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Electric Energy, Norwegian University of Science and Technology, Trondheim, Norway, 3School of

Physics, Engineering an Technology, University of York, York, United Kingdom, 4Fukushima Renewable
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Currently, electric vehicles (EVs) are the most liked mode for green

transportation. However, the vehicle-to-grid (V2G) technology can reduce the

peak demand on the power grid, which is an efficient way to encourage the

integration of EVs. This paper proposes a multi-objective-based economic

dispatch management including EVs to minimize the generator cost and

active power loss. The entire system is retained for keeping in mind the

economic operation of the whole system. Then, EVs are introduced to the

system, taking into account vehicle requirements and load demands and

considering EV constraints. The target of the proposed work is to

demonstrate how effectively large-scale EVs can participate in valley filling

and peak load shaving along with multi-objective-based cost and loss

reduction. The proposed optimization problem is employed in an IEEE 30-bus

system. Themulti-objective grasshopper optimization algorithm and the ant-lion

optimization are compared to observe the minimum cost and total loss of the

system. The results show that the total generation cost and power loss of the

system decrease due to the V2G mode of operation. In addition, EVs provide an

alternative method for dealing with peak load, while filling the off-peak hours

effectively. The total generation cost and power loss for 24 h using MOGOA

without implementation of EVs are 8,757.128 $/hr and 65.28509 MW,

respectively, and with EVs, the total generation cost and power loss for 24 h

are 8,617.077 $/hr and 55.65349MW, respectively. Thus, with the implementation

of EVs, the total generation cost reduced by 1.59% and the total power loss

reduced by 14.75%, andwithMOALO, the total generation cost and power loss for

24 hwithout EVs are 8,977.077 $/hr and 44.20877 MW, respectively, and with EVs,

the total generation cost and power loss for 24 h are 8,923.529 $/hr and

41.69524 MW, respectively. Thus, with the implementation of EVs, the total

generation cost reduced by 0.59% and the total power loss reduced by 5.68%.
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The analysis of the results demonstrates how effectively EVs in the V2G mode can

reduce the dependency over the grid power during the time of peak load demand.

KEYWORDS

electric vehicles, vehicle-to-grid, multi-objective optimization, economic dispatch,

loss reduction

GRAPHICAL ABSTRACT

1 Introduction

The goal of economic dispatch (ED), which is a crucial task in

power systems and is essentially a multi-objective optimization

problem, is to determine the best schedule for generators to

minimize the overall fuel cost under specific limitations,

including loss in the system (Jayabarathi et al., 2016; Latif et al.,

2020). Minimization of generation costs is the goal of the significant,

practical optimization problem known as economic dispatch in

power systems (Dey et al., 2020). Given the significance of ED,

efforts to solve the ED problem date back to the early 1970s. ED can

be resolved using the gradient method, the projection method, and

the λ-iteration method as a restricted optimization problem (Wood

et al., 2012). In the studies by Chiang (2005) and Sahoo et al. (2024),

the existence of forbidden operation zones is one of the

requirements that the ED problem must meet. Bahrani and Patra

(2017) used the orthogonal PSO (OPSO) algorithm for solving the

ED problem by taking three power systems under several power

constraints imposed by thermal generating units (TGUs) and smart

power grid (SPG), for example, ramp rate limits and prohibited

operating zones. Chatuanramtharnghaka et al. (2021) used a multi-

objective optimization method called grasshopper optimization

algorithm (GOA) to manage congestion in the system

transmission line. The algorithm adjusts parameters to ensure

that the system operates at the lowest possible cost. Sahoo et al.

(2023) investigated the role of flexible AC transmission systems in

managing congestions in a deregulated market for different

topologies. Latif et al. (2021) estimated the optimal power

dispatch for a marine microgrid using the GOA. The findings

when contrasted with those of the most popular and

contemporary algorithms demonstrate that the GOA produces

more robust results that capture more renewables and provides

more stability. Lalhmachhuana et al. (2024) utilized a multi-

objective engineering design issue to apply MOALO, which is

contrasted with MOPSO. The findings demonstrate how the

excellent convergence and coverage of the GOA help its test

functions. The algorithm’s performance on economic and

emission dispatch problems shows how well it works to solve

difficult real-world issues as well.

Sen and Mathur (2016) suggested a better method for creating

artificial bee colonies (ABCs) to address the dynamic economic

emission dispatch (DEED) issue. The suggested method provides

superior optimum solutions when compared to over ten

metaheuristic techniques, according to the results. The problem

of environmental issues and the energy crisis has drawn significant

attention to PEVs as a crucial component for future power systems

(Safiullah et al., 2022; Xing et al., 2016). However, as PEV charging

habits are variable, when more PEVs are sold, the peak–valley load

disparity will widen even more, increasing the load demand (Ranjan

et al., 2021; Ma et al., 2017). Tappeta et al. (2022) examined the

framework of the V2G technology and its advantages, drawbacks,

and optimization techniques. The authors concluded that V2G can

assist the electricity system with peak load cutting and load leveling.

Hussain et al. (2020) showed that with V2G, air pollution and power

outages can be reduced, system efficiency can be increased, and the

grid can become more stable and dependable. They play a critical

role in supporting supply and demand balancing by reducing peaks

and filling valleys. The EV batteries can be charged during the

evenings, when there is less demand (Han et al., 2010a). The

bidirectional inductive power transfer (IPT) charger is developed

by Madawala and Thrimawithana (2011) with a control system that

may be utilized to set a boundary for the maximum value of the

primary side current when it increases, thereby safeguarding the IPT

system. Srivastava et al. (2010) addressed the various modeling

approaches and optimization techniques used in the studies of

the market penetration rates of electric vehicles, hybrid electric

vehicles, plug-in hybrid electric vehicles, and battery electric

vehicles. Sioshansi and Denholm (2009) conducted an in-depth

review of the current state of EVs and related grid-interfacing

technologies in the literature. The primary conclusions and data

information are taken from recent publications that emphasize the

most recent developments in technology, their drawbacks, and

possible directions for future market growth. Kempton and

Tomic (2005) determined the grid power capacities of three

different types of electric drive cars by the developed formulae.

The revenue and expenses that supply electricity to different electric

marketplaces are assessed using these equations. Han et al. (2010b)

examined the response of EVs in frequency regulation. Certain

distinct scenarios have been taken into account when assessing the

impact of disturbances in system frequency: the non-availability of

grid-connected EVs and EVs that provide frequency response.

Nsonga et al. (2017) suggested a methodical strategy in which
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every charging and discharging sequence for electric vehicles is

recognized.

Following that, ratings and suggestions on which tactics to use

for particular purposes are also given. The viability of charging

PHEVs at off-peak hours on Ontario’s grid is examined

(Hajimiragha et al., 2010). By storing surplus energy generated

during windy periods and delivering it back into the grid during

times of high demand, V2G can be used to buffer renewable energy

sources, such as wind turbine generators. This essentially stabilizes

the alternating nature of wind power. Kempton et al. suggested using

V2G for electric vehicles, in which it enabled the EVs to function as

part of the power system (Kempton and Letendre, 1997; Ustun et al.,

2021). When EVs take part in V2G, they can charge at a lower cost

during off-peak hours and absorb more energy as an allocated

battery to stabilize the power grid. When peak load demands

arise, the discharge function is then utilized to supply electricity

to the grid (Peng et al., 2012).

In the near future, when huge numbers of EVs will be used, they

will take part in smart discharging and charging, which is an area of

study that is starting to gain attention. Some solutions and models

have been suggested for the scheduling challenge for charging and

discharging of EVs (Galus and Andersson, 2008; Yao et al., 2013).

