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In this work, a study of economic and emission dispatch issues based on the multi-

objective optimization is solved, and generation costs and emissions are reduced by

utilizing multi-objective optimization techniques. This optimization is carried out in

an IEEE-30bus system,with andwithout the integrationofwind energy sources,with

equality and inequality constraints. The equality constraints are the power balance

constraints, stipulating that to have anoptimal solution, the generatedpowermust be

adequate to satisfy the load demand plus losses. The inequality constraints are a

collection of limitations for active power generation, reactive power generation,

generator bus voltage, and load bus voltage. To track the hourly load demand, a daily

load profile is established using the IEEE-30 bus system. The generation costs and

emissions in the system are optimized using multi-objective particle swarm

optimization and multi-objective Ant–Lion Optimization approaches. In order to

determine the goals’ minimum values, a fuzzy min–max technique is applied. The

values that have been minimized are then compared to determine how well wind

energy integration has reduced thegeneration costs andemissions. Twocase studies

are performed in this work. For Case 1, the total generation costs and emissions using

MOPSO are less, with a difference of $42.763, while MOALO has lower emissions,

with a difference of 157.337 tons. For Case 2, with the implementation of wind

energy, MOPSO has lower total generation costs, with a difference of $51.678, and

lower emissions, with a difference of 459.446 tons.

KEYWORDS

multi-objective optimization, generation costs and emissions, wind power, economic

dispatch, emission dispatch

1 Introduction

The urgent need to transform our energy generation portfolio arises from the combined

pressures of environmental degradation, resource depletion, and climate change (Abdolrasol

et al., 2021). Fossil fuels, while historically dominant, contribute significantly to greenhouse gas

emissions, air pollution, and global warming, which have detrimental effects on ecosystems and

human health. Transitioning to a greater share of renewable energy sources, such as wind, solar,

and hydropower, is crucial to mitigate these impacts (Ulutas et al., 2020; Srinivasan et al., 2023).
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Renewable energy offers a cleaner, more sustainable alternative,

significantly reducing carbon footprints and helping stabilize global

temperatures. Moreover, the decreasing costs and technological

advancements in renewable energy make it an increasingly viable

option for meeting the growing energy demands (Basu et al., 2022).

Introducing more renewable energy sources into the power grid

presents several challenges that need to be addressed to ensure a reliable

and efficient energy system (Ustun et al., 2011). One major challenge is

the intermittent nature of renewable energy such as wind and solar

power, which can lead to fluctuations in energy supply and require the

development of advanced energy storage solutions or backup systems to

maintain a steady power flow (Yarar et al., 2023). Additionally, the

integration of distributed generation from renewables often necessitates

upgrades to the existing grid infrastructure to handle variable inputs and

ensure seamless connectivity. The variability in renewable energy

sources can also complicate grid management and forecasting,

requiring sophisticated algorithms and real-time monitoring to

effectively balance supply and demand. Furthermore, the geographic

dispersion of renewable energy installations can lead to transmission

bottlenecks and increased costs for infrastructure development. Lastly,

the incorporation of more renewables can impact power quality, as

fluctuating inputs from sources like wind turbines and solar panels may

introduce voltage and frequency instability, requiring additional

measures to maintain consistent power quality and reliability across

the grid (Latif et al., 2021). Addressing these challenges is crucial to fully

realizing the benefits of renewable energy and ensuring a stable and

efficient power system.

To enhance power quality, optimal power flow (OPF) is employed

to achieve the best possible power flow. The economic and reliable

operation of electrical systems is critically important. The OPF

challenge typically aims to minimize objectives by adjusting the

variables within the power system (Chen et al., 2019; Hoang Bao

Huy et al., 2022). OPF often involves large-scale, nonconvex,

nonlinear, mixed-integer, and highly constrained optimization

problems (Ghasemi et al., 2014; Niu et al., 2014). Traditionally, the

primary goal of OPF systems has been to reduce fuel costs. Tomaintain

high electricity quality, utilities must also minimize transmission losses

for economic reasons. Given the growing environmental concerns,

emission levels should now be considered part of the objective function

rather thanmerely a constraint (Zhang et al., 2016).With the increasing

public awareness of environmental issues, the economic dispatch

problem has evolved. The absolute minimum cost is no longer the

sole objective. When power is generated from fossil fuels, it releases

pollutants such as sulfur oxides and nitrogen oxides into the

atmosphere. These pollutants not only harm the environment but

also have adverse effects on human health, as well as on plants and

animals (Surender Reddy, 2018).

A crucial tool formanaging the distribution system is the power flow

method, which is commonly referred to as the load flow method.

Depending on the regulating capacities of transformers, condensers,

alternators, and other equipment, load flow solutions offer insights into

reactive power and real power losses, as well as voltage magnitudes and

voltage angles at various nodes within the distribution system.Most load

flow analyses in engineering focus on reducing production costs and

operating the system efficiently (Chatuanramtharnghaka and Deb,

2020). This study simplifies the Newton–Raphson power flow

solution approach, which is based on the principle of current

balancing and involves a set of nonlinear equations. Despite the

availability of several effective Newton–Raphson (NR)-based power

flow solvers, challenges arise because the derivatives of the Jacobian

matrix must be calculated. This study illustrates how the updating

formulas for Jacobian matrices differ from those used in the

traditional Newton–Raphson approach (Kulworawanichpong, 2010).

