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This study investigates strategies for enhancing the performance of dual-star

induction generators in wind power systems by optimizing the full control

algorithm. The control mechanisms involved include the PID (Proportional-

Integral-Derivative) controller for speed regulation and the PI (Proportional-

Integral) controller for flux, DC-link voltage, and grid connection control. The

primary objective is to optimize the entire system by fine-tuning PID and PI

controllers through the application of meta-heuristic algorithms, specifically

Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO). These

algorithms play a crucial role in estimating the optimal values of Kp, Ki, and Kd for

the PID speed controller, as well as Kp and Ki for the PI controller used in the flux,

DC-link voltage, and grid connection for wind energy conversion system based

dual-star induction generator. This comprehensive optimization ensures

accurate parameter tuning for optimal system performance. A comparative

analysis of the optimization results has been conducted, focusing on the

outcomes obtained with the GWO algorithm. The findings reveal a notable

reduction in steady-state error, signifying improved stability, and an overall

enhancement in the wind power system’s performance. This study contributes

valuable insights into the effective application of meta-heuristic algorithms for

optimizing dual-star induction generators in wind power systems.

KEYWORDS

field oriented control, dual star induction generator, grey wolf optimization, particle

swarm optimization, wind energy

1 Introduction

Renewable energy sources are increasingly seen as a key solution to meet the growing

demand for energy while addressing the challenges of global climate change. This need is

further driven by industrialization and the vital role that electrical energy plays in satisfying

basic human needs (Hamoudi et al., 2023a)- (Chauhan et al., 2021). As part of this

transition, renewable sources like wind energy are replacing traditional energy options,

helping to create a greener, more sustainable world. Among these renewable sources, wind
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energy stands out, with the capability to produce 200 times the

global electricity demand (Dey et al., 2020)- (Barik et al., 2021).

Wind energy’s role in the global energy transition has spurred

various technological innovations. One notable advancement is the

use of multiphase drive systems in wind turbines, offering several

benefits over conventional three-phase systems. These include

enhanced power distribution, reduced current per phase, improved

system reliability, lower rotor current harmonics, and decreased

torque pulsation. Multiphase systems are particularly advantageous

in high-power applications such as electric ship propulsion,

locomotive traction, and hybrid vehicles. Recent research has

increasingly focused on integrating multiphase systems into wind

turbines, particularly through the use of double-star (double three-

phase) induction machines (DSIM), which feature two sets of three-

phase windings offset by 30 electrical degrees (Ulutas et al., 2020)-

(Amimeur et al., 2012).

Effective control of such advanced drive systems relies on vector

control techniques, which were introduced by Blascke in 1972. With

the advent of microelectronics, these methods became feasible for

practical application. This paper employs direct vector control, where

flux is controlled through feedback, estimated using stator currents

and pulsation (Amimeur, 2008). This approach enhances the

efficiency and accuracy of wind turbine performance.

Moreover, modern wind turbines are increasingly adopting

variable-speed operation, which provides several advantages over

fixed-speed turbines. Variable-speed systems maximize energy

capture through techniques like Maximum Power Point Tracking

(MPPT), improving overall efficiency and reducing voltage spikes on

components. These turbines also allow more precise control over the

active and reactive power fed into the grid (Mesai-Ahmed et al., 2021).

In addition to these advancements, PID (Proportional-Integral-

Derivative) controllers are widely used for controlling the speed and

position of wind turbines (Solihin et al., 2011). As wind power systems

grow more complex, there has been a shift toward intelligent

optimization techniques to enhance performance. Particle Swarm

Optimization (PSO) and Grey Wolf Optimizer (GWO) have emerged

as popular metaheuristic algorithms, inspired by nature and applied

successfully to wind power systems (Latif et al., 2020). These algorithms

have been used for applications such as:

• Control of pitch angles (Hussain et al., 2020a)- (Safiullah

et al., 2022).

• Grid connection (Hussain et al., 2020b)- (Iqbal and Singh, 2021).

• Variable wind speed (Sule et al., 2021).

• Hybrid approaches (Hassan et al., 2020)- (Zhang et al., 2019).

• Optimal turbine placement (Shaheen et al., 2021)- (Yasin

et al., 2022).

