking approach.

This approach highlights the potential significance of their work on
defining future improvements in smart grid management. The authors’
contribution to the current literature on smart grid load forecasting is
notable for its thorough analysis, integration of recent breakthroughs,
and forward-thinking approach to future research paths. The authors’
comprehensive analysis of machine learning (ML) and deep learning
(DL) approaches in the context of smart grids offers useful insights that
contribute to the continuing discussion on sustainable energy manage-
ment. Tables 1,2

3.2. Key concepts and definitions

The main ideas and terms surrounding load forecasting in relation to
the supply of electricity. For the electricity system to remain reliable and
to avoid possible disturbances like blackouts, load forecasting accuracy
is essential. To gauge how accurate load forecasting methods are, a
number of Key Performance Indicators (KPIs) have been identified.
These are the definitions and main ideas that were discussed. Statisti-
cally speaking, the Mean Absolute Error (MAE) measures the average
absolute deviations between the projected and actual values in a dataset.
A straightforward method to assess prediction accuracy is to use the
mean of absolute differences (MAE), which does not take error direction
into account.

Table 1
Literature summary.

Energy Reports 12 (2024) 3654-3670

Table 2
Comparison of Machine Learning (ML) and Deep Learning (DL) Models Based on
Validation Indices.

Author
name/year

Methodology used Validation Indices Ref.

Guo/2021

Asiri /2024

Alquthami/

Deep neural network
(DNN)(Deep learning)

Deep learning, LSTM,
CNN, optimization,
performance.

Short-term load

2022 forecasting using
machine learning
methods and improved
decision trees

(Guo et al.,
2021)

Simulation findings
demonstrate that the
prediction model’s
performance indices’
mean absolute
percentage error
eMAPE and root-mean-
square error eRMSE are
10.01 % and

2.156 MW.

LFS-HDLBWO
outperforms other DL
methods with error
rates of 3.43 and 2.26.
99.21 % accuracy in
training, 100 % F1,
100 % precision,

99.9 % recall, and
99.70 % correctness in

(Asiri et al.,
2024)

(Alquthami
et al., 2022)

. testing.
Muzumdar machine learning MAPE=1.18 (Muzumdar
/2020 techniques include et al., 2020)
Random Forest and
Support Vector
Regressor (SVR) (RF).
1 n
MAE:HZ|xi7x| 1
i=1

The calculation of the Mean Absolute Percentage Error (MAPE) in-
volves dividing the sum of all individual absolute mistakes by the total of
all real values. This statistic normalizes the forecast accuracy in respect

Author name /Ref Methodology used Gap/ problem definition

Dataset used

Parameter measured

Jiang (Jiang et al.,
2023)

Hybrid forecast-optimize tasks and
efficient online data augmentation
scheme.

ARIMA and Bi-LSTM models for
solar power production prediction.

Handling uncertainties in

real-time energy dispatch.
Chen (Chen et al.,
2023)
grid management.
Maghraoui (
Maghraoui et al.,
2022)
Alsharekh (
Alsharekh et al.,

SVM, ANN, DT, and RF for hotel
energy consumption prediction.

R-CNN and ML-LSTM for short-

term electricity load forecasting forecasting for smart grid

2022) framework. management.
Teekaraman Optimizing smart grid video Optimizing energy consumption
Teekaraman sensor networks for energy and quality of service in smart grid

networks.
Addressing imbalances and

et al., (2022a) efficiency and performance
Ibrar Predicting decentralized power
Ibraretal.,, (2022)  grid stability using machine
learning and resampling.

Zhu DASG protocol using Chinese resolving issues with data
Zhu et al., (2022) Remainder theorem for smart grid  integrity in smart grid aggregation
security. protocols.

Sodagudi (Sodagudi
et al., 2022)

Hybrid control system
methodology for efficient power
electronic interface in renewable
energy

3-tier cloud-fog-consumer
architecture; real-time VM
migration for load balancing.

Voltage quality, harmonic
distortion, and efficiency

Yu (Yu et al., 2022) Network congestion and

for VMs.

renewable energy integration and

Accurate forecasting of solar
power production for efficient

Optimizing energy efficiency in
hotels to prevent grid overload.

Accurate multistep electricity load

enhancing prediction accuracy in
decentralized power grid stability.

challenges in power electronics.

imbalance in cloud data centers

CityLearn Challenge 2022 dataset for
smart building energy management.