Over the past few decades, renewable energy resources have

addressed the growing demand in the energy market (Khan, 2009).

Wind energy, in particular, has recently gained popularity due to its

ability to generate electrical power (Manwell et al., 2010; Johnson, 1985).

This growing interest is driven by efforts to reduce pollution andmitigate

its harmful effects on the environment, given that fossil fuel-powered

power plants are significant sources of greenhouse gas emissions.

Wind energy is an environmentally friendly renewable resource. The

global interest inwind energy conversion systems, which generate electric

power, has been rapidly increasing, with the average annual growth rate

exceeding 25% over the past decade. To ensure that the wind energy

conversion technology operates as efficiently as possible, it is crucial that

wind turbines are precisely designed for their installation sites (Salih et al.,

2012; Khalfallah and Koliub, 2007; Bencherif et al., 2014). Wind

characteristics, such as direction and velocity, are influenced by

various factors, including location and climate (Bianchi et al., 2007;

Kala and Sandhu, 2016; Hamoudi et al., 2023). The ability of a wind

turbine to generate electricity depends on several site-specific factors and

the aerodynamic performance of its blades. Key factors include the

average annual wind speed, blade pre-twist, pitch, attachment angle, and

rotor swept area. Additionally, air density affects wind turbine

performance and can vary with altitude and temperature (Wiratama

et al., 2016; Kanchikere, 2012; Badran and Abdulhadi, 2009). When

constructing a wind turbine, it is essential to consider several climatic

factors, such as wind speed, turbine swept area, air density, site

temperature, and tower height. The choice of the wind turbine should

reflect the specific climatic characteristics of the site (Marimuthu and

Kirubakaran, 2014; Nemes and Munteanu, 2012).

Nature-inspired optimization algorithms are particularly useful for

renewable energy deployments in future power systems due to their

TABLE 1 Load profile for 24 h.

Time of
the
day (Hr)

Real power
demand (MW)

Time of
the
day (Hr)

Real power
demand (MW)

01:00 79.3520 13:00 150.2020

02:00 62.3480 14:00 153.0360

03:00 59.5140 15:00 172.8740

04:00 59.5140 16:00 206.8820

05:00 62.0160 17:00 212.5500

06:00 93.5220 18:00 240.8900

07:00 167.2060 19:00 283.4000

08:00 172.8740 20:00 184.2100

09:00 133.1980 21:00 144.5340

10:00 127.5300 22:00 121.8620

11:00 130.3640 23:00 110.5620

12:00 136.0320 24:00 87.8540
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ability to efficiently handle complex, nonlinear, and multidimensional

problems in optimizing energy systems. Their ability to balance

exploration and exploitation makes them well-suited for optimizing

various aspects of renewable energy systems, such as resource allocation,

grid integration, and system design, ultimately leading to more robust

and efficient power system configurations. Some examples of effective

applications for power system issues are the salp swarm algorithm (Latif

et al., 2020), butterfly optimization (Dey et al., 2020), biogeography-

based algorithm (Chauhan et al., 2021), sine cosine algorithm (Nayak

et al., 2023), chaotic selfish-herd optimization (Barik et al., 2021), flower

pollination algorithm (Hussain et al., 2020), satin bowerbird algorithm

(Farooq et al., 2022), moth flame optimization algorithm (Singh et al.,

2021), COVID-19-based optimization (Safiullah et al., 2022), and slime

mold algorithm (Das et al., 2022). Similarly, multi-objective ant lion

optimizer (MOALO) is inspired by the hunting behavior of ant lions,

particularly their interactions with prey such as ants in nature. MOALO

represents an extension of the ant lion optimizer (ALO) and operates

similarly to other population-based optimization techniques, such as

multi-objective particle swarm optimization (MOPSO) and multi-

objective genetic algorithm optimization (MOGOA) (Mirjalili et al.,

2016). The particle swarm optimization (PSO) algorithm, in contrast, is

modeled after the fluttering motion of flocks of birds. Observations of

bird flocks reveal that they follow specific patterns while searching for

food, allowing them to stay close to available resources. In PSO, the

individual’s local best and the global best influence the position and

velocity of the search process. This algorithm involves creating a

population of particles and evaluating each particle’s performance

individually within the search space (Coello Coello et al., 2004).

The novel aspects and contribution of the work are

summarized below:

• The multi-objective optimization algorithm-based fuzzy

min–max approach with competing objectives is utilized to

address the multi-objective optimal power flow problem. The

meta-heuristic algorithm is utilized to capture the numerous

optimal solutions in its final population when the issue is

TABLE 2 Optimization of the IEEE-30 bus system using MOPSO.