Saber and Venayagamoorthy (2011) utilized PEVs and renewable

energy sources to the fullest extent possible, taking into account the

economic and emission goals while planning PEV usage. Hoehne

and Chester (2016) put forth an ideal charging schedule, taking into

account both standard and V2G PEV usage, to reduce carbon

emissions. The authors concluded that using V2G during peak

hours helps minimize carbon dioxide emissions. Ustun et al.

(2013) examined the impact of PEVs on the power grid using

three methods. PEVs can provide a way to replace fuel with

domestic resources for energy independence, minimized carbon

dioxide emissions, and lower fuel cost by developing advanced

battery technologies. When compared with other technologies,

Li-ion batteries have shown higher energy storage and power

delivery capabilities, but they also have a far longer life in the

deep-discharge cycling required for EV development (Keshan

and Thornburg, 2016). Wei et al. (2022) studied the degrading

characteristics of Li (NiMnCo)O2 batteries under V2G applications

and demonstrated that even if additional energy leads to cyclic

degradation, V2G discharging reduces battery decay by 0.95% as

compared to charging since it extends the battery’s calendar life.

Bhoir et al. (2021) evaluated the potential earnings for an auxiliary

service provider using a fleet of EVs to offer various ancillary services

on the power market in Li-ion batteries through a case study

utilizing this battery concept. It demonstrates that the most

profitable endeavor is to offer both peak shaving and frequency

containment reserve. Hadi Amini et al. (2017) proposed fast-

charging strategies for preventing or minimizing lithium plating.

The charge profiles for both online and offline applications are

obtained using the impedance tracking (IT) approach. When

compared to current/constant voltage (CC-CV), the suggested

solutions increased battery life by over 75%, with only a slight

increase in the related charge time. Shargh et al. (2016) studied the

Li-ion battery to reduce degradation through state-of-charge pre-

conditioning strategies that allow an electric vehicle to participate in

vehicle-to-grid operations during periods in which the vehicle is

parked. In comparison to the reference standard charging approach,

the analytical results demonstrate that the proposed charging

strategies do not accelerate battery degradation and can mitigate

the entire aging process, starting at 7.3 26.7% for the first 100 days of

operational life and gradually increasing to 8.6 12.3% for a year of

continuous operation. Shazly et al. (2023) developed a double-stage

method for distributing EV parking spaces with distributed

renewable resources throughout the power distribution system. It

takes into account the financial gains of parking lot investors as well

as the operational technical limitations of distribution network

operators. Singh et al. (2014) used a point estimate method

(PEM) for Nataf transformation, and the joint probability density

function (PDF) of wind speed related to different places was

generated using marginal PDF, and the correlation matrix is

available in most cases, which satisfy the service condition of

Nataf transformation. Xie et al. (2024) suggested two-layer

optimal dispatch systems to fully realize the promise of the EV

demand response and address the issues caused by the integration of

new energy vehicles into the power grid. The first approach is to

evaluate the potential for an EV load demand response, and the

second is to use the evaluation value of the EV response potential as

the load adjustment range. These tactics are used in real-time, and

the scheduling outcomes demonstrate the strategy’s greater

economic viability. Nourianfar and Abdi (2023) used an

improved multi-objective exchange market algorithm to resolve

the multi-objective dynamic economic emission dispatch problem

in the presence of wind farms and EVs simultaneously. The

performance of the suggested strategy and the efficacy of the

suggested method are examined. The findings demonstrate that

the addition of EVs lowered both the system’s operating costs and

emissions. Guo et al. (2021) presented a new multi-level optimal

V2G scheduling approach to guarantee seamless operation and

control from the V2G control center to the EV users, in addition

to introducing a new EV economic dispatch optimization model to

reduce the operating expenses of regional V2G systems.

Furthermore, the viability of the suggested model suggested that

extra load variations caused by large-scale vehicle fleets may be

minimized through appropriate size regulation of the total EV

battery capacity. Dynamic economic emission dispatch is

simultaneously solved by Tawfak Al-Bahrani et al. (2020) on

30,000 electric vehicles during crest shaving and valley filling

(CSVF) regions, while applying load demand management

(LDM) under different actual equality and inequality operating

power limitations. Zou et al. (2022) suggested a novel NSGA-II

(NNSGA-II) to address dynamic economic emission dispatch with

plug-in electric vehicles. This new method takes into account both

the density and evenness of solutions by incorporating a rewarding

coefficient into the crowding distance during density estimation.

Motivation: although implementation of EVs has limitations,

with the development of technologies, infrastructures, and power

grids, EVs will dominate the car market. In addition, with the

depletion of fossil fuel supplies, the production and consumption

of electric power can be resolved by considering renewable energy

resources and EV technologies. Wind power is a renewable energy

source that has drawn considerable attention. Their quick

development has presented the electrical grid with additional

difficulties. That is why large-scale deployment of EVs and

renewable energy resources is inevitable in future microgrids.

With the development of V2G applications, batteries can also be
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improved to act as an energy storage system (ESS), and thus, a

certain number of V2G vehicles can act as a small power plant and

reduce peak demand on the power grid. EVs can lead to sustainable

development in the power distribution network. The EV industry is

booming around the world, which may further impose much

pressure on the existing network infrastructure. Therefore, there

is lot of scope to verify the impact of EVs on the power system. This

motivates the authors to work on the topic of EVs’ impact on the

power system operation.

Research gap: from the literature review, it is observed that

EVs, at V2G and G2V modes of operation, can be used for valley

filling and peak shaving, so in this paper, valley filling and peak

shaving are achieved by implementing large-scale EVs during peak

hours, as well as minimizing the generation cost and power loss of

the system.

Novelty: we have tried to demonstrate the impact of a large scale

of EVs on the power system cost and loss minimization based on a

multi-objective problem. In addition, the demonstration on the peak

load shaving and valley filling considering large-scale EVs in V2G

and G2V modes has been analyzed in the proposed work.

The contribution of the work is summarized below:

• A 30-bus test is optimized using the MOGOA and MOALO to

reduce the generation cost and loss of the system.

• Four different types of EVs are integrated into the system with

different parameters and SOCs.

• During off-peak hours, all the EVs are set to charge, and

during peak hours, all the EVs are set to discharge.

• This operation of V2G vehicles can reduce the power

generation of the conventional power plants, which

ultimately reduces the generation cost and power loss of

the plant.

The rest of this paper is organized as follows: Section 2 shows the

mathematical formulation of ED problems with several power

constraints. Section 3 shows the algorithms for applying the

MOGOA and MOALO with flowcharts as shown in Figure 1.

The experimental results and discussions are provided in Section

4, and Section 5 shows the conclusion and future scope of the work.

2 Mathematical formulation

2.1 Objective functions

The curve for the generator cost can be obtained by the quadratic

function. The equation for the total generation cost F(PG) can be

written as (Sahoo et al., 2024) in Equation 1.

F PG( ) � ∑N

i�1
aiP

2
i + biPi + ci[ ]. (1)

Here, N is the number of thermal units; ai, bi, and ci are the cost

coefficients of the ith unit in $/hr; and Pi is the active power output of

the ith generator expressed in MW.

The resistances present in transmission lines and various pieces

of equipment cause power loss in the system. Active power loss is

given in Equation 2 (Bahrani and Patra, 2017):

PL � ∑NL

q�1

Gq ij( ) V2
i + V2

j − 2ViVj cos θi − θj( )[ ], (2)

where Vi and θi symbolize the voltage magnitude and voltage angle

at bus i, respectively, Gq(ij) represents the transfer conductance

between bus i and bus j, and NL symbolizes the number of

transmission lines.

The multi-objective-based proposed objective function can be

utilized for minimization of loss in active power and generation cost.

Thus, the objective function is as in Equation 3 (Sahoo et al., 2024):

FIGURE 1

Work flowchart of the proposed work.
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Fobjmin � min ∑ F PG( ) + PL( )( ). (3)

The independent/control variables of the proposed work are

PG and VG.