One year of real-time solar power
production data for prediction.

Hotel building energy consumption
data from a case study in Shanghai.

Residential IHEPC and commercial
PJM datasets for electricity load
forecasting.

Wireless video sensor network
dataset for optimizing energy and
quality.

Data from an open machine learning
library used to simulate a
decentralized grid

Smart grid dataset, privacy-
preserving, integrity, DASG protocol,
homomorphic encryption,
aggregation.

Dataset on power electronics, energy
efficiency, and control systems
evaluation

Dataset on cloud data center size,
VM growth, and load balancing.

Energy dispatch accuracy, robustness,
adaptation to real-time data
distribution.

Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE).

Accuracy of energy consumption
predictions using MAE, RMSE, and
efficiency.

Forecasting accuracy measured by
error rates compared to baseline
models.

Power, energy consumption, delay,
transmission rate, delivery rate,
convergence rate, quality.

Grid stability parameters: electricity
volume (p), cost-sensitivity (g),
response times (tau).

Smart grid parameters: status, privacy,
integrity, DASG protocol, encryption,
aggregation.

Battery SOC, charging voltage, battery
current, ultracapacitor current, and DC
load current.

Measured parameters: Cloud size, VM
growth, network resources, load
balancing, response time, cost
optimization.
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to the scale of the data and presents it as a percentage.

1 lex|
MAPE =~ —
"Z|at|

(2

There are two steps involved in calculating the Root Mean Square
Error (RMSE). To obtain the Mean Squared Error (MSE), the squared
errors are first averaged. After that, the square root of the MSE is used to
calculate the RMSE, a gauge of forecast accuracy (Botchkarev, 2019).

n

Yo (-

i=1

1

MSE = — 3
n

RSME = 4

According to its definition, the Root Relative Squared Error The ratio
of total squared mistakes between predicted and actual values to total
squared errors between average value and actual values is known as the
root mean square error (RRSE). It evaluates predicting effectiveness by
comparing it to a reference value.

RRSE = %)

By comparing the standard deviation of anticipated mistakes to the
mean of actual data, the Coefficient of Variation (CV) measures the
accuracy of predicting. An alternative way to define it is as the RMSE, or
Root Mean Square Error divided by the mean of real data, providing a
normalized accuracy evaluation.

RMSE

a

CV =

(6)

These measurements are essential for evaluating the effectiveness of
load forecasting techniques and guaranteeing the stability of power
supply networks. By quantifying forecast accuracy, they enable effective
monitoring and optimization of energy production, minimizing costs
and system failures (Guo et al., 2021).

Based on their validation indices, the table offers a comparison of
various machine learning (ML) and deep learning (DL) models. Several
writers have commented on these indices across a range of years.

Guo (2021) utilised a deep neural network (DNN) in their prediction
model. The simulation results revealed a mean absolute percentage error
(eMAPE) of 10.01 % and a root-mean-square error (eRMSE) of
2.156 MW. Asiri (2024) investigated advanced deep learning methods
such as Convolutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM). They introduced a new model called LFS-HDLBWO,
which outperformed previous deep learning techniques. The LFS-
HDLBWO model achieved error rates of 3.43 and 2.26, demonstrating
its superior performance.

Alquthami (2022) conducted a study that concentrated on machine
learning algorithms used for predicting short-term electricity use, with a
particular emphasis on improving decision trees. Their model demon-
strated remarkable validation indices, including a recall of 99.9 %, an F1
score of 100 %, a precision of 100 %, a training accuracy of 99.21 %,
and a testing accuracy of 99.70 %. Muzumdar (2020) utilised machine
learning techniques, specifically Support Vector Regressor (SVR) and
Random Forest (RF), and achieved a Mean Absolute Percentage Error
(MAPE) of 1.18, demonstrating a high level of predicted precision.

Every study demonstrates the potential and efficacy of diverse ap-
proaches in the domains of deep learning and machine learning for
distinct applications, such as load forecasting and prediction modelling.
Although DL models such as DNN, LSTM, and CNN perform well in
certain situations, traditional ML techniques like SVR and RF also show
comparable performance. This highlights the significance of choosing
the right methodology depending on the individual job and dataset. In
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the comparative analysis of load forecasting and prediction modelling,
both machine learning (ML) and deep learning (DL) show promise. Both
strategies use statistical methods and algorithms to examine data trends
and generate precise forecasts.