Time G1 G2 G3 G4 G5 G6 Power
demand

Loss Power
generation

Generation
cost

Emission

(Hr) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) ($/hr) (ton/hr)

01:00 60.7661 0 0 0 19.6616 0 79.352 1.0849 80.4277 204.029 253.263

02:00 51.477 0 0 0 11.6291 0 62.348 0.8281 63.1061 151.159 174.994

03:00 50.0677 0 0 0 10.3035 0 59.514 0.8572 60.3712 143.1 164.519

04:00 50.083 0 0 0 10.1872 0 59.514 0.7652 60.2702 142.517 164.514

05:00 53.7254 0 0 0 15.1404 0 68.016 0.8589 68.8657 169.427 194.352

06:00 74.1448 0 0 0 20.8125 0 93.522 1.43531 94.9573 242.172 371.737

07:00 63.3868 38.1323 20.9609 20.0652 11.7639 14.9381 167.2 2.0412 169.2472 440.153 388.849

08:00 65.4223 41.4407 22.7572 21.4639 11.9549 12 172.874 2.1682 175.0391 457.233 424.56

09:00 111.429 0 0 24.6286 0 0 133.198 2.8597 136.0577 354.522 826.467

10:00 106.346 0 0 23.8188 0 0 127.53 2.6346 130.1646 337.245 753.146

11:00 108.315 0 0 24.7445 0 0 130.364 2.6987 133.0596 346.152 782.487

12:00 117.693 0 0 21.4938 0 0 136.032 3.1611 139.1873 361.039 912.799

13:00 58.0696 36.9459 17.5253 15.4773 11.8328 12 150.202 1.6489 151.8509 384.947 325.917

14:00 57.1829 34.3743 20.1429 19.6642 10 13.4 153.036 1.7343 154.7643 397.285 320.027

15:00 63.3829 43.7497 20.5174 22.2421 12.0686 12.9724 172.874 2.0591 174.9331 458.101 416.133

16:00 81.759 47.3969 23.7238 25.478 15.9231 15.6697 206.882 3.0686 209.9506 565.216 628.045

17:00 79.8906 44.5685 21.1404 33.7688 18.2942 18.1236 212.55 3.2513 215.7861 590.635 616.646

18:00 87.3038 46.1804 26.6111 33.75 23.9829 26.8192 240.89 3.7608 244.6476 696.153 741.56

19:00 119.826 53.936 26.1921 35 25.659 29.0443 283.4 6.2576 289.6576 833.487 1,230.86

20:00 72.1583 40.9228 18.2367 24.507 15.6146 15.3935 184.21 2.6259 186.8329 493.487 486.386

21:00 61.7913 34.5432 16.75 11.25 10 12 144.534 1.8004 146.3344 363.236 337.089

22:00 103.028 0 0 21.309 0 0 121.862 2.47751 124.3365 318.901 703.174

23:00 93.9665 0 0 0 18.6519 0 110.526 2.0924 112.6184 225.396 328.217

24:00 69.7236 0 0 0 19.4276 0 87.854 1.308 89.15124 285.698 583.099
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formulated for the simultaneous optimization of several

competing objectives.

• The MOPSO algorithm was found to be extremely effective

and competitive in locating a precise estimate of the Pareto

optimal front with high distribution across all objectives.

Additionally, strong convergence and extensive exploration

characteristics of MOPSO produce, respectively, accurate

estimated solutions and a good distribution. The procedure

for choosing targets and maintaining archives also promotes

research and the sharing of solutions.

TABLE 3 Optimization of the IEEE-30 bus system using MOALO.

Time G1 G2 G3 G4 G5 G6 Power
demand

Loss Power
generation

Generation
cost

Emission

(Hr) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) ($/hr) (ton/hr)

01:00 60.0747 0 0 0 20.3403 0 79.352 1.073 80.415 205.047 249.089

02:00 51.25 0 0 0 11.8566 0 62.348 0.7586 63.1066 151.434 173.726

03:00 50.1163 0 0 0 10.1265 0 59.514 0.738 60.2428 142.595 164.675

04:00 50.154 0 0 0 10.1262 0 59.514 0.7662 60.2802 142.683 164.918

05:00 52.193 0 0 0 16.6442 0 68.016 0.881 68.8372 171.46 186.019

06:00 74.3374 0 0 0 20.7373 0 93.522 1.5557 95.0747 242.36 373.443

07:00 63.9242 32.9605 21.1404 20.0638 12.5615 18.6738 167.206 2.1181 169.3241 443.87 378.18

08:00 64.1051 37.365 22.212 22.6141 13.352 15.1963 172.874 2.0644 174.8446 460.12 401.107

09:00 112.951 0 0 23.1641 0 0 133.198 2.9274 136.1155 353.504 845.416

10:00 111.154 0 0 19.2107 0 0 127.53 2.8354 130.3645 334.152 811.889

11:00 108.89 0 0 24.1925 0 0 130.964 2.721 133.082 345.749 789.341

12:00 113.541 0 0 25.4686 0 0 136.032 2.9774 139.0094 363.607 859.068

13:00 62.4564 33.1695 18.4415 10.335 15.3303 12.3239 150.202 1.8547 152.0567 383.653 345.542