Here, PG represents the active output power generation at PV

buses, and VG represents the voltage at generator buses. In addition,

the dependent variable is VL, and it represents the voltage value at

PQ or load buses. The fitness function for the minimization problem

is as in Equation 4:

f x( ) �
1

1 + Fobjmin( ). (4)

Here, Fobjmin is the multi-objective function to be minimized

(Nourianfar and Abdi, 2023).

2.2 Constraints

Constraints can be defined as a condition that a solution must

satisfy in solving an optimization problem.

2.2.1 Power balance constraints
Considering the charging and discharging of EVs, the power

balance equation of the system can be expressed as in Equation 5

(Tappeta et al., 2022):

∑N
q�1

PG + PV2G � PD + PL + PG2V. (5)

FIGURE 2

Daily load profile for 24 h.

TABLE 1 Daily load profile for 24 h.

Hr PD Hr PD

01:00 79.3520 13:00 150.2020

02:00 62.3480 14:00 153.0360

03:00 59.5140 15:00 172.8740

04:00 59.5140 16:00 206.8820

05:00 62.0160 17:00 212.5500

06:00 93.5220 18:00 240.8900

07:00 167.2060 19:00 283.4000

08:00 172.8740 20:00 184.2100

09:00 133.1980 21:00 144.5340

10:00 127.5300 22:00 121.8620

11:00 130.3640 23:00 110.5620

12:00 136.0320 24:00 87.8540

TABLE 2 Comparison of the 30-bus system with and without the MOGOA.

Hr Without optimization With MOGOA

F(PG) ($/hr) PL (MW) F(PG) ($/hr) PL (MW)

09:00 490.524 5.057816 349.491 3.20029

10:00 443.254 3.598746 331.427 2.97715

11:00 483.548 4.854874 342.924 2.88047

12:00 403.254 5.120659 358.387 3.31414

13:00 463.245 3.265487 384.589 1.58768

14:00 406.325 2.426587 386.41 1.85007

15:00 561.956 3.965485 452.029 2.07357

16:00 663.115 5.265787 549.898 3.67427

17:00 695.516 5.895134 567.262 4.03453

18:00 747.036 7.234897 656.941 5.81249

19:00 959.546 11.265478 803.015 10.0525

20:00 549.095 4.253951 479.605 2.75839

Total 6,866.414 62.2049 5,661.978 44.2155
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TABLE 3 Power generation for 24 h using MOGOA.

Hr G1 (MW) G2 (MW) G3 (MW) G4 (MW) G5 (MW) G6 (MW) PG (MW) PD (MW) PL (MW) F(PG)

($/hr)

01:00 58.0657 0 0 0 22.2503 0 80.3160 79.3520 0.964044 207.903

02:00 53.1255 0 0 0 10 0 63.1255 62.3480 0.784923 149.346

03:00 60.4454 0 0 0 0 0 60.4454 59.5140 0.931372 134.592

04:00 60.4382 0 0 0 0 0 60.4382 59.5140 0.927132 142.432

05:00 58.9359 0 0 0 10 0 68.9359 68.0160 0.919907 156.293

06:00 95.5573 0 0 0 0 0 95.5573 93.5220 2.04964 230.196

07:00 58.1932 39.0235 25.5549 24.0767 10 12 168.8483 167.2060 1.64529 445.581

08:00 71.5464 32.6574 22.5019 24.4668 10 13.7377 174.1901 172.8740 2.03614 455.191

09:00 120.016 0 0 16.3718 0 0 136.3881 133.1980 3.20029 349.491

10:00 115.897 0 0 14.61 0 0 130.5071 127.5300 2.97715 331.427

11:00 113.162 0 0 20.0678 0 0 133.2299 130.3640 2.88047 342.924

12:00 122.487 0 0 16.8558 0 0 139.3439 136.0320 3.31414 358.387

13:00 59.9112 32.8047 19.4131 17.6606 10 12 151.7897 150.2020 1.58768 384.589

14:00 67.6407 34.9552 20.0144 10.2728 10 12 154.8831 153.0360 1.85007 386.41

15:00 75.4348 31.5913 23.1672 22.7513 10 12 174.9446 172.8740 2.07357 452.029

16:00 110.035 31.8808 25.8612 20.5559 10.136 12.0772 210.5460 206.8820 3.67427 549.898

17:00 118.905 27.7449 23.3494 23.3094 10 13.266 216.5746 212.5500 4.03453 567.262

18:00 146.672 31.372 25.6022 21.0561 10 12 246.7025 240.8900 5.81249 656.941

19:00 191.621 46.8832 19.884 11.5011 10.3055 13.2576 293.4525 283.4000 10.0525 803.015

20:00 86.5733 39.268 22.715 16.4121 10 12 186.9684 184.2100 2.75839 479.605

21:00 113.763 0 33.5682 0 0 0 147.3315 144.5340 2.80755 380.054

22:00 125.242 0 0 0 0 0 125.2417 121.8620 3.37971 309.275

23:00 113.314 0 0 0 0 0 113.3138 110.5260 2.80223 274.817

24:00 89.6614 0 0 0 0 0 89.6614 87.8540 1.8216 209.47

Total 65.28509 8,757.128
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Here, PV2G and PG2V are the discharging power and charging

load of PEVs, respectively, and PD and PL are the power load

demand and active power loss in the system, respectively.

2.2.2 Equality constraints
It defines that power generation should be enough to supply load

demand, including losses, to obtain the best value for the proposed

FIGURE 3

Graphical representation for (A) generation cost and (B) power loss using the MOGOA.

FIGURE 4

Convergence curve with the MOGOA for 01:00, 11:00, 14:00, and 18:00.
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optimization. The equations for power balance are in (Equations

6, 7).

PGy
− PDy

− Vy∑NB

a�1

Va Gya cos θya + Bya sin θya( ) � 0;y � 1, ...., NB.

(6)

QGy
− QDy

− Vy∑NB

a�1

Va Gya cos θya − Bya cos θya( ) � 0;y � 1, ...., NB.

(7)

Here, index PGq
indicates the real power generation at the yth

bus; PDq
is the real power demand at the yth bus; Vy and Va are the

voltage magnitude at the yth and ath bus, respectively; and Gya and

Bya are the conductance and susceptance of the yth and ath bus,

respectively.

The inequality constraints are given in (Equations 8–11).

i. Generator constraints: it refers to the reactive power, active

power, and voltage outputs in the system, which is bounded as

follows (Jayabarathi et al., 2016):

Vmin
Gp

≤VGp
≤Vmax

Gp
;p � 1, ...., NG. (8)

Pmin
Gp

≤PGp
≤Pmax

Gp
;p � 1, ...., NG. (9)

Here, the indexes VGp and PGp indicate the magnitude of voltage

and generation of real power, respectively, and the number of the

generating unit is represented as NG.

ii. Security constraints: the term “security constraints” refers to

the restrictions on the load bus voltage and the line’s maximum

power flow rate. It can be formulated as follows (Jayabarathi

et al., 2016):

Vmin
Lr

≤VLr ≤Vmax
Lr

; r � 1, ...., NL. (10)

TABLE 4 Power generation for 24 h using MOALO.