Additionally, both ML and DL methodologies aim to optimize
resource allocation and improve grid stability in energy management
systems.The analysis of ML and DL lacks specificity regarding their
contributions to energy management load forecasting research. Future
directions for enhancing forecasting accuracy and addressing industry-
specific challenges are needed to provide a more targeted and insight-
ful perspective.

While literature acknowledges challenges in energy management
forecasting such as data quality, model opacity, scalability, and dynamic
energy systems, gaps persist in providing comprehensive solutions.
While some research touches on these challenges, practical imple-
mentation and validation in real-world scenarios are lacking. Future
efforts should focus on developing scalable, interpretable models that
effectively address the complexities of dynamic energy systems,
bridging the divide between theoretical advancements and practical
applicability in energy management forecasting.

3.3. Main limitations and future research directions

Existing works on electricity load forecasting face several limita-
tions, including issues with model accuracy, adaptability to dynamic
environments, and scalability. Many traditional models struggle with
high error rates in complex scenarios and lack the flexibility to accom-
modate real-time changes in energy consumption. Additionally, current
approaches often fail to integrate diverse data sources effectively and
may overlook the impact of emerging technologies and user behaviours.
Future research should focus on developing more robust and adaptive
models that leverage advanced machine learning techniques, such as
hybrid models combining deep learning and traditional methods.
Exploring real-time data integration, incorporating user behaviour an-
alytics, and addressing the challenges of scalability and generalization
will be crucial for advancing forecasting accuracy and improving smart
grid management strategies.

3.4. Key results and comparison of existing techniques

In recent literature, various techniques have been explored for
electricity load forecasting. For instance, ARIMA models have been
praised for their simplicity but are often criticized for inadequate
handling of non-stationary data, resulting in higher forecast errors. On
the other hand, Deep Learning models like Bi-LSTM have demonstrated
superior accuracy, with lower MAE and RMSE compared to ARIMA, as
seen in studies predicting solar power production. Additionally, R-CNN
with ML-LSTM has shown significant improvements in multistep fore-
casting tasks, outperforming traditional models by reducing error rates
in both residential and commercial datasets. While Support Vector
Machines (SVM) and Random Forest (RF) are effective for various en-
ergy prediction tasks, advanced deep learning models consistently
deliver better performance in complex scenarios. This comparison un-
derscores the shift towards integrating sophisticated algorithms and
real-time data for improved forecasting accuracy.

3.5. Challenges & gaps

The review identifies several challenges and gaps in the application
of DL and ML techniques for smart grid load forecasting. Key challenges
include the need for large and high-quality datasets, the complexity of
model training, and the computational resources required. There are
also gaps in integrating these advanced techniques with existing grid
infrastructure, and in addressing issues related to data privacy and se-
curity. Furthermore, the review highlights a lack of standardized eval-
uation metrics and benchmarks, which complicates the comparison of
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different models. Addressing these challenges and gaps is crucial for the
broader adoption and effectiveness of DL and ML in smart grid
applications.

The review’s methodology involved a systematic comparison of DL
and ML techniques against traditional forecasting methods. Key per-
formance metrics such as MAPE, RMSE, and MSE were used to evaluate
accuracy and scalability. The analysis began with a comprehensive
literature review to identify state-of-the-art models and algorithms.
These models were then applied to real-world datasets to assess their
effectiveness in practical scenarios. Additionally, the review included a
meta-analysis of case studies and real-world applications to illustrate the
practical challenges and successes of implementing DL and ML in smart
grid load forecasting. This rigorous approach ensured a thorough and
balanced evaluation of the techniques.

3.6. Evolution of research in the field

There have been several significant developments in the field of load
forecasting research as it relates to smart grids and machine learning and
deep learning for intelligent energy management. These advancements
exemplify an ongoing pursuit for more precise, adaptable, and efficient
techniques for forecasting. At first, research mostly concentrated on
conventional statistical techniques for load forecasting. Nevertheless,
with the emergence of machine intelligence, specifically in the context
of regression models and time series analysis, researchers initiated in-
vestigations into more advanced methods for capturing intricate pat-
terns and interconnections in energy consumption data. The
introduction of neural networks—more especially, neural networks with
recurrent architectures and long short-term memory (LSTMs and
RNNs)—caused a significant change. These deep learning architectures
have shown exceptional ability in managing temporal dependencies,
allowing for more precise forecasts of load patterns, particularly in sit-
uations with dynamic and nonlinear connections (Ma et al., 2021; Zhang
et al., 2020).