14:00 62.3749 35.3518 20.3177 11.6097 12.4256 12.7381 153.036 1.7849 154.8179 391.458 354.832

15:00 79.7161 33.0844 18.5435 16.598 13.5011 14.1944 172.874 2.7736 175.6376 449.272 510.416

16:00 70.7307 43.14 27.3133 32.8029 15.675 19.9152 206.882 2.701 209.5771 580.637 531.093

17:00 73.8397 50.7458 27.1699 29.1736 17.3285 17.5273 212.55 3.2408 215.7848 596.97 588.847

18:00 86.1193 52.9118 30.1329 24.6002 23.7506 26.9483 240.89 3.5761 244.463 697.874 751.307

19:00 105.413 66.3551 31.2651 30.2133 25.3641 29.8825 283.4 5.0961 288.493 847.982 1,106.07

20:00 72.94 41.2584 16.7728 15.7412 18.3121 21.5922 184.21 2.4067 186.6167 495.156 488.536

21:00 58.5522 27.5747 17.3165 11.915 15.9886 14.8498 144.534 1.6658 146.1968 371.908 298.94

22:00 101.804 0 0 22.5041 0 0 121.862 2.446 124.308 319.835 689.316

23:00 94.7175 0 0 17.994 0 0 110.526 2.1885 112.7115 285.154 591.181

24:00 68.3555 0 0 0 20.8307 0 87.854 1.3322 89.1862 227.573 318.552

TABLE 4 Wind turbine Swt-3.2-113 data sheet (El-Ahmar et al., 2017).

Type 3-bladed, horizontal axis Nominal power 3,200 kW

Diameter 113 m Frequency 50 Hz or 60 Hz

Swept area 10,000 m2 Hub height 83.5–115 m

Speed range 4–16.5 rpm Cut-in wind speed 3–5 m/s

Blade length 55 m Rated wind speed 9–10 m/s

Voltage 690 V Cut-out wind speed 32 m/s
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2 Multi-objective-based problem
formulation

We take into account two objectives in this multi-objective

problem that are detailed below:

2.1 Fuel cost

The formulation of the power generation fuel cost is shown in

Equation 1

F1 � ∑
NG

i�1

ai + biPG,i + ciP
2
G,i( ), (1)

where the number of generators is denoted by NG (which is 6). PG,i

refers to the ith generator’s active power output. ai, bi, and ci denote

the ith generator’s cost coefficients.

2.2 Emission

When thermal units employing fossil fuels produce electricity,

atmospheric pollutants are emitted. Equation 2 gives the total

harmful gas emissions (ton/hr):

F2 � ∑
NG

i�1

ai + βiPG,i + γiP
2
G,i + ωie

μiPG,i)(( )[ ], (2)

where αi, βi, γi, and μi denote the ith generator’s emission

characteristics.

2.3 Objective function

The proposed objective function aims to reduce

generation costs and emissions. It is multi-objective-based.

Consequently, the objective function is expressed as shown in

Equation 3

Fobjmin � ∑ F1 + F2( )( )
min

. (3)

2.4 Constraints

Constraints can be defined as a condition that a solution must

satisfy in solving an optimization problem.

2.4.1 Equality constraint
It is described as the power balance constraint, which stipulates

that to have an optimal solution, the generated power needs to be

adequate to satisfy the load demand plus losses. The formula for the

power balance equation is shown in Equation 4

(Chatuanramtharnghaka and Deb, 2020)

PGen,t � PD,t + PLoss,t, (4)

where PD,t, PGen,t , and PLoss,t are the power demand, thermal power

generated, and power loss, respectively, at time t.

2.4.2 Power balance constraint for the wind
energy source

Considering the integration of wind energy, in each dispatch

time period, the power balance equation is represented as shown in

Equation 5

PGen,t + Pwind,t � PD,t + PLoss,t, (5)

where PD,t, PGen,t , PLoss,t, and Pwind,t are the power demand, thermal

power generated, power loss, and wind power generated,

respectively, at time t.

2.5 Inequality constraint

2.5.1 Generator constraints
The following constraints set a restriction on how much voltage,

active power, and reactive power can be generated for the system as

shown in Equations 6, 7:

Vmin
Gp ≤VGp ≤Vmax

Gp ; p � 1, ....., NG, (6)

Pmin
Gp ≤PGp ≤Pmax

Gp ; p � 1, ....., NG. (7)

The voltage magnitude and real power production are denoted

by VGp and PGp, respectively. NG stands for the “generating

unit number.”

2.5.2 Security constraints
The limitations on the line power flow and the load bus

voltage are known as security constraints as in Equations 8, 9:

Vmin
Lr ≤VLr ≤V

max
Lr ; r � 1, ....., NL, (8)

SLr ≤V
max
Lr , (9)

where Slr is the power at branch NBR and VLr is the load bus r

voltage magnitude.