Hr G1 (MW) G2 (MW) G3 (MW) G4 (MW) G5 (MW) G6 (MW) PG (MW) PD (MW) PL (MW) F(PG)

($/hr)

01:00 58.2589 0 0 11.1317 10.9149 0 80.3055 79.3520 0.953494 202.18

02:00 52.9369 0 0 0 10.2001 0 63.1370 62.3480 0.798139 149.584

03:00 60.4431 0 0 0 0 0 60.4431 59.5140 0.929075 134.586

04:00 60.4322 0 0 0 0 0 60.4322 59.5140 0.927715 134.56

05:00 58.4354 0 0 0 10.4928 0 68.9282 68.0160 0.915118 163.907

06:00 71.0663 0 0 12.5753 11.2065 0 94.8481 93.5220 1.32608 240.019

07:00 59.3565 34.4063 23.4149 16.0462 15.2735 20.4338 168.9312 167.2060 1.73125 448.223

08:00 58.4972 36.0854 22.7562 22.6301 14.8641 19.8983 174.7313 172.8740 1.86326 468.413

09:00 83.682 0 15.6578 18.9431 16.6551 0 134.9380 133.1980 1.75105 346.063

10:00 81.8423 30.75 0 17.176 0 0 129.7682 127.5300 2.23823 317.445

11:00 71.9839 0 23.5117 17.2648 19.0204 0 131.7808 130.3640 1.41683 346.163

12:00 73.9987 43.7326 0 20.6334 0 0 138.3647 136.0320 2.33269 349.142

13:00 65.5956 24.8397 19.1263 13.038 15.72 13.9174 152.2372 150.2020 2.03515 387.308

14:00 61.7115 24.7929 26.2486 12.4047 14.4376 14.9384 154.5337 153.0360 1.5039 401.676

15:00 52.7322 40.9271 22.5615 17.4186 24.3705 16.5196 174.5295 172.8740 1.66503 474.684

16:00 85.1228 43.9815 22.5809 26.2104 16.2441 15.6811 209.8208 206.8820 2.94466 562.119

17:00 74.475 47.7816 28.386 25.5054 22.2332 16.7574 215.1386 212.5500 2.59859 596.735

18:00 107.4 46.328 32.0852 22.2937 20 16.8426 244.9491 240.8900 4.05908 677.334

19:00 103.03 59.9517 36.9537 34.2194 23.6988 30.1732 288.0272 283.4000 4.63289 855.381

20:00 65.9137 35.9099 27.3662 23.5017 16.0733 17.3702 186.1349 184.2100 1.92495 503.021

21:00 53.8509 29.7403 18.3744 16.7669 13.9975 13.4091 146.1390 144.5340 1.61484 374.026

22:00 59.6093 0 25.4934 24.8171 13.0677 0 122.9875 121.8620 1.13506 327.921

23:00 82.5606 0 0 18.4987 11.2204 0 112.2797 110.5260 1.76315 290.465

24:00 64.6332 0 0 11.764 12.6054 0 89.0025 87.8540 1.14854 226.107

Total 44.20877 8,977.062
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Smin
Ln

≤ Smax
Ln

; n � 1, ...., NBR. (11)

2.3 Single EV recharge energy

This section develops the energy consumption for charging an

EV using the proposed probabilistic model in Shazly et al. (2023),

such that the key determinants of how an EV charges, such as its

battery capacity, operating condition, daily driving range, and other

parameters, are taken into account.

According to statistics on EV driving behavior in Shazly et al.

(2023), the daily miles that an EV travels, denoted as Md, generally

adheres to the lognormal distribution, in Equation 12.

Md � e μm+σm•N( ). (12)

Here, the standard normal variate is given as N; μm and σm are

the parameters for log-normal obtained from themean and standard

variation of Md, represented as μMd
and σMd

, respectively (Shazly

et al., 2023) as in Equation 13.

μm � ln
μ2Md���������

μ2Md
− σ2Md

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

σm �

�����������
ln 1 +

σ2Md

μ2Md

( )
√

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. (13)

Then, the maximum achievable driven distance, Mdmax, can be

calculated as in Equation 14 (Shazly et al., 2023):

Mdmax �
β

Em

. (14)

Here, β is the battery capacity of each EV, and Em denotes the

energy consumption of the EVs.

The anticipated energy requirement of an electric vehicle based

on the maximum distance traveled can be calculated as in Equation

15 (Shazly et al., 2023):

Ed �
β; Md ≥Mdmax

MdEm; Md ≤Mdmax
{ . (15)

The initial SOC is given as SOCini, and the final state of

charge, SOCf, can be expressed as in Equation 16 (Shazly

et al., 2023):

SOCf � SOCini −
Em •d

β
× 100. (16)

Here, “d” is the daily traveled distance of each vehicle.

The charging time of a single EV can be expressed as in Equation

17, (Shazly et al., 2023):

Charg ing time hr( ) �
Charg e needed kWh( )

Rate of charg ing kW( )
. (17)

FIGURE 5

Graphical comparison of the MOGOA and MOALO for (A) generation cost and (B) power loss.
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FIGURE 6

Convergence curve with MOALO for 01:00, 11:00, 14:00, and 18:00.

TABLE 5 Parameters of EV.

Types of vehicles No. of vehicles Energy consumption
Em (kWh/mile)

Battery
capacity
β (kWh)

Rate of charging (kW) SOCf

Micro car 20,800 0.3790 10 1.44 57.68

Economy car 3,500 0.4288 12 1.44 36.74

Mid-size Car 4,000 0.5740 16 1.44 42.47

Light truck/SUV 4,500 0.8180 21 7.68 46.75

TABLE 6 Time and energy required during the charging condition.

Types of vehicles Energy required (kWh) No. of vehicles Total energy required (kWh) Time required

Micro car 3.232 20,800 67.22 2.83

Economy car 4.4 3,500 15.4 3.85

Mid-size car 6.79 4,000 27.16 5.95

Light truck/SUV 9.8175 4,500 44.18 1.27
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3 Multi-objective optimization and
work flowchart

3.1 Grasshopper optimization algorithm

This technique copies the swarming nature of grasshoppers as a

reference. The inspiration was obtained from how grasshoppers swarm

on food locations. The algorithm proceedings show a similar function

to that of the particle swarm optimization algorithm. The searching

process includes exploration of random areas where food will most

likely be available, as in the case of grasshoppers (Latif et al., 2021).

The grasshopper swarm’s social interaction, gravitational pull,

and wind advection are the three factors that make up the

optimization. The positions of grasshoppers are theoretically

predicted as in Equation 18:

Xp � Sp + Gp + Ap. (18)

Here, Xp represents the pth grasshopper position, Sp represents

the pth grasshopper social interaction, Gp is the gravitational force,

and Ap is the wind advection. The social interaction between the

grasshoppers is given as in Equations 19, 20:

Sp � ∑M
q�1
q≠1

s xq-xp

∣∣∣∣ ∣∣∣∣( ) xq-xp( )
Dpq

. (19)

s y( ) � fe
-y
kk -e-y. (20)

The social force influencing the grasshopper is denoted as the

function s in Equation 15, whereas f denotes the attraction’s

strength, y denotes the separation of the grasshopper, and kk is

the attraction’s length. Using the equation below, the grasshopper

position can be implemented as in Equations 21, 22.

xz
p � G ∑M

q�1/q≠1
G
x z

max − x z
min

2
s xz

q − xz
p

∣∣∣∣∣ ∣∣∣∣∣( ) xz
q − xz

p( )
Dz

pq

⎛⎝ ⎞⎠ + xz
gbest.

(21)

G � Gmax − iter
Gmax − Gmin

itermax

. (22)

Here, “G” is the optimization algorithm’s parameter, “p” denotes

the position of the zth variable, “ Dz
pq” shows the distance between

the zth variable’s pth and qth position, and “ xz
gbest” denotes the

global best of the zth variable (Latif et al., 2021).

TABLE 7 Power generation during charging condition using the MOGOA.

Hr G1

(MW)
G2

(MW)
G3

(MW)
G4

(MW)
G5

(MW)
G6

(MW)
PG

(MW)
PG2V

(MW)
PD

(MW)
PL

(MW)
F(PG)

($/hr)

09:00 95.9851 35.8705 19.8854 34.8926 10 17.0816 213.7151 75.3 133.1980 5.21714 571.004

10:00 92.711 39.6194 20.3045 33.1937 10 12 207.8285 75.3 127.5300 5.00246 549.702

11:00 71.9915 31.044 21.32 23.581 10.0719 12 170.0085 37.11 130.3640 2.53754 437.968

12:00 50.9405 29.933 25.6478 15.8467 10 13.5458 145.9138 8.56 136.0320 1.32177 377.756

13:00 61.8324 30.0053 24.5138 16.5696 10 13.449 156.3701 4.56 150.2020 1.61109 401.848

14:00 64.7149 33.4654 21.4414 16.1668 10 13.6088 159.3973 4.56 153.0360 1.80433 406.151

TABLE 8 Time and energy required during the discharging condition.

