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Abstract 

The lung is a critical organ for blood gas exchange. Early lung disease detection is often 

hindered by subtle symptoms. The diagnosis typically requires expert analysis of lung image 

scans, where both conventional methods and advanced machine learning (ML) and deep 

learning (DL) techniques are employed for scan segmentation and disease detection. However, 

it is a challenge to develop reliable computational models, due to the scarcity of high-quality 

data. With a major emphasis on lung disease classification and segmentation performance, this 

work presents a novel data quality assessment technique specifically designed for lung image 

datasets. The proposed pipeline combines ensemble learning, unsupervised learning, and 

generative autoencoders with attention mechanisms (GAME). By including attentional 

mechanisms in the generative autoencoders, we improve the tool’s ability to locate and 

prioritise areas of interest in lung images and extract the right features, which increases the 

accuracy of our algorithms. The pipeline automates quality checks and reduces the need for 

high-quality data, while reducing human oversight. Because it’s crucial to validate the 

robustness of the algorithms in our tool, we tested it using lung scans from the NIH-ChestXray 

and CheXpert datasets, and obtained IOU scores of 0.88 and 0.86, F1 scores of 0.95 and 0.95, 

and accuracy scores of 0.96 and 0.95, respectively, which shows they can be used as a 

classification tool as well as a segmentation tool. Given the challenging conditions in which 

the early diagnosis of lung disease is made, this is a significant step forward in the development 

of self-sustaining and accurate disease detection systems. The proposed model is made 

available to the public and the same is accessible via 

https://github.com/harshivchandra/LungDataQualityAssessment. 

Keywords: Generative Autoencoders, Ensemble Learning, Lung Segmentation, Quality 

Assessment, Unsupervised Learning 

1. Introduction 

Lungs are an important organ in the human body, responsible for the task of gas exchange in 

the blood. A healthy lung ensures that its ability to adapt, correct and rebuild its structure is 

intact [1].  Medical advances in body imaging over the past decades have been able to 

significantly improve the detection of various lung diseases. However, because of increased 

stress and pollution in the modern-day lifestyle, most lung diseases have become harder to 



detect solely via visual inspection by human experts, often necessitating the use of modern 

computational techniques. These are typically based on deep learning and machine learning.  

1.1.Lung Imaging Techniques 

Many advanced techniques have been developed in the field of lung imaging, and to produce 

high-fidelity reconstructions of the human lung, complex machinery is needed. Wilhelm 

Roentgen's discovery of X-rays, which facilitated the growth of the emerging discipline of 

medical imaging—which uses non-invasive techniques to inspect the body—is frequently 

credited with sparking the development of lung imaging. These days, lung imaging can be done 

in a variety of methods, some of which are listed below. The lung images produced by a few 

of these methods are shown in Figure 1. Table 1 provides a brief comparison between each 

technique, with respect to its advantages and disadvantages. 

• X-ray: The most commonly performed procedure, also known as a chest radiograph. It 

is inexpensive, easy to perform, quick, and carries very little radiation risk. Digital 

radiography (DR) systems provide excellent images. An X-ray corrects for all but the 

smallest lung abnormality but requires additional examination to identify the specific 

disease since the spatial resolution is much lower than that of CT. 

•  Computed Tomography (CT): CT is an imaging method that captures multiple X-rays 

from different planes of the lungs using a radiopaque contrast agent to highlight 

anomalies and improve image resolution. CT has better lesion detection in any region 

than X-rays, because of its higher temporal resolution and spatial resolution [4]. 

•  Magnetic Resonance Imaging (MRI): This creates tremendously detailed images using 

a strong magnetic field and high-frequency radio waves. MRI is better for identifying 

abnormalities of blood vessels in the chest but is more expensive and time-consuming 

than CT scans, and has much lower sensitivity for detecting lung abnormalities. As a 

result, it’s very rarely used for chest imaging. 

•  Ultrasonography: chest image created by bouncing sound waves off the body; used to 

diagnose lung cancer by identifying masses or fluid in the pleural space. 

• Positron Emission Tomography (PET) scanning: PET images human tissue at the 

metabolic level through the use of radioisotopes of naturally occurring elements. 

Metabolic rates in normal versus malignant airspaces in the lung can be distinguished, 

making PET a common method of cancer identification. 