Ensemble learning approaches have evolved as a crucial field of
study, utilizing the combined intelligence of numerous models to
improve the accuracy and reliability of predictions. Bagging and
boosting approaches gained popularity as they provided effective tech-
niques to reduce uncertainty and enhance the overall dependability of
load projections. The utilization of real-time data obtained from smart
meters became a primary emphasis, allowing for ongoing monitoring
and prompt adjustment to fluctuating load situations.

This advancement was a notable achievement in improving the
speed and precision of load forecasting models, especially under
constantly changing conditions. Explainable AI (XAI) strategies have
become popular in order to tackle the issue of interpretability in
complicated machine learning & deep learning models (Yang et al.,
2020). As these models became more complex, comprehending the un-
derlying reasoning behind forecasts became essential for establishing
trust and acceptance. The incorporation of Explainable Artificial Intel-
ligence (XAI) methodologies allowed researchers to provide significant
insights into the model’s decision-making processes, hence augmenting
the lucidity and comprehensibility of load forecasting results.

Edge computing has lately emerged as a new and innovative area of
study in load forecasting (Wang et al., 2023b). Integrating processing
capabilities at the edge, in close proximity to the data source, reduces
delay and improves the effectiveness of forecasting models, especially in
real-time scenarios. To summarize, as load forecasting research in smart
electricity systems using ML and DL has advanced, traditional statistical
techniques have given way to more advanced, flexible, and transparent
methodology. The sector is constantly evolving, with ongoing ad-
vancements that tackle obstacles and open up new opportunities for
effective and dependable smart energy management.
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3.7. Significant milestones

The use of ML and DL in Smart Grid demand forecasting for Smart
Energy Management has experienced numerous noteworthy achieve-
ments, demonstrating the progress and transformational changes in
energy forecasting methods and technologies. Integrating ML and DL
algorithms into load forecasting models is a major achievement. This
departure from typical statistical methods allows the models to adapt to
complex energy usage data patterns and non-linear linkages. RNNs, or
recurrent neural networks, and LSTMs have significantly better load
estimates, notably for temporal linkages and complicated patterns.
Intelligent meter live data streams are another major breakthrough.
Smart meters gather data often and continuously, it makes machine
learning (ML) and deep learning (DL) possible.

Al & ML models to adapt to shifting load patterns (Kumar et al.,
2023; Healthcare Engineering, 2023). Real-time information availabil-
ity improves forecast accuracy and makes it possible to put more flexible
energy management techniques into practice.

Ensemble learning has greatly increased load forecasting model
dependability. Ensemble techniques combine model forecasts for accu-
racy and reliability. Bagging and boosting reduce uncertainty and
improve load forecasting systems. Applying Explainable AI (XAI) tech-
niques in load forecasting is a recent achievement that focuses on
making ML and DL models more interpretable. As these models increase
in complexity, comprehending the reasoning behind their predictions
becomes essential. Integrating explainable Artificial Intelligence (XAI)
techniques facilitates the understanding of how models make decisions,
promoting transparency and building confidence in the accuracy of the
forecasted results.

The incorporation of edge computing in load forecasting is a devel-
oping achievement. Edge devices, such as sensors and smart meters,
have the ability to do calculations locally because to their built-in pro-
cessing capabilities. By minimizing latency, the efficiency of load fore-
casting models is enhanced, particularly in real-time applications (Zhou
et al., 2020; Xu et al., 2020; Singh and Khan, 2017). Finally, The
discipline has advanced toward more accurate, detailed forecasting of
load in smart grids with the application of machine learning (ML) and
deep learning (DL) techniques. Adaptable, and transparent energy
forecasting systems. The continuous development of smart energy
management is driven by computational breakthroughs, real-time data
integration, and the emergence of new technologies.