Types of vehicles Energy required (kWh) No. of vehicles Total energy required (kWh) Time required

Micro car 4.5 20,800 93.6 3.125

Economy car 5.52 3,500 19.32 3.84

Mid-size car 7.68 4,000 30.72 5.34

Light truck/SUV 10.5 4,500 47.25 1.36

TABLE 9 Power generation during the discharging condition using the MOGOA.

Hr G1

(MW)
G2

(MW)
G3

(MW)
G4

(MW)
G5

(MW)
G6

(MW)
PG

(MW)
PV2G

(MW)
PD

(MW)
PL

(MW)
F(PG)

($/hr)

15:00 75.3405 33.9269 20.3178 17.6352 10 12 169.2204 5.75 172.8740 2.09949 429.609

16:00 111.234 30.1482 20.6216 20.7762 10 12 204.7804 5.75 206.8820 3.65143 527.956

17:00 90.8946 20 27.7355 12.536 10.0505 13.0475 174.2642 40.73 212.5500 2.4442 448.713

18:00 107.721 30.4821 28.8011 14.5306 10 12 203.5345 40.73 240.8900 3.37757 530.29

19:00 125.664 20 34.721 10 10 12 212.3848 75.47 283.4000 4.4652 568.047

20:00 80.6304 0 30.2083 0 0 0 110.8387 75.47 184.2100 2.10173 272.883
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3.2 Ant-lion optimization

This optimization technique copies the hunting behavior of the

ant lion, i.e., how they interact with their prey such as ants in

nature. The MOALO was an extended edition of the ant lion

optimizer (ALO). The operation of this optimization shares some

similarity with the other population-based optimization

techniques such as the MOPSO and MOGOA (Lalhmachhuana

et al., 2024).

The algorithm of the multi-objective ant lion optimizer is as

follows (Lalhmachhuana et al., 2024):

1. Initialize the population of the ant having random values.

2. The individual in the population is evaluated for

objective function.

3. A random walk-around technique is used to explore the search

space. It is given as in Equation 23.

X y( ) � 0, cumsum 2r y1( ) − 1( ),
cumsum 2r y2( ) − 1( )....,
cumsum 2r yn( ) − 1( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (23)

Here, r is a random value in the range 0–1, cumsum is a term for

calculating the cumulative sum, and y is the steps of iteration.

4. The ants are then normalized such that the position of the ants

is maintained inside the search space, which is given as in

Equation 24:

X
y
j �

X
y
j − aj( ) × d

y
j − c

y
j( )

bj − aj( ) + c
y
j . (24)

Here, X
y
j is the position of the ant, aj is the minimum of the

random walk around, bj is the maximum of the random walk

around, c
y
j is the minimum of the jth variable at the yth

iteration, and d
y
j is the maximum of the jth variable at the

yth iteration.

5. The ant lion population is not evaluated because they are

assumed to be in the location of the ant position for the first

iteration and relocate their position accordingly based on the

position of the ants.

6. An elite ant lion also exists to follow the position of the ant

regardless of their distance.

7. If only the ant lion is fitter than the elite, then the elite will be

replaced by the ant lion.

8. Increasing the generation or iteration.

9. If the generation reaches its maximum, END the loop.

FIGURE 7

Graphical comparison using the MOGOA with EV and without EV between 09:00 and 20:00 for (A) generation cost and (B) power loss.
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3.3 Work flowchart of the proposed work

The work flowchart is summarized below:

First, the line data and bus data are collected from the 30-bus test

system. The information of EVs such as the number of EVs, battery

capacity, and energy consumption is read. Then, Newton–Raphson

load flow analysis is performed with and without considering EVs.

The final SOC of each vehicle is calculated. Based on the different

SOCf, the EVs are set to G2V and V2G modes of operation between

09:00 to 14:00 and 15:00 to 20:00. Then, MOGOA and MOALO

optimization techniques are used to minimize the multi-objective

functions, and the results are saved accordingly.

4 Results and discussions

A total of six generator bus, 20 loads, and 41 transmission lines

can be obtained in an IEEE 30-bus system. The generators buses are

located at 1, 2, 13, 22, 23, and 27. The line data and bus data are taken

from Singh et al. (2014). The boundary limits of all the constraints

are also taken from Singh et al. (2014).

In this work, to demonstrate the key characteristics of the

suggested MOGOA and MOALO with the fuzzy satisfaction

maximization approach, simulation results are provided and

represented in an hourly basis.

4.1 Parameters of both the multi-objective
optimization techniques are set as
shown below

• Population size (Np) is set at 100.

• Random populations are generated by bus generator limits

and bus voltage limits.

• Repository size (Nr) is set at 100.

• Maximum number of iterations is set at 100.

In addition, a daily load profile is generated using a scaling

factor ranging from [0, 1] against the total active power load

of 283.4 MW for the IEEE 30-bus test system, as shown

in Figure 2.

In addition, according to the above load profile, the table for load

demand is given in Table 1.

In this work, most vehicles are assumed to leave home at 09:

00 and reach home at 20:00. Thus, much of the comparison of the

data will be done between these intervals (09:00–20:00 Hr.).

FIGURE 8

Convergence curve with the MOGOA integrating EV for 13:00, 14:00, 17:00, and 18:00.
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4.2 Case I: ED problems without EVs

Initially, the IEEE 30-bus test system is studied using

Newton–Raphson load flow, without considering any

optimization algorithm. The total power loss within the interval

09:00–20:00 in the IEEE 30-bus system is 62.2049 MW, and the

generation cost is 6,866.414 $/hr.

Now, the proposed optimization technique, the multi-objective

grasshopper optimization algorithm (MOGOA), is used. The two

objective functions are optimized using the GOA and fuzzy

TABLE 10 Power generation with EVs for the MOGOA for 24 h.

Hr G1 (MW) G2 (MW) G3 (MW) G4 (MW) G5 (MW) G6 (MW) PG (MW) PD (MW) PL (MW) F(PG)

($/hr)

01:00 58.0657 0 0 0 22.2503 0 80.3160 79.3520 0.964044 207.903

02:00 53.1255 0 0 0 10 0 63.1255 62.3480 0.784923 149.346

03:00 60.4454 0 0 0 0 0 60.4454 59.5140 0.931372 134.592

04:00 60.4382 0 0 0 0 0 60.4382 59.5140 0.927132 142.432

05:00 58.9359 0 0 0 10 0 68.9359 68.0160 0.919907 156.293

06:00 95.5573 0 0 0 0 0 95.5573 93.5220 2.04964 230.196

07:00 58.1932 39.0235 25.5549 24.0767 10 12 168.8483 167.2060 1.64529 445.581

08:00 71.5464 32.6574 22.5019 24.4668 10 13.7377 174.1901 172.8740 2.03614 455.191