This paper aims to evaluate the application of direct vector

control, PSO, and GWO in dual-star induction generators for wind

turbines. The study examines the advantages of multiphase drive

systems, vector control techniques, variable-speed turbines, PID

controllers, and the growing impact of smart optimization

methods on improving wind power systems.

The rest of the paper is structured as follows: Section 2 presents the

modelling of the wind power system, including the dual-star induction

generator and power control strategies. Section 3 explores the use of

FIGURE 1

Block diagram of the wind power system based on DSIG.

FIGURE 2

Graph of Cp function λ
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metaheuristic algorithms to optimize control parameters. Section 4

offers validation studies to benchmark the optimized parameters and

evaluate the overall performance of the wind power system, including

the dual-star induction generator. Finally, Section 5 provides

conclusions and outlines future research directions.

2 Modelling of the wind power system

The wind energy conversion system consists of both mechanical

and electrical elements (Basu et al., 2022). The mechanical

components involve a wind turbine and gearbox, while the

electrical section encompasses the generator, control system, and

other interconnected devices.

The investigated wind energy conversion system comprises

several components, including the Dual Star Induction Generator

(DSIG), inverters 1 and 2, the DC link voltage, inverter 3, and the

connection to the grid facilitated by a filter. Inverters 1 and 2 are

utilized for controlling the speed and flux of the generator, with the

control strategy relying on the Maximum Power Point Tracking

(MPPT) algorithm. Inverter 3 is responsible for regulating the DC

link voltage, managing the active and reactive power exchanged with

the grid, and adjusting the current to the correct frequency using

Proportional-Integral (PI) controllers. The overall system

configuration is depicted in Figure 1.

2.1 Modelling of the wind turbine

The expression (1) defines the transmitted power, Pt, harnessed

by the wind turbine.

Pt � 0.5Cp λ( )ρSV3 (1)

Here, Cp represents the power coefficient, S denotes the area

swept by the blades, ρ represents air density, and V represents

wind speed. The turbine’s torque is defined as the ratio of

transmitted power to the shaft speed, Ωt, and is expressed as

in Equation 2:

FIGURE 3

Block diagram of the turbine model with variable speed control.

FIGURE 4

Schematic of dual stator induction generator.
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Tt �
1

Ωt

(2)

The gearbox is employed to match the generator to the

turbine. The generator torque Tg and the speed Ωt are given by

Equation 3:

Tg �
Tt

G
,Ωt �

Ωmec

G
(3)

The mechanical equation can be defined as in Equation 4:

JpΩmec � Tem − Tg − fΩmec (4)

The power coefficient Cp signifies the aerodynamic efficiency of

a wind turbine, and its variation is specific to each turbine and wind

speed. It is affected by the blade pitch angle β and the speed ratio λ,

which is defined by Equation 5:

λ �
RΩt

V
(5)

Where R denotes the blade radius.

Cp � 0.5
116

λ′
( ) − 0.4β − 5[ ] exp −21

λ′
( ) + 0.0068λ( ). (6)

With, λ′ � [ 1
λ+0.08β

− 0.035(β3 + 1)]−1.
When the pitch angle (β) is set to 0, the graph of Cp (λ), as

depicted in Figure 2, is generated using expression (6). The

conversion device extracts less power than theoretically

recoverable because of the non-zero speed of the air masses

upstream of the turbine. This sets a theoretical limit referred

to as the Betz limit, corresponding to Cpmax (Benakcha et al., 2017).

The utilization of the MPPT algorithm aims to optimize the

power extracted from the wind, thereby improving the efficiency of

FIGURE 5

Control scheme of the DSIG based WECS.
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the conversion process. The power coefficient Cp displays a

parabolic shape, reaching its maximum at the optimal speed ratio

λopt (Djoudi et al., 2023). The reference speedΩmec* can be expressed

as in Equation 7:

Ωmec* �
Rλopt

V
G (7)

Figure 3 illustrates the block diagram of the turbine model,

which includes speed control. The diagram illustrates how wind

energy is converted into mechanical energy by the turbine,

adjusted by the gearbox, and transferred through the shaft. The

MPPT system optimizes the power extraction by controlling the

voltage and current, ensuring the turbine operates at its most

efficient point.