TABLE 5 Wind speed for the 24-h period.

Time of the
day (Hr)

Wind speed
(m/s)

Time of the
day (Hr)

Wind speed
(m/s)

01:00 5.7 13:00 6.9

02:00 4.5 14:00 7.9

03:00 4.5 15:00 8.5

04:00 5.6 16:00 8.4

05:00 3.9 17:00 10.5

06:00 5.6 18:00 13.6

07:00 4.6 19:00 10.4

08:00 3.2 20:00 8.9

09:00 5.3 21:00 7.5

10:00 7.8 22:00 6.8

11:00 7.7 23:00 3.8

12:00 7.0 24:00 4.8
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2.6 Wind turbine modeling

The air’s power output may be calculated using Equation 10

(El-Ahmar et al., 2017):

Pwind �
1

2
ρAv2( )v � 1

2
ρAv3. (10)

The relationship between wind energy and speed is described as

in Equation 11: (Burton et al., 2011):

Pwind �

0 v≤ vcut−in or v≥ vcut−off

1
2
CpρAv

3 vcut−in < v≤ vrated

Prated vrated < v< vcut−off

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

, (11)

where Pwind, vcut−in , vcut−off, vrated,and Prated are the wind

power generation, cut-in wind velocity, cut-off wind

velocity, rated wind velocity, and rated power of the turbines,

respectively.

3 Multi-objective optimization and
work flowchart

3.1 Multi-Objective Ant Lion Optimization

The multi-objective ant lion optimizer (MOALO) was proposed by

Seyedali Mirjalili, Pradeep Jangir, and Shahrzad Saremi in 2016. The

optimization algorithmmimics the huntingmethods of ant lion and how

they interact with their prey, such as ants, in the nature. The MOALO is

an extended edition of the ant lion optimizer (ALO). This optimization

shares some similarity with the other population-based optimization

techniques like the MOPSO and MOGOA (Mirjalili et al., 2016).

3.2 Multi-objective particle swarm
optimization

The algorithm was modeled based on the fluttering motion of a

flock of birds. A group of birds were observed to follow a pattern in

their quest for food, and then they could remain next to the nearest

resources. The individual’s local and global best have an impact on

the position and speed of the search process. This program uses the

idea of creating a population and evaluating each particle’s

performance in the search space (Coello Coello et al., 2004).

The multi-objective particle swarm optimization algorithm is

as follows:

1. Initialize a population of size Np (size of the population

depends on the complexity of the problem).

2. Initialize particle velocity. Consideration of zero velocity at

the beginning.

3. Evaluation of the number of particles in the population.

4. Save the evaluated result and particle position in the repository.

5. The location of particles in the search space is identified

through a hypercube. Each particle is defined as per the

values of the objective function accordingly.

6. Initialization of each particle memory.

For j = 0 to maximum.

Best Position(j) = Population(j).

7. Update velocity of the particles using the following equation:

Vel(j) = w × Vel(j) + R1 × [BestPosition(j) + Population(j)] + R2 ×

[REP(k)-Population(j)]

Here, w is inertia weight [0.3–1]. R1 and R2 are random numbers

[0–1], and REP(k) is the repository value.

8. Performance of roulette wheel selection is done to select the

hypercube. Following that within the hypercube, the random

selection of the particle is done.

9. Updated velocity is considered to evaluate the new position.

Population(j) = Population(j) + Vel(j)

10. Particles in the population are evaluated for the

objective function.

11. The repository is updated. The elimination of the non-

dominated vectors is done considering the new vectors.

12. The particles positions are updated if the current position is

better than the previous position.

FIGURE 1

Flowchart of the proposed work.
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Best Position(j) = Population(j)

13. Increase in the generation.

14. END the loop considering maximum generation.

3.3 Work flowchart of the proposed work

The work flowchart is shown in Figure 1. The line and bus

data are taken from the IEEE-30 bus system. A 32-MW wind

power facility generates wind energy based on randomly

generated wind speed. Ten turbines, each having a nominal

capacity of 3.2 MW, with model SWT-3.2–113, are considered

for the wind energy system. Then, Newton–Raphson load flow

analysis is performed with and without considering the

implementation of wind energy for 24 h, MOPSO and

MOALO optimization techniques are used to minimize the

multi-objective functions, and the results of the ideal solution

are suitably saved. Load profile is shown in Table 1 and Figure 2,

while optimal curves for IEEE 30-bus system are shown in

Figures 3, 4.

FIGURE 2

Daily load profile.

FIGURE 3

Pareto optimal curves for hours 01:00, 04:00, 08:00, and 12:00 in the IEEE-30 bus system (MOPSO).
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4 Results and discussion

4.1 Results and discussion

In this work, the standard IEEE-30 bus system is optimized

using different multi-objective optimization techniques, daily load

profile has been introduced by scaling of the load, wind power is

generated using randomly generated wind speeds and wind turbine

models, and different approaches are proposed and compared to

observe the best results. Fuel cost and pollution are two objective

functions that are minimized using the fuzzy min–max approach.