09:00 120.016 0 0 16.3718 0 0 213.7151 208.498 5.21714 571.004

10:00 115.897 0 0 14.61 0 0 207.8285 202.83 5.00246 549.702

11:00 113.162 0 0 20.0678 0 0 170.0085 167.474 2.53754 437.968

12:00 122.487 0 0 16.8558 0 0 145.9138 144.592 1.32177 377.756

13:00 59.9112 32.8047 19.4131 17.6606 10 12 156.3701 154.762 1.61109 401.848

14:00 67.6407 34.9552 20.0144 10.2728 10 12 159.3973 157.596 1.80433 406.151

15:00 75.3405 33.9269 20.3178 17.6352 10 12 174.9704 172.8740 1.04949 429.609

16:00 111.234 30.1482 20.6216 20.7762 10 12 210.5304 206.8820 3.65143 527.956

17:00 90.8946 20 27.7355 12.536 10.0505 13.0475 214.9942 212.5500 2.4442 448.713

18:00 107.721 30.4821 28.8011 14.5306 10 12 244.2645 240.8900 3.37757 530.29

19:00 125.664 20 34.721 10 10 12 287.8548 283.4000 4.4652 568.047

20:00 80.6304 0 30.2083 0 0 0 186.3087 184.2100 2.10173 272.883

21:00 113.763 0 33.5682 0 0 0 147.3315 144.5340 2.80755 380.054

22:00 125.242 0 0 0 0 0 125.2417 121.8620 3.37971 309.275

23:00 113.314 0 0 0 0 0 113.3138 110.5260 2.80223 274.817

24:00 89.6614 0 0 0 0 0 89.6614 87.8540 1.8216 209.47

Total 55.65349 8,617.077

TABLE 11 Power generation during the charging condition using MOALO.

Hr G1

(MW)
G2

(MW)
G3

(MW)
G4

(MW)
G5

(MW)
G6

(MW)
PG

(MW)
PG2V

(MW)
PD

(MW)<
PL

(MW)
F(PG)

($/hr)

09:00 119.641 0 31.2865 35 26.8819 0 212.8095 75.3 133.1980 4.31164 611.003

10:00 86.2023 28.5608 21.0888 32.2971 21.1787 17.0061 205.3337 75.3 127.5300 2.51015 562.725

11:00 60.1869 28.0732 25.2174 26.165 16.4407 13.554 169.6373 37.11 130.3640 2.16633 453.921

12:00 82.0722 0 23.2068 22.7236 18.3257 0 146.3283 8.56 136.0320 1.73627 387.801

13:00 51.6191 29.3732 18.3893 17.5875 15 24.4234 156.3925 4.56 150.2020 1.63358 417.804

14:00 51.03 27.2502 29.0352 17.7182 18.3699 15.7504 159.1539 4.56 153.0360 1.55791 431.435
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satisfaction maximization approach. Comparison between the two

systems is shown in Table 2.

Table 2 shows that the proposed algorithm already improves the

generation cost and power loss of the system. Table 3 shows the

complete power generation, generation cost, and power loss of the

system for 24 h.

As given in Table 3, for hour 1, the load demand (PD) is

79.3520 MW. In order to meet the load demand, the power

TABLE 12 Power generation during the discharging condition using MOALO.

Hr G1

(MW)
G2

(MW)
G3

(MW)
G4

(MW)
G5

(MW)
G6

(MW)
PG

(MW)
PV2G

(MW)
PD

(MW)
PL

(MW)
F(PG)

($/hr)

15:00 58.5457 28.5833 25.8066 22.6847 13.89 19.2247 169.095 5.75 172.8740 1.61101 453.118

16:00 91.2882 27.2864 25.2308 18.2133 21.6017 19.2782 202.8987 5.75 206.8820 1.76971 547.871

17:00 96.4041 0 29.8632 27.6103 20.1813 0 174.0588 40.73 212.5500 2.24863 480.078

18:00 96.6909 30.0783 25.6079 19.4578 13.3899 17.1756 202.4004 40.73 240.8900 2.24338 536.182

19:00 118.051 0 34.0816 35 23.6722 0 210.7544 75.47 283.4000 2.82998 606.921

20:00 67.3252 0 18.9612 13.4132 11.0614 0 110.7015 75.47 184.2100 1.97093 274.416

TABLE 13 Power generation with EVs for MOALO for 24 h.

Hr G1 (MW) G2 (MW) G3 (MW) G4 (MW) G5 (MW) G6 (MW) PG (MW) PD (MW) PL (MW) F(PG)

($/hr)

01:00 58.2589 0 0 11.1317 10.9149 0 80.3055 79.3520 0.953494 202.18

02:00 52.9369 0 0 0 10.2001 0 63.1370 62.3480 0.798139 149.584

03:00 60.4431 0 0 0 0 0 60.4431 59.5140 0.929075 134.586

04:00 60.4322 0 0 0 0 0 60.4322 59.5140 0.927715 134.56

05:00 58.4354 0 0 0 10.4928 0 68.9282 68.0160 0.915118 163.907

06:00 71.0663 0 0 12.5753 11.2065 0 94.8481 93.5220 1.32608 240.019

07:00 59.3565 34.4063 23.4149 16.0462 15.2735 20.4338 168.9312 167.2060 1.73125 448.223

08:00 58.4972 36.0854 22.7562 22.6301 14.8641 19.8983 174.7313 172.8740 1.86326 468.413

09:00 119.641 0 31.2865 35 26.8819 0 212.8099 208.498 4.31164 611.003

10:00 86.2023 28.5608 21.0888 32.2971 21.1787 17.0061 205.3337 202.83 2.51015 562.725

11:00 60.1869 28.0732 25.2174 26.165 16.4407 13.554 169.6373 167.474 2.16633 453.921

12:00 82.0722 0 23.2068 22.7236 18.3257 0 146.3283 144.592 1.73627 387.801

13:00 51.6191 29.3732 18.3893 17.5875 15 24.4234 156.3925 154.762 1.63358 417.804

14:00 51.03 27.2502 29.0352 17.7182 18.3699 15.7504 159.1539 157.596 1.55791 431.435

15:00 58.5457 28.5833 25.8066 22.6847 13.89 19.2247 174.845 172.8740 1.61101 453.118

16:00 91.2882 27.2864 25.2308 18.2133 21.6017 19.2782 208.6487 206.8820 1.76971 547.871

17:00 96.4041 0 29.8632 27.6103 20.1813 0 214.7888 212.5500 2.24863 480.078

18:00 96.6909 30.0783 25.6079 19.4578 13.3899 17.1756 243.1304 240.8900 2.24338 536.182

19:00 118.051 0 34.0816 35 23.6722 0 286.2244 283.4000 2.82998 606.921

20:00 67.3252 0 18.9612 13.4132 11.0614 0 186.1715 184.2100 1.97093 274.416

21:00 53.8509 29.7403 18.3744 16.7669 13.9975 13.4091 146.1390 144.5340 1.61484 374.026

22:00 59.6093 0 25.4934 24.8171 13.0677 0 122.9875 121.8620 1.13506 327.921

23:00 82.5606 0 0 18.4987 11.2204 0 112.2797 110.5260 1.76315 290.465

24:00 64.6332 0 0 11.764 12.6054 0 89.0025 87.8540 1.14854 226.107

Total 41.69524 8,923.529
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generated (PG) at this particular hour is 80.3160 MW, which is the

sum of the power generated by the six generators (G1–G6). Active

power loss (PL) is observed to be 0.964044 MW, and the total cost of

power generation is 207.903 $/hr. The power generated can be

observed for each hour and cost of power generation. It can be seen

that the total generation cost and power loss for 24 h are 8,757.128

$/hr and 65.28509 MW, respectively. Figure 3 shows the graphical

representations for the cost and loss using the MOGOA. Figure 4

shows some selected convergence curves for 24 h due to limitations

of the number of figures.

Figure 4 shows the convergence curve for 01:00, 11:00, 14:00,

and 18:00, respectively. Due to limitations of number of figures,

convergence for all hours cannot be shown. So these hours are

randomly selected. It should be noted that in some hours, there

are few solutions. This is because the load demand is low during

these hours, and only the slack bus is assumed to be generating

power, and thus, minimum solutions can be seen during these

convergences. This can also be seen in future cases. Now, another

algorithm, called MOALO, is used to observe the performance of

the objective functions, with the same parameters set as those of

the MOGOA.