2.2 Modelling of the dual star
induction generator

In the traditional arrangement, the stator winding of the DSIG is

composed of two identical and balanced three-phase windings. These

windings are offset by an electrical angle of α = 30° and possess an

equal number of poles. Conversely, the rotor can be characterized as a

simplified squirrel cage, resembling a short-circuited three-phase

winding. Figure 4 provides a visual representation of the

equivalent circuits for both the stator and rotor windings (Sellah

et al., 2022)- (Hamoudi et al., 2023b). The mathematical model of the

generator is derived by applying Park’s theory to simplify the

differential equations. The electrical equations for the DSIG along

the direct and quadrature axes (d, q) concerning the field are

expressed as in Equation 8 (Benamara et al., 2023):

FIGURE 6

Schematic representation of decoupling block of MFOC.
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ʋd1 � r1id1 + pφd1 − ωeφq1

ʋq1 � r1iq1 + pφq1 + ωeφd1

ʋd2 � r2id2 + pφd2 − ωeφq2

ʋq2 � r2iq2 + pφq2 + ωeφd2

ʋdr � rridr + pφdr − ωe − ωr( )φqr � 0
ʋqr � rriqr + pφqr + ωe − ωr( )φdr � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

Where ʋd1, ʋq1, ʋd2, ʋq2 and ʋdr, ʋqr are respectively d-q stator

and rotor voltages components. id1, iq1, id2, iq2 and idr, iqr are

respectively d-q stator and rotor currents components.

φd1,φq1,φd2,φq2 and φdr,φqr are respectively d-q stator and rotor

fluxes components. The stator and rotor electrical pulsations are

respectively ωe and ωr. r1, r2, rr are the stator/rotor phase

resistances.

The expressions for stator and rotor flux linkages are given in

Equation 9:

φd1 � L1id1 + Lm id1 + id2 + idr( )

φq1 � L1iq1 + Lm iq1 + iq2 + iqr( )
φd2 � L2id2 + Lm id1 + id2 + idr( )

φq2 � L2iq2 + Lm iq1 + iq2 + iqr( )
φdr � Lridr + Lm id1 + id2 + idr( )

φqr � Lriqr + Lm iq1 + iq2 + iqr( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

Where L1, L2 and Lr are the stator and rotor phase leakage

inductances. Lm is the mutual inductance.

The electromagnetic torque is evaluated as in Equation 10:

Tem � P
Lm

Lm + Lr

iq1 + iq2( )φdr − id1 + id2( )φqr[ ] (10)

Where P is the number of pole pairs.

The active and reactive power at the stator, as well as those

delivered to the grid, are defined as in Equation 11:

FIGURE 7

Control bloc diagram of the grid connection conditioning system.
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Ps � ʋd1id1 + ʋq1iq1 + ʋd2id2 + ʋq2iq2
Qs � ʋq1id1 − ʋd1iq1 + ʋq2id2 − ʋq2iq2

{ (11)

2.3 Direct field-oriented control of DSIG

Modified Field Oriented Control (MFOC) is an advanced

strategy used in electric motor drives, particularly for three-phase

ACmotors. It enhances traditional Field Oriented Control (FOC) by

optimizing magnetic field orientation to achieve superior torque and

speed control, improving efficiency, performance, and precision.

MFOC refines control algorithms and parameter tuning to handle

varying conditions and external disturbances better, resulting in

reduced energy losses, enhanced dynamic response, and precise

control. This makes MFOC ideal for applications where high

performance and energy efficiency are critical.

Vector control achieves an inherent separation of flux and

torque control, resembling the arrangement found in a separately

excited DC machine. The control strategy is specific to a drive and a

given load specification (Benalia, 2010). through flux, orientation

involves regulating the flux using one component of the current and

controlling the torque using the other component.

To do this, we need to choose a control law and a system

of axes that will ensure the decoupling of flux and torque.

Knowing that the expression for the electromagnetic torque

(Equation 10) is dependent on both the stator currents

and rotor flux.