4. Methodology

The study’s selection criteria for Load forecasting in Smart Grid for
Smart Energy Management using ML DL employ a targeted approach to
ensure the incorporation of pertinent and high-caliber literature. In-
clusive sources must explicitly center on load forecasting applications
within the utilizing deep learning (DL) and machine learning (ML)
methods in a smart grid setting to provide intelligent energy manage-
ment. Academic papers, conference proceedings, and esteemed journals
presenting empirical research, case studies, or inventive methodologies
at this specific intersection are deemed suitable. Only peer-reviewed
publications in English are considered to uphold scholarly rigor. Ex-
clusions consist of non-peer-reviewed sources, promotional materials,
and studies lacking direct relevance to load forecasting in smart grids
with ML and DL applications. These refined selection criteria aim to
assemble a focused and credible collection of sources conducive to an
exhaustive exploration of the topic (Wawale et al., 2022; Bolla et al.,
2022).

Improved prediction accuracy and more economical energy use can
result from the application of machine learning (ML) and deep learning
(DL) techniques to load forecast in smart grids for smart energy
management.

Thus, it is possible to use multiple data sources. History of energy use
data is a valuable source of knowledge since it sheds light on patterns
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and variances in use across time. Comprehending the historical context
is essential for training machine learning (ML) and deep learning (DL)
models to appropriately identify and react to seasonal fluctuations, dy-
namic shifts in energy consumption, and recurrent patterns. Smart meter
real-time data is a vital and useful source of regular, in-depth updates on
energy consumption. Since smart meters provide a steady stream of
data, deep learning (DL) /machine learning (ML) algorithms can swiftly
adapt to erratic fluctuations in demand.

By making them more responsive, this improves the efficacy of load
forecasting algorithms (Almadhor et al., 2022). Meteorological data
serves as an additional powerful source of information. The amount of
energy used is directly influenced by the weather, and models that take
weather-related variations in energy demand into consideration can be
developed with the use of meteorological data. Weather factors like
temperature, humidity, and energy consumption can be correlated with
one other using ML/DL techniques.

This approach has the potential to greatly increase the accuracy of
load forecasting in smart grids. Demographic and economic data provide
significant contextual information. Comprehending the demographic
makeup of a region and its economic operations helps in forecasting
energy consumption patterns by considering elements such as popula-
tion density, industrial activities, and economic trends. Moreover,
comprehensive grid infrastructure data, encompassing details about the
structure and capability of the electricity distribution network, is
necessary.

By taking into account the grid’s capabilities and limitations, this
data enables deep learning (DL) and machine learning (ML) models to
make sure that load estimates align with the network’s operating pa-
rameters (Nayagam et al., 2022; Sujatha et al., 2022; Zhang et al., 2022).
A complete data collection technique is employed in smart grid load
forecasting, encompassing historical consumption data, real-time data
from smart meters, meteorological conditions, demographic insights,
and grid architecture characteristics. Through the integration of several
data sources, machine learning (ML) and deep learning (DL) models may
generate accurate and flexible load predictions, hence augmenting the
efficacy of smart energy management. Figs. 1-3

Develop the
research design,
including
methods, tools,
and techniques.

’

Data Collection Data Analysis

Gather data using —_—
the designed

methodology

Analyze the collected data
using appropriate

Interpret Results

Draw conclusions and <
interpret the results of
the analysis

Fig. 1. Flowchart of the Methodology used in this research.
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4.1. Search strategy

The search technique entails a methodical and focused attempt to
obtain pertinent literature and research works in the topic. Commencing
the exploration on scholarly resources such as IEEE Xplore, Science
Direct, and PubMed provides the opportunity to retrieve peer-reviewed
publications, conference papers, and journals pertaining to smart grid
technologies, load forecasting, and machine learning applications in
energy management. To ensure precision in search queries, it is advis-
able to utilize terms such as "load forecasting," "smart grid," "smart en-
ergy management," and "machine learning."

Aside from academic databases, conducting searches on online re-
positories like as arXiv and Google Scholar expands the range of avail-
able resources to encompass preprints, technical reports, and
publications that might not be found in conventional databases. Utiliz-
ing boolean operators, such as and or, in conjunction with phrase
searching enhances the precision of the search outcomes.

Analyzing relevant workshop and conference data about machine
learning and smart grid applications, such as those from the IEEE PES
General Meeting or The International Conference on Clean Energy
Technologies and Smart Grids (ICSGCE), offers valuable insights into the
most recent advancements and research patterns in this domain.
Browsing through the institutional repositories of universities and
research organizations aids in locating theses, dissertations, and tech-
nical publications pertaining to load forecasting in smart grids
(Teekaraman et al., 2022b; Li et al., 2022; Boum et al., 2022; Anantha
Krishnan et al., 2022).