Table 4 shows the complete power generation, generation cost,

and power loss of the system for 24 h. For 01:00, the load demand

(PD) is 79.3520 MW. In order to meet the load demand, the power

generated (PG) at this particular hour is 80.3055 MW, which is the

sum of the power generated by the six generators (G1–G6). Active

power loss (PL) is observed to be 0.953494 MW, and the total cost

of power generation is 202.18 $/hr. The rest of the power

generations can be observed for each hour. In addition, it can

be observed that the total generation cost and power loss for 24 h

are 8,977.062 $/hr and 44.20877 MW, respectively. If we compare

the multi-objective function of the MOGOA and MOALO, it is

observed that the MOGOA performs better at minimizing the

generation cost, while MOALO performs better at minimizing

the power loss.

From Figure 5, it is clear that both the MOGOA and MOALO

have better performances for the multi-objective functions

compared to the others. It is clear that the MOGOA is better at

minimizing the generation cost, while MOALO is better at

minimizing power loss of the system. The convergence curve

for MOALO can be seen in Figure 6. As mentioned before, due

to limitations of the number of figures, some selected hours

are shown.

4.3 Case II: ED problems with G2V and V2G

As shown in Table 5, a total number of 32,800 EVs is considered.

In addition, for this case, most vehicles are assumed to leave home at

09:00 and leave their workplace at 20:00, so all the EVs are charging

and discharging between these hours. The daily travel distance is

assumed to be between 8 and 12miles for all types of EVs. Four types

FIGURE 9

Graphical comparison with EVs and without EVs using MOALO between 09:00 and 20:00 for (A) generation cost and (B) power loss.
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of EVs are considered, and the parameters of each type of EVs are

shown in Table 5. The final SOCf is calculated using Equation 16,

and the calculated values are shown in the last column of Table 6.

The energy consumption and battery capacity of each EV are taken

from Shazly et al. (2023), while the total number of vehicles has been

limited to meet the system demand. The number of micro cars is

assumed to be highest as it is the most affordable by the common

users. The economy cars, mid-size cars, and light trucks/SUVs are

used for public and goods transportation and assumed to be

approximately 3,500–4,500.

4.4 For charging condition using
the MOGOA:

During 09:00 to 14:00, all EVs are set to the charging mode since

it is the off-peak period. SOCf is the state of charge that each vehicle

is having when they reach their workplace at 09:00 (9 a.m.). If all

vehicles are set to charging at 90%, then the amount of time required

for each vehicle to reach 90% SOC is calculated using Equation 17

and shown in Table 6. PG2V is the amount of energy required to

charge EV, so it will be considered part of the load in the power

balance constraint. This PG2V will be randomly distributed to four

buses, which produce the minimum values for the objective

functions. During the charging condition, since there is extra

energy required, the conventional power needs to produce more

power to satisfy the power demand as well as the amount of energy

for charging EVs. So the power balance constraint can be written as

in Equation 25:

PG � PD + PL + PG2V. (25)

As shown in Table 3, at 09:00, the generation cost without EVs is

349.491 $/hr. When EVs are set to charging, the power generated

(PG) has to satisfy the load demand (PD) as well as the charging load

(PG2V), so higher power is generated during this period. Thus, the

generation cost with EVs increased to 571.004 $/hr, and the power

loss will also be increased from 3.20029 MW to 5.21714 MW at this

particular hour, as shown in Table 7. Thus, the generation cost and

active power loss are higher in the presence of EVs within

these hours.

4.5 For discharging condition using
the MOGOA

During 15:00 to 20:00, all EVs are set to the discharging mode as

it approaches the peak load hours. Final state of charge (SOCf) for all

the vehicles at 15:00 is 90%. Micro cars are set to discharge 45%,

economy cars are set to discharge 46%, mid-size cars are set to

discharge 48%, and light truck/SUVs are set to discharge 50%. Then,

the time required for V2G is calculated using Equation 17 and

shown in Table 8. PV2G is the stored power discharged by the EVs

from their battery to the grid, preferably during peak hours, so as to

reduce power generation as well as peak demand. The discharged

FIGURE 10

Convergence curve with MOALO integrating EV for 13:00, 14:00, 17:00, and 18:00.
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powers are again randomly distributed to four buses of the system,

which also produce the minimum values for the objective functions.

Since EVs act as a power plant during this period, the power

generated by the conventional power will be reduced. Then, the

power balance constraint for discharging can be written as in

Equation 26:

PG + PV2G � PD + PL. (26)

The power generation during the discharging condition with the

MOGOA (15:00 to 20:00) is shown in Table 9, with power

discharged shown for each hour. At 15:00, the power demand

(PD) is 172.8740 MW, and in to order satisfy this load demand,

the power generated (PG) is 169.2204 MW, which is aided by the

discharged power (PV2G) of 5.75 MW, and thus, the generation cost

is 429.609 $/hr.

As seen from Table 3, at 15:00, the power generation cost

without EVs is 452.029 $/hr. When the EVs are set to discharging,

the load demand (PD) will be satisfied by the power generated ((PG)

by the conventional power plant as well as the discharged power

(PV2G), so power generation cost is reduced to 429.609 $/hr. In

addition, at 15:00, power loss without EVs is 2.07357 MW. When

EVs are set to discharge, energy is also supplied by the EVs, so

power loss is reduced to 1.04949 MW, as shown in Table 9. Thus,

generation cost and power loss will be reduced due to EVs during

this period.

Figure 7 shows the comparison of generation cost and power

loss for case I and case II for charging and discharging conditions

(09:00 to 20:00) using the MOGOA. Figure 8 shows the

convergence curve for four random hours between 09:00 to

20:00.

From Figure 7; Table 7; Table 9, it can be seen that the cost and

loss are increased during the charging mode (i.e., 09:00–14:00), and

during the discharging mode (i.e., 15:00–20:00), the cost and loss are

reduced. Thus, peak shaving and valley filling can be observed in the

presence of EVs. As shown in Table 10, the total generation cost for

the MOGOA with EVs is 8,617.077 $/hr, and the total active power

loss is 55.65349 MW.

Whereas in Table 3, the total generation cost for the MOGOA

without EVs is 8,757.128 $/hr, and total active power loss of the

system is 65.28509 MW. Thus, the difference is 140.051 $/hr for the

power generation cost and 9.6316 MW for active power loss.

Therefore, it can be concluded that the implementation of G2V

and V2G in the system can help reduce the cost of the power

generation and improves loss.

Now, MOALO is used to optimize the charging and discharging

conditions and observe the variations in power generations as well as

the objective functions during these hours.

4.6 For charging condition using MOALO

Table 11 shows the power generation cost for charging during

09:00 to 14:00. From Table 4, it can be seen that at 09:00, the

generation cost without EVs is 346.063 $/hr. When EVs are set to

charging, the generation cost at that particular hour increased to

611.003 $/hr, as seen from Table 11. The power loss increased from

1.75105MW to 5.31164MW, as observed on comparing Table 4 and

Table 11. Thus, generation cost and power loss are high during this

period with EVs.

4.7 For discharging condition using MOALO

During 15:00 to 20:00, all EVs are set to the discharging mode as

it approaches the peak load hours. The final state of charge (SOCf)

for all the vehicles at 15:00 is 90%. Micro cars are set to discharge

45%, economy cars are set to discharge 46%, mid-size cars are set to

discharge 48%, and light truck/SUVs are set to discharge 50%. Then,

the time required for V2G is calculated using Equation 17 and

shown in Table 12.

Table 12 shows discharging of EVs during 15:00 to 20:00. As

shown in Table 4, during 15:00, the cost of generation without EVs is

474.684 $/hr. When EVs are set to discharging, the cost of

TABLE 14 Comparison of the MOGOA with MOALO for 24 h with EVs.