However, by aligning the rotor flux along the d axis (φdr = φr and

φqr = 0), the electromagnetic torque is given by Equation 12:

Tem � P
Lm

Lm + Lr

( ) iq1 + iq2

φr

( ) � k″φriq (12)

With: k″ � P( Lm
Lm+Lr

)and iq � iq1 + iq2
For the choice of flux orientation in the MASDE, we opt for the

choice of rotor flux orientation (φdr � φr andφqr � 0), This

approach leads to a variable speed drive, where the

electromagnetic flux and torque are autonomously controlled

through the manipulation of the stator currents (Amimeur, 2008).

For direct vector control, the rotor fluxmodule will be controlled

by feedback. To this end, a rotor flux estimator φr is implemented

from measurements of id and iq and the rotor current pulsation ωr

imposed on the machine (Benalia, 2010).

The proposed control scheme is a cascade structure at is shown

in Figure 5. The bloc diagram of the MFOC is presented in Figure 6,

the three-phase stator currents are transformed into the d-q

reference frame using Park transformations and Proportional-

Integral (PI)/Proportional-Integral derivative (PID) controllers

are used to regulate the d-axis and q-axis currents to their

reference values.

2.4 Power control on the grid side

In grid-connected control mode, the aim is to transmit the

entirety of the obtainable power derived from the wind generator to

the grid Setting the reference reactive power (Qp) to zero is

necessary to align the grid current vector with the grid voltage

vector. The regulation of the reference active power involves the

FIGURE 9

Flowchart of the GWO algorithm.

FIGURE 8

The grey wolf hierarchy.
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control of the DC link voltage. The output from the current

controllers determines the voltage reference in an average

conversion control method, subsequently governing the switches

of the grid inverter (Benamara et al., 2023). The DC link voltage is

controlled by Equation 13.

dUc

dt
�

1

C
im − ig( ) (13)

The determination of the reference active power injected into

the electrical supply network is dictated by Equation 14:

P* � Uc im − i*c( ) � Pdc m − Pdc
* (14)

Where i*c � PI(U*
c − Uc)

The PI controller is incorporated to maintain a constant DC

link voltage.

The control block of the grid connection conditioning system is

shown in Figure 7.

3 Tunning proportional-integral-
derivative controller using grey wolf
optimization

3.1 Presentation of grey wolf
optimization technique

Proposed in 2014 by Mirjalili et al., the GWO algorithm is a

novel meta-heuristic that emulates the natural leader hierarchy and

hunting behavior observed in wild wolves.

The approach emulates the social structure and hunting

dynamics within the gray wolf society. The grey wolf

hierarchy is represented by four distinct simulations: Alpha

(α), Beta (β), Delta (δ), and Omega (ω), as depicted in

Figure 8. Assuming leadership of the entire group, the Alpha

wolf (α) plays a primary role in decision-making regarding

hunting, sleeping locations, wake-up times, and other

collective activities. The Beta wolf (β), positioned as the

second in the hierarchy and subordinate to the Alpha (α),

functions as an assistant in decision-making, particularly in

tasks such as hunting and other collective activities. The

Omega (ω) wolf, the lowest-ranking member, follows the

Alphas (α) and Betas (β) but exerts dominance over other

Omegas (ω). Wolves not classified as Alpha (α), Beta (β), or

Omega (ω) are referred to as Delta (δ) wolves. In the GWO

algorithm, the search commences with a population of randomly

generated wolves, representing potential solutions. These wolves,

through an iterative hunting process during optimization,

estimate the location of the prey (optimum). The Alpha (α)

serves as the primary solution, with the Beta (β) and Delta (δ)

representing the second and third-best solutions, respectively.

The other solutions, considered less significant, are denoted as

Omega (ω) and Delta (δ).

The following Equations 15 and 16 are introduced to

mathematically represent the encircling action during the

hunting process:

�D � �CXp

�→
t( ) −X t( )

����→∣∣∣∣∣∣
∣∣∣∣∣∣ (15)

�X t + 1( ) � xp
�→

t( ) − �A �D (16)

In the equations, t represents the current iteration, �A and �C
→

are

coefficient vectors, Xp

�→
(t) represents the position vector of the

victim, and �X indicates the position vector of a grey wolf. The

vectors �A and �C are computed as in Equation 17:

�A � 2 �ar1
→

− �a
�C � 2r2
→{ (17)

FIGURE 10

Flowchart of basic PSO algorithm.