 
 

 
               d)                          e)  

Fig. 1. Lung Imaging using, a) X-Ray [5], b) CT [6], c) MRI [7], d) Ultrasonography [8], e) 

PET [9] 

   a)    b)    c) 



Table 1: Advantages and Disadvantages of different types of lung imaging techniques 

 

1.2. Advances in AI for disease diagnosis 

Over time, due to rapid strides in the technological domain, there has been a rising interest in 

the use of advanced computational techniques to simplify difficult tasks. One of the first major 

applications of Artificial Intelligence (AI) in the medical domain is the MYCIN model [2] , 

that used a human defined rule based AI system , to provide medical diagnoses to doctors for 

bacterial infections. Although useful, the lack of improvement over human diagnosis, and the 

use of manually defined if-then-else rules, made similar rule-based disease diagnosis systems 

redundant. The development of truly automated computational models began with the 

introduction of neural networks in the 1980s, which led to the development and deployment of 

the first machine learning models for ischaemic heart disease detection using  ECG scans [3]. 

Simultaneous breakthroughs in parallel scientific computing and model theory led to the 

implementation of deep learning models for disease prediction, which have retained 

prominence due to their ability to handle large datasets, model complex relationships within 

medical data, and achieve higher predictive accuracy. 

Thus, in this paper, we will explore the background behind lung imaging, and understand the 

segmentation and classification models currently applied in the domain. In Section 2, we will 

explore related works in the field while understanding both traditional models and modern 

ML/DL based models. In Section 3, we will define our proposed framework; and in Sections 

4,5 and 6, we will explore the results of the proposed framework, compare it to other 

implementations in the field, and appropriately derive conclusions, and future work on our 

model, whilst also exploring the limitations of the model. 

2. Related Work 

The development and application of several lung imaging modalities stand out as essential 

strategies for lung disease diagnosis as we begin the literature study. In the field of lung disease 

Lung Imaging 

Type 

Advantages Disadvantages 

X-Ray 1. Quick and cost-effective 

2. Good for detecting large 

abnormalities like tumors 

1. Limited detail 

2. Less effective for soft tissue 

differentiation 

CT 1. High resolution images 

2. Good for detecting detailed 

abnormalities 

1. High radiation exposure 

2. Expensive to conduct 

MRI 1. No exposure to ionizing 

radiation. 

2. Excellent soft tissue 

contrast. 

1. Expensive to conduct 

2. Not ideal for lung tissue due 

to low signal to noise ratio 

Ultrasonography 1. No exposure to radiation 

2. Useful for detecting fluid 

around lungs 

1. Limited penetration of sound 

waves into lung tissue 

2. Not useful for detailed 

imaging of deeper lung 

structures 

PET 1. Excellent for detecting 

tissue metabolic activity 

2. Useful for assessing 

treatment response 

1. Expensive to conduct 

2. Involves exposure to 

radioactive tracers 



detection research, the main emphasis is on finding abnormalities and examining their features 

to determine the disease that a person is suffering from. The idea of dividing an input image 

into discrete "segments" or regions is fundamental to segmentation modeling. This 

segmentation method is a fundamental part of the investigation since it is so effective at 

identifying different things in the image. 

2.1.Traditional Models 

Traditionally, various techniques have been created to segment input lung scans for disease 

detection. These techniques leveraged the use of mathematical systems to delineate the 

structures of interest within a given input image.  Understanding the different techniques 

employed is essential for contextualizing the advancements made towards the deployment of 

ML algorithms in this domain. There are many statistical models that exist for image 

segmentation. One such model is described in [10] that explains the use of a hierarchical 

Bayesian approach towards lung CT image segmentation. It uses the Dirichlet process (DP) to 

determine the structure and the hierarchical Bayesian paradigm to jointly segment the images. 