Government publications from energy agencies and organizations,
such as the Department of Energy (DOE), can provide valuable infor-
mation on policy aspects and practical applications. Moreover, the
analysis of references in important papers and reviews aids in the
identification of influential works and establishing connections with a
wider range of pertinent literature. For the most updated information on
the most recent advancements in the subject, you should subscribe to
alerts for relevant keywords and monitor recently published articles.
With regard to load forecasting in smart grids, this thorough search
approach seeks to gather a broad range of sources, including theoretical
frameworks, empirical research, and real-world applications. The
emphasis is on applying deep learning and machine learning techniques
to smart energy management.

4.2. Inclusion and exclusion criteria

To ensure the Caliber, applicability and focus of the data collected,
inclusion and exclusion have been developed. The inclusion criteria are
satisfied by academic magazines, conference procedures and publica-
tions that in particular deal with the load forecasts in the context of the
intelligent grids. To create intelligent energy management techniques,
deep learning (DL) and machine learning (ML) in these projects. Pre-
sentations should include examples of cases, new techniques or legiti-
mate research on the relationships between different fields. The
publications that do not discuss in particular the applications of machine
learning (ML) and the deep learning (DL) are subject to the exclusion
criteria. which are not directly related to load forecasting in smart grids.
To maintain consistency and cognitive integrity, advertising messages
(Ghislain et al., 2022) are used.

The analysis of database results includes several critical dimensions.
It starts with assessing the number of articles retrieved and the specific
search terms used and provides insight into the scope and relevance of
the search query. In addition, reviewing the database sources consulted
provides insight into the breadth and comprehensiveness of the litera-
ture reviewed. Analyzing the distribution of publications over time re-
veals trends in research activity and development in the field, shedding
light on the evolution of researchers’ interest. Metrics such as keyword
frequency and citation counts are used to assess the depth and impact of
the literature retrieved from databases, thereby assessing the
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Fig. 3. Random Forest and Gradient Boosting (Kowalek, 2019).

importance and influence of the research findings. Together, these ele-
ments form a holistic approach to analyzing database results, providing
valuable insights into the current state and dynamics of scientific
research on the topic.

Search refinement involves several systematic steps to improve ac-
curacy and comprehensiveness. Initially, the integration of synonyms
and specific terms ensures that the search effectively captures the rele-
vant literature. Studies are selected according to clear criteria based on
relevance, methodology and publication date. In addition, screening of
additional databases will help to fill possible gaps in the existing liter-
ature. Advanced filters are applied to refine the results with a focus on
quality and relevance. Thorough selection processes ensure that relevant
studies that meet the defined criteria are included.

Smart meters provide real-time data on electricity consumption and
provide instantaneous information. Typically, data collection intervals
vary based on deployment and utility needs, ranging from every
15 minutes to hourly intervals in practice.

5. Classification of studies

Research on load forecasting in smart grids for smart energy man-
agement can be divided into a number of significant areas that cover
diverse aspects of this multidisciplinary topic and make use of deep
learning and machine learning (ML and DL) (Hasan et al., 2022; Ganesan
et al., 2022; Balasubramaniam et al., 2022).

The creation and optimization of machine learning (ML) and deep
learning (DL) algorithms, with a focus on load forecasting, have been the
subject of extensive research. In order to improve prediction accuracy,
this entails making advancements in neural network topologies, opti-
mization methods, and ensemble learning approaches.

The efficient management of temporal dependencies in load fore-
casting models is a task taken on by academics. In order to efficiently
capture time series data’s sequential patterns and dependencies, more
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research is required on advanced deep learning architectures like
recurrent neural networks (RNNs) and (LSTMs) networks.

An essential aspect pertains to the incorporation of up-to-the-minute
data derived from smart meters and other sensors. This section examines
the optimal utilization of continuous, high-frequency input streams to
enhance the load forecasting models’ responsiveness and accuracy,
especially in situations that are dynamic and changing quickly.

The primary objective of this branch of artificial intelligence is to
create models and algorithms that are capable of giving comprehensible
justifications for their choices and actions. The need of enhancing the
interpretability of deep learning (DL)/machine learning (ML) models
has increased due to their growing complexity. Gaining more insight
into the decision-making processes used by models is the aim of
Explainab