TABLE 1 Parameters of GWO and PSO algorithms.

Descriptions GWO PSO

Population size 20 30

Number of iterations 50 50
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where �a linearly decreases from 2 to 0 throughout

iterations and r1
→

and r2
→

are random vectors within the

range [0, 1].

In the GWO algorithm, the initial three best solutions are

retained, exerting influence on the remaining search

agents, including the omegas, to adjust their positions based on

the location of the best solution. To implement this, the

following formulas Equations 18–20, are proposed

(Şen and Kalyonnu, 2018)- (Wang and Liu, 2022)- (Sidea

et al., 2021).

FIGURE 11

Schematic of PID/PI controller with GWO/PSO algorithms optimizations.

FIGURE 12

Pseudo code of GWO algorithm.

FIGURE 13

Speed error (fitness function) of (A) GWO-PID and (B) PSO-PID.
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Dα

��→
� C1

�→
Xα

�→
− �X

∣∣∣∣∣ ∣∣∣∣∣
Dβ

�→
� C2

�→
Xβ

�→
− �X

∣∣∣∣∣ ∣∣∣∣∣
Dδ

�→
� C3

�→
Xδ

�→
− �X

∣∣∣∣∣ ∣∣∣∣∣

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (18)

X1

�→
� Xα

�→
− A1

�→�����������������→
Dα

�→( )
X2

��→
� Xβ

�→
− A1

�→�����������������→
Dβ

�→( )
X3

→
� Xδ

�→
− A1

�→
Dδ

�→( )
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(19)

�X t + 1( ) � X1

�→
+ X2

�→
+ X3

�→
3

(20)

The GWO algorithm, a metaheuristic optimization approach,

draws inspiration from the collaborative hunting behavior of grey

wolves. The sequence of the GWO algorithm is outlined as follows:

- Initiate the population of grey wolves, constituting a collection

of potential solutions.

- Compute the objective function for each grey wolf in the

population.

- Designate the best-performing, second-best, and third-best

grey wolves as alpha, beta, and delta, respectively.

- Update the position of each grey wolf using

Equations 18, 19.

- Update a, A, and C, and update the best-performing, second-

best, and third-best grey wolves as alpha, beta, and delta,

respectively.

- Iterate through steps 4 to 7 until the specified stopping criteria

are satisfied, such as reaching a maximum number of iterations

or achieving a desired level of convergence.

To assess the efficacy of the GWO in comparison to

another optimization algorithm, it is essential to choose a

suitable algorithm for the comparative analysis. We suggest

PSO as a viable candidate for this evaluation (Abdolrasol et al.,

2023) - (Bekakra and Ben Attous, 2014). The flowcharts for both the

GWO and the basic algorithm are presented in Figures 9, 10

respectively.

The parameters of the GWO and PSO algorithms used in this

work are shown in Table 1.

FIGURE 14

Random of the DSIG speed.

FIGURE 15

Wind generator mechanical power.

TABLE 2 Comparison between PID–PSO and PID-GWO

Controller PID-PSO ITAE-PSO PID-GWO ITAE-GWO

Speed Kp = 5397.578

Ki = 639.0105

Kd = 252.7699

40.4797 Kp = 7243.250

Ki = 583.0384

Kd = 500.5632

33.9292

Flux Kp = 7001,1

Ki = 12,000

0.0101 Kp = 698,56

Ki = 11,345.46

0.0096

MFOC Kp = 0.31

Ki = 45.31

2.0611e6 Kp = 0.2915

Ki = 43.9856

1.0974e7

DC-link Kp = 124.1905

Ki = 349.7218

3.1882 Kp = 132.4306

Ki = 396.3569

2.0435

Filter Kp = 0.1412

Ki = 4.4329

2.2373e5 Kp = 0.2636

Ki = 1.8447

1.4954e5
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Figure 11 shows the use of the PSO and GWO

optimization algorithms in our DSIG-based wind power system,

changing the reference value and search interval each time,

and carrying out several simulation runs until the desired result

is achieved.