DP is defined in Equation 1, 

 										(𝑮(𝑨𝟏), … , 𝑮(𝑨𝒓))~	𝑫𝒊𝒓(𝜶𝟎𝑮𝟎(𝑨𝟏), …𝜶𝟎𝑮𝟎(𝑨𝒓))                  (1) 

 

where a0,G0, (G(A1), …, G(Ar)) denote the scaling factor, base measure, and random vector 

over a finite partition (A1, … ,Ar) in a measurable space Q respectively. DP involves the 

random distribution of elements across random distributions. Due to the non-parametric nature 

of DP, it can automatically determine the anatomy of a given CT scan, and thus it doesn’t 

require the definition of manual Region of Interest (ROI) and sample seed sets. The overall 

generative model is defined by the system in Equation 2, 

 

														⎝⎛
𝒙𝒋𝒊%𝜽𝒋𝒊~	𝑭(𝜽𝒋𝒊)

𝜽𝒋𝒊%𝑮𝒋~	𝑮𝒋
𝑮𝒊|𝜶𝟎,𝑮𝟎	~	𝑫𝑷(𝜶𝟎,𝒈𝟎)
𝑮𝟎|𝜸,𝑯	~	𝑫𝑷(𝜸,𝑯) ⎠⎞        (2) 

 

where xji denotes the feature for the i-th image’s j-th pixel. Another approach is the fuzzy c-

means algorithm (FCM), which segments many pixels in an image by iterating over two 

essential conditions until a solution is found. The FCM aims to compute the center of the 

clusters and identify the class membership matrix c ́  n, where c denotes the number of clusters 

and n denotes the number of samples. Another such algorithm is the Fuzzy Possibilistic C-

Means (FPCM) algorithm, which was first proposed in [11]. It is defined by Equation 3, 

 𝐦𝐢𝐧4𝑱𝒎,𝒏	(𝑼, 𝑻, 𝑽; 𝑿); = 	∑ ∑ (𝒖𝒊𝒌𝒎 + 𝒕𝒊𝒌𝒏 )𝑫𝒊𝒌𝑨
𝟐

𝒌;𝟏𝒊;𝟏               (3) 

 

subject to,   A 𝒎<𝟏,𝒏<𝟏,𝟎=	𝒖𝒊𝒌,𝒕𝒊𝒌=𝟏
𝑫𝒊𝒌𝑨;‖𝒙𝒌A𝒗𝒊‖𝑨

∑ 𝒖𝒊𝒌
𝒄
𝒊'𝟏 ;𝟏∀𝒌,𝒊.𝒆.,𝑼	∈	𝑴𝒇	𝒄𝒏

∑ 𝒖𝒊𝒌
𝒏
𝒌'𝟏 ;𝟏∀𝒊,𝒊.𝒆.,𝑻𝒕	∈	𝑴𝒇	𝒏𝒄

B 

 

where, U, T, V, c, and n denote the membership matrix, the possibilistic matrix, the resultant 

cluster centers, the number of the cluster, and the data point respectively. It uses a possibilistic 

membership within the function to illustrate the degree of absolute belonging for any given 

point in the lung image within a particular cluster.  Although accurate, the high mathematical 



complexity means that creating higher number of segments within the lungs leads to extremely 

complex computation.  

2.2. Deep Learning Models 

The advent of the modern segmentation algorithm based on clustering in [15] led to a surge in 

ML-based segmentation models for lung images. Table 2 compares papers on lung image 

segmentation, detailing ML algorithms, metrics, and objectives. In [12], the U-net architecture 

is suggested for lung CT image segmentation, achieving a Dice-Coefficient of 0.9502, 

calculated using equation (4), 

 𝑫𝑺𝑪 = 	𝟐 ∗ ||𝑺∩𝑻||

||𝑺⊕𝑻||
                                       (4) 

where T is the lung parenchyma area obtained using manual segmentation, and S is the lung 

parenchyma area produced using segmentation based on the model's output. In the study [13], 

an evaluation of four lung x-ray segmentation models, including Fully Convolutional Networks 

(FCN), SegNet, U-Net, and U-Net++, reveals U-Net++ as the most effective for tuberculosis 

identification. U-Net++ outperforms other models across various metrics, such as loss, dice 

coefficient, specificity, mean_iou, sensitivity, recall, precision, and accuracy, achieving scores 

of (-0.9796, 0.9796, 0.9932, 0.9598, 0.9753, 0.9838, 0.9685, 0.9874). Clustering methods, 

including k-means, k-median, particle swarm optimization (PSO), inertia-weighted PSO 

(IWPSO), and guaranteed convergence PSO (GCPSO), are assessed for detecting lung cancer 

through CT scan segmentation, with GCPSO proving more accurate at 95.3%.  