Parameters of multi-objective optimization techniques:

• Population size (Np) is set to 200.

• Random populations are generated by bus generator limits

and bus voltage limits.

• Repository size (Nr) is set to 200.

• Maximum number of iterations is set to 200.

FIGURE 4

Pareto optimal curves for hours 14:00, 18:00, 21:00, and 24:00 in the IEEE-30 bus system (MOPSO).

FIGURE 5

Pareto optimal curves for hours 01:00, 04:00, 08:00, and 12:00 in the IEEE-30 bus system (MOALO).
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4.1.1 Case 1: implementation of the daily load
profile for the IEEE-30 bus system

Daily load profiles have been implemented to the IEEE-30 bus

system, multi-objective factors like generation costs and emissions

are optimized using the multi-objective particle swarm optimization

(MOPSO) and multi-objective ant lion optimization (MOALO)

algorithms, and the fuzzy min–max approach has been used to

get the best minimal results.

As demonstrated in the figure and table below, a daily load

profile has been developed by scaling the IEEE-30 bus system load

according to a real-time load profile for 24 h.

Due to the scaling of load, a condition is created to turn OFF

some of the generators as the minimum limits of all the

generators is 117 MW, and as the load/power demand (PD,t)

at some specific hours has decreased drastically, if all the

generators are turned ON, the minimum limit of generators

FIGURE 6

Pareto optimal curves for hours 14:00, 18:00, 21:00, and 24:00 in the IEEE-30 bus system (MOALO).

FIGURE 7

Pareto optimal curves with wind power implementation for hours 01:00, 04:00, 08:00, and 12:00 (MOPSO).
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would not be met, and a penalty factor would kick in, affecting the

objectives. A condition as in Equation 12 must be imposed

in which

Gt ON( ) �

G1, G5 PD,t < 117
G1, G4 117≤PD,t < 140
G1, G2, G3, G4, G5, G6 PD,t ≥ 140

⎧⎪⎨
⎪⎩ , (12)

FIGURE 8

Pareto optimal curves with wind power implementation for hours 14:00, 18:00, 21:00, and 24:00 (MOPSO).

FIGURE 9

Pareto optimal curve with wind power implementation for hours 01:00, 04:00, 08:00, and 12:00 (MOALO).
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where Gt (ON), G, and PD,t are generators turned ON, thermal

power generator, and power demand, respectively, at time t.

From Table.2, 3 below, it has been observed that some of the

generators are turned “OFF” to satisfy the constraints. The

generation costs and emissions are optimized using MOPSO and

MOALO, and the minimum point of the objectives is observed using

the fuzzy min–max approach; the Pareto curves for 24 h for both the

optimization techniques are given in Figures 5–12.

FIGURE 10

Pareto optimal curve with wind power implementation for hours 14:00, 18:00, 21:00, and 24:00 (MOALO).

FIGURE 11

Comparison of generation costs with and without implementing wind energy using MOPSO.
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4.1.2 Case 2: implementation of the daily load
profile and wind energy in the IEEE-30 bus system

Wind energy has been implemented along with daily load

profiles in the IEEE-30 bus system, multi-objective factors like

generation cost and emission are optimized using the multi-

objective particle swarm optimization (MOPSO) and multi-

objective ant lion optimization (MOALO) algorithms, and the

fuzzy min–max approach has been used to get the best

minimal results.

Wind speed is randomly generated, and a 32-MW wind

power source is generated using Equation 11 for this work.

The wind energy is considered to be equipped using

10 turbine model SWT-3.2–113, with a nominal capacity of

3.2 MW. The specifications of wind turbines are given in

Table 4. Wind speeds are tabulated in Table 5 while the wind

power generated is shown in Table 6.

Given that wind speed is not constant, the rated power of

32 MW can be reached at any time of the day. However, if wind

power generation is high, the minimum limits of the generators

would not be met, and a penalty factor will take effect, which will

have an impact on the objectives. Therefore, a condition as in

Equation 13 has been imposed where

Gt ON( ) �

G1, G2 PD,t < 92
G1, G2, Pwind,t PD,t ≥ 92
G1, G2, G3, G4, G5, G6, Pwind,t PD,t ≥ 149

⎧⎪⎨
⎪⎩ , (13)

where Gt (ON), G, PD,t,and Pwind,t are generators turned ON,

thermal power generator, power demand, and wind power

generation, respectively, at time t.

When Equation 13 is satisfied, the wind energy sources are

integrated, and the generation costs and emissions are

significantly reduced, as shown in Tables 7, 8. The generation

costs and emissions are optimized using MOPSO and MOALO,

and the minimum point of the objectives is observed using the

fuzzy min–max approach. The Pareto curves for 24 h for both the

optimization techniques are given in Figures 7–10. Wind energy

sources are not implemented for hours 1, 2, 3, 5, and 24 because

Equation 13 is satisfied.