3.2 PI/PID controller

The PID controller is widely recognized for its effectiveness in

machine control, albeit with the requirement of a known

mathematical model for the system. To tackle challenges

within the overall system, several methods have been

introduced to fine-tune the parameters of PID controllers. The

proposed approach utilizes both PSO and GWO methods to

determine the optimal values for controller parameters (Kp,

Ki, and Kd). This method aims to enhance the performance

and adaptability of the PID controller in diverse machine control

FIGURE 16

Generator torque.

FIGURE 18

(A). Stator current and voltage (phase as1). (B) Stator currents

(phases as1 and as2). (C) Stator active and reactive powers.

FIGURE 17

Direct and quadratic rotor flux.
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scenarios by dynamically optimizing its tuning parameters using

evolutionary algorithms.

3.3 Objective function

A function identified as a potential objective is termed a

candidate objective function. This mathematical function

accepts one or more input variables and generates a singular

output value. The optimization process entails seeking input

values that yield the maximum or minimum output, contingent

on the specific problem under consideration (Abdolrasol

et al., 2021).

When designing PID controllers, essential performance

benchmarks involve metrics such as the Integrated Time

Absolute Error (ITAE), which is employed to assess how

effectively a control system minimizes errors over time. This

criterion is frequently applied when both response speed

and steady-state accuracy are of significance. The Integrated

Absolute Error (IAE) is another metric utilized to

evaluate control system performance by considering the integral

of the error over time. Similar to ITAE, it assists in evaluating

the system’s ability to minimize errors. The Integrated Time-

weighted Square Error (ITSE) is employed to analyze

and quantify control system performance, placing greater

emphasis on larger errors due to the inclusion of squared error

terms in the integral. This criterion is often preferred when

minimizing overshoot and settling time is crucial. The Integrated

Squared Error (ISE) serves as a straightforward measure of the

overall performance of a control system and is commonly used when

both transient and steady-state responses are important. The

respective formulas for ITAE, IAE, ISE, and ITSE

performance criteria are provided below in Equation 21:

FIGURE 19

DC link voltage.

FIGURE 20

Current and voltage at the output of the inverter 3.

FIGURE 21

(A) Grid current and voltage (phase a). (B) Grid active and

reactive powers.
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ITAE � ∫t

0
t. e t( )| |dt

IAE � ∫t

0
e t( )| |dt

ISE � ∫t

0
e2 t( )
∣∣∣∣ ∣∣∣∣dt

ITSE � ∫t

0
t. e2 t( )
∣∣∣∣ ∣∣∣∣dt

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(21)

In this article, ITAE was used in both algorithms to minimize the

error, which is crucial for optimizing the controller’s performance in

the wind power system described in Section 2.

Figure 11 shows the use of the PSO and GWO optimization

algorithms and ITAE calculation in matlab simulink in our DSIG-

based wind power system, changing the reference value and search

interval each time, and carrying out several simulation runs until the

desired result is achieved. The parameters of PID controller are

calculated using Matlab Simulink functions that we have

programmed based on the flowcharts shown in Figures 9, 10,

and the Pseudo code of the GWO algorithm is shown in Figure 12.

The system’s performance, including the wind turbine’s

mechanical power and torque (as defined in Equations 1, 2), and

the DSIG electromagnetic torque and speed (outlined in Equations

10, 4), directly affects the error signal e(t) in Equation 21, which

represents the difference between the desired and actual

incorporated into the control loop. In this loop, a PID controller

regulates the generator speed and torque using MFOC (see Figure 5)

strategy. The objective of minimizing the ITAE involves tuning the

PID parameters through optimization techniques such as GWO and

PSO. This approach ensures smooth, precise control and efficient

energy capture by reducing the error over time. The integration of

these dynamic models with the control system allows the system to

adapt effectively to changes in wind speed and power requirements.

Figure 13 shows the variation of speed error (fitness). It is worth

noting that the GWO method outperforms the PSO method.

4 Results

To validate this study, multiple simulations were carried out to

analyze the performance of the DSIG under direct field-oriented

control. The simulations incorporated the application of

optimization algorithms that is PSO and GWO, implemented

using MATLAB/Simulink. To acquire a more profound insight

into the outcomes obtained through different methodologies,

such as PID-PSO and PID-GWO, it is imperative to undertake a

thorough comparison of their static and dynamic characteristics.