Hr With MOGOA With MOALO

F(PG)

($/hr)
PL (MW) F(PG)

($/hr)
PL (MW)

01:00 207.903 0.964044 202.18 0.953494

02:00 149.346 0.784923 149.584 0.798139

03:00 134.592 0.931372 134.586 0.929075

04:00 142.432 0.927132 134.56 0.927715

05:00 156.293 0.919907 163.907 0.915118

06:00 230.196 2.04964 240.019 1.32608

07:00 445.581 1.64529 448.223 1.73125

08:00 455.191 2.03614 468.413 1.86326

09:00 571.004 5.21714 611.003 4.31164

10:00 549.702 5.00246 562.725 2.51015

11:00 437.968 2.53754 453.921 2.16633

12:00 377.756 1.32177 387.801 1.73627

13:00 401.848 1.61109 417.804 1.63358

14:00 406.151 1.80433 431.435 1.55791

15:00 429.609 1.04949 453.118 1.61101

16:00 527.956 3.65143 547.871 1.76971

17:00 448.713 2.4442 480.078 2.24863

18:00 530.29 3.37757 536.182 2.24338

19:00 568.047 4.4652 606.921 2.82998

20:00 272.883 2.10173 274.416 1.97093

21:00 380.054 2.80755 374.026 1.61484

22:00 309.275 3.37971 327.921 1.13506

23:00 274.817 2.80223 290.465 1.76315

24:00 209.47 1.8216 226.107 1.14854

Total 8,617.077 55.65349 8,923.529 41.69524
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generation reduced to 453.118 $/hr, as observed in Table 12. Power

loss without EVs at 15:00 is 1.66503 MW, and when EVs are

discharged, power loss reduced to 1.61101 MW. Thus, generation

cost and power loss are reduced in the presence of EVs.

MOALO is used with the same parameters as the MOGOA, with

the same EV parameters as in Table 6 for charging condition and

those in Table 8 for discharging condition. Table 11 shows the power

generation for 09:00 to 14:00 with the EV load demand for each

hour, and generation cost is high during these hours. Figure 9 shows

the comparison of generation cost and power loss with and

without EVs.

It can be seen that EVs can be used for peak shaving and valley

filling while analyzing the effect on the objective functions with

MOALO, while Figure 10 shows the convergence curve for

MOALO with EVs for some selected hours due to limitations

of space.

From Table 4, the total loss and cost for MOALO without EVs

are 8,977.062 $/hr and 44.20877 MW, respectively. From Table 13,

the total loss and cost for MOALO with EVs are 8,923.529 $/hr and

41.69524 MW, respectively. The difference for cost is 53.533 $/hr

and for loss is 2.51353 MW. It is clear that the total loss and cost of

the system decrease when EVs are implemented between 09:00 and

20:00, and thus, it validates the optimization results using

the MOGOA.

Below are the comparisons for the MOGOA and MOALO with

EVs for 24 h. The comparison of the cost and loss for the two

optimizing techniques is given in Table 14 below.

From the table above, it is clear that for the two algorithms, the

loss and cost of the system decrease after implementing G2V and

V2G. However, the two algorithms outperform the other at

minimizing the objective functions. The total generation cost for

the MOGOA is 8,617.077 $/hr, whereas for MOALO, it is 8,923.529

$/hr. In addition, the total power loss for the MOGOA is

55.65349 MW, whereas for MOALO, it is only 41.69524 MW.

It is clear that theMOGOAminimizes the generation cost better,

while MOALO minimizes the power loss of the system better. The

graphical comparison for generation cost and power loss between

the MOGOA and MOALO during charging and discharging hours

can be observed below. As shown in Figure 11A, the generation cost

is lower for the MOGOA almost at all the hours, but as shown in

Figure 11B, the power loss is much lower for MOALO at almost all

of the hours.

FIGURE 11

Graphical comparison of the MOGOA and MOALO for (A) generation cost and (B) power loss.
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5 Conclusion and future scope

5.1 Conclusion

In this work, the IEEE 30-bus system is used to analyze the

economic dispatch (ED) problems with and without EVs. Four

types of EVs with different parameters are used, and the final state

of charge of each vehicle is calculated, along with the energy

required and time of charging. Then, MOALO is used to

optimize the objective functions with both cases without EVs

and with EVs. EVs are set to charging from 09:00 to 14:00 and

are set to discharging from 15:00 to 20:00. After implementing EVs

to the system, it can be observed that the total generation cost and

power loss of the system decrease due to V2G power discharging.

In addition, EVs provide an alternative method for dealing with

peak load, while filling the off-peak hours effectively. If the number

of EVs is large enough, the V2G system can replace other peak

shaving and valley filling techniques completely. On comparing

the MOGOA and MOALO algorithms, the MOGOA excels at

minimizing the generation cost, while MOALO excels at

minimizing the power loss of the system.

5.2 Future scope

The thorough analysis of EVs’ performance in the presence of

renewable energy sources may further improve the power system’s

operation. The studies of carbon emission reduction can also be

performed in the future.

5.3 Real-time application

The proposed work can be applied in real-time where a huge

number of EVs is ready to participate in the G2V/V2G coordinated

approach. The utilization of power electronics-based converters is

also essential in real-time application during EV integration in

the system.
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Glossary

ED Economic dispatch

PSO Particle swarm optimization

EVs Electric vehicles

PEVs Plug-in electric vehicles

PHEVs Plug-in hybrid electric vehicles

NiMH Nickel-metal hydride

Li-ion Lithium ion

Li(NiMnCo)O2 Lithium nickel manganese cobalt oxide

V2G Vehicle-to-grid

G2V Grid-to-vehicle

ALO Ant-lion optimization

|V|(initial) Initial voltage magnitude

δ(initial) Initial voltage angle

ΔP(initial)
calc Real power injected

ΔP(initial) Change in real power

ΔQ(initial)
calc ΔQ(initial) Reactive power injected

ΔQ(initial) Change in reactive power

I(initial) Initial Jacobian matrix

Xp pth grasshopper position

Sp pth grasshopper social interaction

Gp Gravitational force

Ap Wind advection

s Social force between the grasshopper

f’ Generation cost comparison during discharging usingMOALO

y Distance between the grasshopper

kk Length of attraction

xzp zth variable pth position in the population

Dz
pq Distance between the pth and qth position of the zth variable

xzgbest Global best of zth variable

G Parameter of the GOA

N Number of thermal units

ai, bi, and ci Cost coefficients of the ith unit

Pi Active power output of the ith generator

Vi and θi Voltage magnitude and voltage angle at bus i

Gq(ij) Transfer conductance between bus i and bus j

NL Number of transmission lines

PV2G and PG2V Discharging power and charging load of EVs, respectively

PD and PL Power load demand and power loss of the system, respectively

PGq
and PDq

Real power generation and real power demand at yth bus,

respectively

Vy and Va Voltage magnitude at yth and ath bus, respectively

Gya and Bya Conductance and susceptance of yth and ath bus, respectively

VGp and PGp Voltage magnitude and real power generation, respectively

NG Number of generating units

VLr Voltage magnitude of load bus r

Sln Power at branch NBR

Obji
min

and Obji
max

Least and greatest value of the objective function, respectively

Nobj Number of objectives

N Number of non-dominated solutions

Md Daily driven miles of an EV

µm and σm Mean and standard variation of Md Md

Em and β Energy consumption and battery capacity of each EV

Mdmax Maximum achievable driven distance

Ed Expected energy demand of EV

tar, tdep, and td Arrival time, departure time, and expected duration of parking,

respectively

N1 and N2 Normally distributed random variables

µar µm and µdep µm Mean value of the arrival time and the departure time

σar and σdep Standard deviation of the arrival time and the departure time

SOCd Desired state of charge

Chr Charging rate

SOCini Initial state of charge

SOCf Final state of charge
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