4.1.3 Case 3: comparison of results
From the results obtained from cases 1 and 2, it has been

observed that for the optimization of both MOALO and

MOPSO, the generation costs and emissions have been

drastically reduced when wind energy is implemented into the

system, that is, when Equation 13 is satisfied and is observed in

Figures 11–16.

FIGURE 12

Comparison of emissions with and without implementing wind energy using MOPSO.

TABLE 6 Wind power generation for 24 h.

Time of
the
day (Hr)

Wind power
generated
(MW)

Time of
the
day (Hr)

Wind power
generated
(MW)

01:00 6.7396 13:00 11.955

02:00 3.3162 14:00 17.943

03:00 3.3162 15:00 22.349

04:00 6.3911 16:00 21.570

05:00 2.1588 17:00 32

06:00 6.3911 18:00 32

07:00 3.5423 19:00 32

08:00 1.1925 20:00 25.655

09:00 5.4180 21:00 15.5353

10:00 17.270 22:00 11.1443

11:00 16.614 23:00 1.9969

12:00 12.483 24:00 4.0247
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TABLE 7 Optimization of the IEEE-30 bus system with the implementation of wind energy using MOPSO.

Time G1 G2 G3 G4 G5 G6 Wind power Power demand Loss Power generation Generation cost Emission

(Hr) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) ($/hr) (ton/hr)

01:00 59.9581 0 0 0 20.378 0 6.7396* 79.352 1.0691 80.3361 204.913 248.256

02:00 50.859 0 0 0 12.2344 0 3.3162* 62.348 0.826 63.0933 151.863 171.555

03:00 50.026 0 0 0 10.2179 0 3.3162* 59.514 0.7328 60.2438 142.7 164.174

04:00 50.1781 0 0 0 10.0626 0 2.1588* 59.514 0.7267 60.2407 168.074 200.127

05:00 54.7403 0 0 0 14.1232 0 6.3911* 68.016 0.8567 68.8635 142.517 165.018

06:00 65.2779 0 0 0 23.0401 0 6.3911 93.522 1.1901 94.7091 225.843 296.364

07:00 59.9598 39.6129 19.2437 20.1619 13.9687 12.4279 3.5423 167.2 1.7173 168.9173 429.42 364.976

08:00 65.2229 39.7248 20.8805 19.2189 14.6821 13.9238 1.1925 172.874 1.9745 174.8455 453.259 411.754

09:00 108.963 0 0 21.5007 0 0 5.418 133.198 2.6872 135.8822 336.183 784.88

10:00 90.8409 0 0 21.8345 0 0 17.27 127.53 2.4184 129.9454 287.565 551.532

11:00 94.4064 0 0 21.8494 0 0 16.614 130.364 2.5163 132.8698 297.227 594.228

12:00 102.149 0 0 24.0085 0 0 12.483 136.032 2.6112 138.6402 326.261 696.994

13:00 51.0486 32.2119 18.2165 14.0427 12.1217 12 11.955 150.202 1.3944 151.5964 352.277 258.081

14:00 50.1709 31.4551 17.3993 14.0216 11.0158 12.6137 17.943 153.036 1.5834 154.6194 343.572 247.585

15:00 57.5932 36.7736 20.8331 12.8715 12.6018 12 22.349 172.874 2.1584 175.0223 388.193 325.582

16:00 69.7464 42.1759 20.9582 24.8986 12.1298 18.1207 21.57 206.882 2.7278 209.5997 499.813 475.05

17:00 68.259 40.5798 21.2812 23.7416 16.1876 13.9861 32 212.55 3.4852 216.0352 487.275 453.387

18:00 83.2702 46.1782 21.9215 27.2275 19.7905 14.8384 32 240.89 4.358 245.2265 576.484 643.103

19:00 100.251 48.7821 24.8006 33.8508 23.8941 25.125 32 283.4 5.3038 288.7038 725.131 904.72

20:00 52.911 39.1469 20.9278 22.08 11 14.934 25.655 184.21 2.4556 186.6556 422.179 317.683

21:00 50.523 31.168 16.8134 10 10 12 15.5353 144.534 1.5154 146.0398 322.078 242.23

22:00 89.5829 0 0 23.2067 0 0 11.1443 121.862 2.0862 123.9339 289.173 539.635

23:00 88.1891 0 0 0 22.2044 0 1.9969 110.526 1.8674 112.3904 281.819 521.595

24:00 69.5145 0 0 0 19.6028 0 4.0247* 87.854 1.2663 89.1173 225.78 326.093
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TABLE 8 Optimization of the IEEE-30 bus system with the implementation of wind energy using MOALO.