This comparison should occur under identical operating conditions

(which encompass references, and disturbance loads) and within the

same simulation configuration. Simulation results were acquired for

reactive power of Q* = 0 and a DC link voltage of Uc* = 1130V. In

Figure 14, the angular speed controlled by two controllers (PSO and

GWO), both tracking the same reference, demonstrates

commendable performance. Notably, the GWO controller

exhibits superior performance by precisely following the

reference, evident in its reduced steady-state error of 0.62, in

comparison, the PID-PSO controller exhibits a steady-state

error of 0.82. The remainder of this article will delve into the

presentation of additional results obtained through the

implementation of the proposed PID/PI-PSO and PID/PI-GWO

controllers.

Table.2 lists the gains of the controllers obtained by the two

optimization methods, PSO and Grey Wolf, as well as ITAE.

The error obtained for all PSO controllers is slightly higher

compared to the GWO adjustment method.

The progression of mechanical power on the DSIG shaft is

depicted in Figure 15. The subtle fluctuation in operational phases at

mechanical speeds below the rated speed is constrained by the

power-limiting device when operating at speeds above the

rated speed.

Figure 16, illustrates the electromagnetic torque response of the

DSIG by the two proposed methods. However, PI-PSO and PI-

GWO bring the necessary corrections to the system’s operation, the

torque oscillations represent the generator’s dynamic response to

varying wind conditions.

Moving to Figure 17, the decoupling of the direct and

quadrature fluxes of the DSIG rotor is apparent, with the

quadratic rotor flux registering a zero value following the

principles of direct field-oriented control, the application PI-PSO

and PI-GWO techniques help in optimizing the PI controller

parameters, resulting in improved stability and response of the

system under varying operating conditions.

Figure 18A shows the stator voltages and currents for the first

star, and the second star results are similar to those for the first one.

It indicates that voltage and current are almost 180° out of phase.

The consistent pattern of voltage and current observed in the figure

is a direct outcome of the effective tuning of the PI controllers using

PI-PSO and PI-GWO. These optimization techniques ensure precise

adjustments to the PI controller parameters, thereby achieving a

stable and efficient control of the stator voltages and currents.

Figure 18B illustrates the sinusoidal shape of the stator currents

highlighting the significant improvement in current quality achieved

with the PI-PSO and PI-GWO techniques. The figure demonstrates

that these optimization algorithms effectively reduce current ripple,

resulting in smoother current waveforms. This reduction in ripple is

crucial for enhancing the efficiency and performance of the DSIG.

The results reveal that the PI-PSO and PI-GWO algorithms are

particularly well-suited for tuning the gains of PI/PID controllers,

offering superior performance in maintaining sinusoidal currents

and minimizing undesirable fluctuations.

Figure 18C illustrates the profiles of active and reactive power for

the DSIG stator. The negative sign associated with active power

indicates that the DSIG generates this power, whereas the positive

sign of reactive power signifies that the machine absorbs the energy

required for its magnetization.

Figure 19 portrays the trend of the DC bus voltage and its

reference. It is noticeable that the voltage Uc remains constant and

precisely tracks its reference, this precise tracking is achieved

through the effective application of optimization algorithms,

(PSO) and (GWO). These algorithms are used to fine-tune the

control parameters, ensuring that the DC bus voltage is stable and

accurately follows the desired reference trajectory. The consistent

voltage profile demonstrates the robustness and efficiency of the

optimization techniques in maintaining voltage regulation and

system stability.

The voltage and current profiles at the output of inverter 3 of

the 1st star are presented in Figure 20. The phase shift between the

supply current and voltage is 180°, indicating that the line-side

converter is delivering real power to the electrical network.
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Figure 21A displays the voltage and current profiles at the grid

connection. The sinusoidal shape of the current, coupled with its

phase being opposite to that of the voltage, indicates that power is

flowing from the wind generator to the grid. This phase opposition

suggests that the current is delivering power to the grid, which aligns

with the operational characteristic of a wind generator supplying

power. The smooth, sinusoidal current profile confirms the effective

power transfer and integration of the wind generator with the grid,

reflecting stable and efficient operation.

Figure 21B illustrates that the active and reactive powers of the

network consistently track their references values throughout the

simulation. This indicates effective control and regulation, with the

system maintaining the desired power levels. The precise tracking of

both active and reactive power highlights the success of the control

strategies implemented in ensuring stable and reliable performance

of the network.

5 Conclusion

In conclusion, this research significantly contributes to the

enhancement of dual-star induction generator (DSIG)

performance within wind power systems by regulating speed

and various parameters. By employing PID controllers for speed

regulation and PI controllers for flux estimation, DC-link voltage,

Modified Field Oriented Control (MFOC), and grid filter, the study

aims to optimize the entire system by fine-tuning these controllers.

The optimization process is facilitated by utilizing meta-heuristic

algorithms, specifically Grey Wolf Optimization (GWO) and

Particle Swarm Optimization (PSO). The simulation results

show that the GWO algorithm is slightly more efficient than

the PSO algorithm in the speed controller, for an ITAE

(33.9292 for PID-GWO and 40.4797 for PID-PSO), PI of the

flux (0.0096 PID-GWO and 0.0101 PID-PSO), PI of the MFOC

(1.0974e7 PID-GWO and 2.0611e7 PID-PSO), PI DC-link

ensuring accurate parameter tuning for optimal system

performance.

Appendix parameters

Turbine:

Diameter = 60m.

Number of Blades = 3.

Hub height = 85m.

Gearbox = 90.

DSIG: 1.5MW.

400V.

50Hz.

2 pole pairs.

r1 = r2 = 0.008Ω.

L1 = L2 =0.134mH.

Lm = 0.0045H.

Rr = 0.007Ω.

Lr = 0.067mH.

J = 30 kg.m2: inertia (turbine+ DSIG).

f = 2.5N.m.s/rd: viscous coefficient (turbine+ DSIG).
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Glossary

Ωmec mechanical speed of the DSIG

Ω*mec mechanical speed reference

Ωt turbine speed

Pmec_opt mechanical optimal

Taer aerodynamic torque

Tg generator torque

Cp power coefficient

λ tip speed ratio

β pitch angle

ρ air density

R turbine radius

V wind velocity

G gear ratio

ʋd1, ʋd2, ʋq1, ʋq2 ‘‘d–q’’ stators voltages

id1, id2, iq1, iq2 ‘‘d–q’’ stators currents

φd1, φd2,

φq1, φq2

‘‘d–q’’ stators flux

ʋdr, ʋqr ‘‘d–q’’ rotor voltages

idr, iqr ‘‘d–q’’ rotor currents

φdr, φqr ‘‘d–q’’ rotor flux

ωe speed of the synchronous reference frame

ωr rotor electrical angular speed

r1, r2 per phase stators resistances

rr per phase rotor resistance

L1, L2 per phase stators leakages inductances

Lr per phase rotor leakage inductance

Lm magnetizing inductance

P number of pole pairs

p derivative operator

J inertia

f viscous friction

Tem electromagnetic torque

Ps, Qs active and reactive stator powers

C DC bus capacitor capacity

im The current supplied by the DSIG and modulated by

inverters1 and 2

ig current modulated by inverter 3

ic capacitive DC bus current

Pdc active power in the DC bus capacitor

PI Proportional Integrator controller

PID Proportional Integrator-Derivative controller

GWO Grey Wolf Optimizer

PSO Particle Swarm Optimization

ITAE Integral Time Absolute Error

IAE Integrated Absolute Error

ITSE Integrated Time-Squared Error

ISE Integrated Squared Error

WECS Wind Energy Conversion System

Frontiers in Energy Research frontiersin.org16

Benamara et al. 10.3389/fenrg.2024.1421336


	Grey wolf optimization for enhanced performance in wind power system with dual-star induction generators
	1 Introduction
	2 Modelling of the wind power system
	2.1 Modelling of the wind turbine
	2.2 Modelling of the dual star induction generator
	2.3 Direct field-oriented control of DSIG
	2.4 Power control on the grid side

	3 Tunning proportional-integral-derivative controller using grey wolf optimization
	3.1 Presentation of grey wolf optimization technique
	3.2 PI/PID controller
	3.3 Objective function

	4 Results
	5 Conclusion
	Appendix parameters
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Glossary