Time G1 G2 G3 G4 G5 G6 Wind power Power demand Loss Power generation Generation cost Emission

(Hr) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) ($/hr) (ton/hr)

01:00 60.0025 0 0 0 20.4276 0 6.7396* 79.352 1.0842 80.4301 205.221 248.689

02:00 51.3834 0 0 0 11.7104 0 3.3162* 62.348 0.8305 63.0938 151.227 174.457

03:00 50.0497 0 0 0 10.1247 0 3.3162* 59.514 0.7577 60.1744 142.43 164.244

04:00 50.0055 0 0 0 10.3696 0 2.1588* 59.514 0.864 60.375 143.185 164.177

05:00 53.8599 0 0 0 15.0501 0 6.3911* 68.016 0.894 68.91 169.411 195.163

06:00 66.0857 0 0 0 22.3055 0 6.3911 93.522 1.2633 94.7824 225.191 301.716

07:00 61.2473 37.9578 20.5807 15.6789 15.7659 14.1687 3.5423 167.206 1.7502 168.9417 429.299 367.287

08:00 73.7386 28.7489 21.0763 17.5366 12.9601 19.8793 1.1925 172.874 2.28 175.1324 453.637 448.532

09:00 107.668 0 0 22.8148 0 0 5.418 133.198 2.706 135.901 337.297 769.345

10:00 87.1598 0 0 25.5051 0 0 17.27 127.53 2.4079 129.9349 291.125 516.992

11:00 93.4057 0 0 22.8582 0 0 16.614 130.964 2.5235 132.8779 298.176 584.104

12:00 103.536 0 0 22.828 0 0 12.483 136.032 2.8209 138.847 325.853 712.646

13:00 61.5642 29.8908 15.0169 11.5375 10 12.1907 11.955 150.202 1.9589 152.155 345.791 316.358

14:00 57.808 22.0229 16.8302 11.6415 13.6926 14.7985 17.943 153.036 1.7105 154.7367 344.309 274.004

15:00 61.9617 32.1941 17.3853 15.4345 11.4777 14.7775 22.349 172.874 2.7159 175.5798 388.742 339.536

16:00 61.7093 41.1245 22.1059 27.7646 15.7998 19.2166 21.57 206.882 2.4087 209.2907 509.097 417.169

17:00 61.3886 41.6095 23.6185 19.4603 18.2623 19.4822 32 212.55 3.2814 215.8214 495.972 406.834

18:00 72.2004 45.4997 25.4244 30.4568 18.6492 20.595 32 240.89 3.941 244.8255 589.379 550.019

19:00 92.8755 53.0902 29.9234 31.993 23.3505 25.1731 32 283.4 5.1265 288.4058 733.775 844.738

20:00 62.8957 31.1608 21.3619 20.6811 12.68 12.4159 25.655 184.21 2.7244 186.8503 415.974 358.746

21:00 109.028 0 0 23.0585 0 0 15.25353 144.534 3.1142 147.6217 342.007 788.892

22:00 90.681 0 0 22.1773 0 0 11.1443 121.862 2.1406 124.0026 288.377 550.331

23:00 90.056 0 0 20.4536 0 0 1.9969 110.526 1.3348 112.5065 280.488 539.752

24:00 69.9934 0 0 0 19.2352 0 4.0247* 87.854 1.3746 89.2286 225.314 330.317
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For comparison of the optimization algorithms, the total generation

costs, and emissions for 24 h, it has been observed that for Case 1,

MOPSO has lower total generation costs with a difference of $42.763.

However, MOALO has the lower emission with a difference of

157.337 tons and is shown in Figures 15A, B. For Case 2, with the

implementation of wind energy, MOPSO has lower total generation

costs with a difference of $51.678 and lower emissions with a difference

of 459.446 tons and is observed in Figures 16A, B.

FIGURE 13

Comparison of generation costs with and without implementing wind energy using MOALO.

FIGURE 14

Comparison of emissions with and without implementing wind energy using MOALO.
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5 Conclusion

In this work, a daily load profile was applied to the IEEE-30

bus system to analyze economic dispatch (ED) problems, both

with and without wind energy sources. Multi-

objective optimization methods were utilized to balance

generation costs and emissions. Wind energy was generated

for 24 h using random wind speeds, and it was observed

that the incorporation of wind energy led to significant

reductions in both generation costs and emissions over the

entire period.

To optimize economic generation cost and emission

dispatch, multi-objective ant lion optimization (MOALO) and

multi-objective particle swarm optimization (MOPSO) were

employed. The fuzzy min–max technique was used to identify

the optimal minimum outcomes. It was found that MOPSO

FIGURE 15

(A) Comparison of generation costs using MOPSO and MOALO for case 1 and (B) comparison of emissions using MOPSO and MOALO for case 1.
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outperformed MOALO in effectively minimizing both

objectives.

For future research, the integration of additional renewable

energy sources, such as solar and hydroelectric power, is

recommended to further enhance the results of the proposed

optimization. The inclusion of electric vehicles in the vehicle-to-

grid (V2G) mode as a renewable power source should also be

considered. Furthermore, the investigation of other advanced

optimization algorithms and novel control strategies could

provide additional improvements in managing generation

costs and emissions. Additionally, exploring deregulated

energy markets may offer valuable insights into optimizing

economic dispatch and emissions within different market

structures.

FIGURE 16

(A) Comparison of generation costs using MOPSO and MOALO for case 2 and (B) comparison of emissions using MOPSO and MOALO for case 2.
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