In [15], the study introduces Encoder-Decoder Convolutional Neural Networks (ED-CNN) for 

accurate lung segmentation, achieving an average Dice-Coefficient of 0.962. Another model, 

CA-UNet, is presented in [16] for lung nodule segmentation, combining classic UNet with 

convolution and attention fusion. Compared to other models, CA-UNet demonstrates superior 

performance, reflected in high dice-coefficient, precision, and recall scores (0.8986, 0.8907, 

and 0.9204, respectively). ResBCDU, presented in [17], utilizes ResNet-34 and Bidirectional 

Convolutional Long Short-Term Memory Recurrent Neural Networks (BiConvLSTM) for lung 

CT image segmentation, surpassing other models in precision, recall, f1, accuracy, and dice 

coefficient index scores. Finally, [18] introduces a segmentation network called NASNet-Large 

for lung images, achieving commendable IoU and DICE Coefficient Index scores, 

outperforming SegNet, UNet, DeepLab, and other researchers using CRF-LSTM [31]. The IoU 

metric was computed using Equation 5[18], 

 𝑰𝒐𝑼 = 	 |𝑨∩𝑩|
|𝑨∪𝑩|

                                     (5) 

 

where A and B denote the ground truth mask and prediction mask respectively. In their work 

[19], the authors introduce the DEHA-Net framework for lung nodule segmentation, employing 

a dual encoder setup within a hard attention network incorporating an adaptive region of 

interest (ROI) algorithm. The framework achieves DICE coefficient Index, Sensitivity, and 

Positive Predictive Value (PPV) scores of (87.91%, 90.84%, 89.56%), calculated using 

equations (6) and (7), 

 𝑺𝑬𝑵 =	 𝒀-∩𝒀
𝒀

                                       (6) 

 𝑷𝑷𝑽 =	 𝒀-∩𝒀
𝒀-

                                       (7) 

 



where SEN and PPV represent sensitivity and positive predictive value, respectively. Another 

proposed model [20] modifies the U-Net segmentation network for accurate segmentation in 

COVID-19 Lung CT-scan datasets. The alterations include adjustments in convolution kernel 

numbers, a switch from RMSprop to Adaptive Moment Estimation (Adam) for optimization, 

employment of early stopping-based implicit regularization with weight decay regularization, 

and a cosine annealing function for the learning rate scheduler as described in Equation (8). 

 𝜼𝒕 =	𝜼𝒎𝒊𝒏𝒊 + 𝟏

𝟐
(𝜼𝒎𝒂𝒙𝒊 −	𝜼𝒎𝒊𝒏𝒊 ) N𝟏 + 𝐜𝐨𝐬 𝑻𝒄𝒖𝒓

𝑻𝒊
𝝅T                     (8) 

 

where, h denotes the learning rate, with hi
min and hi

max being the learning rate range, and Tcur 

represents the number of epochs since the models restart and it also incorporates a binary cross-

entropy and dice loss function, described in Equation 9.  

 𝑳V𝒀, 𝒀XY = 	− 𝟏

𝑵
∑ N𝟏

𝟐
	𝒀𝒃 	 ∙ 	 𝐥𝐨𝐠𝒀X𝒃 +	𝟐∙𝒀𝒃∙𝒀U𝒃𝒀𝒃V𝒀U𝒃

T𝑵
𝒃;𝟏                     (9) 

 

where, 𝐘X𝐛	and Yb, represent prediction and ground truth values of the bth image input into the 

model. N represents the batch size. This model achieves superior accuracy, dice, sensitivity, 

and specificity scores (0.9928, 0.8724, 0.8642, 0.9969) compared to models like Inf-Net, nnU-

Net, and R2-UNet. Additionally, the utilization of a Mask-R-CNN model with a K-means 

kernel for automatic lung segmentation on lung CT images, as proposed in [21], achieves a 

remarkable dice coefficient score of 0.97, outperforming competing implementations such as 

Optimal Path Snake (OPS), Vector Field Convolution (VFC), Crisp Adaptive (CRAD), System 

to Detect and Quantify Pulmonary Emphysema (SISDEP), and Gradient Vector Flow (GVF), 

with dice coefficient scores of 0.93, 0.84, 0.94, 0.93, and 0.82, respectively. 

Table 2. A comparison of Lung Segmentation models on publicly available dataset 

Paper Algorithm(s) 

Implemented 

Dataset Used Metrics Computed 

Skourt et al, 

2018 [12] 

U-Net LIDC-IDR Dice-Coefficient index 

Gite et al, 2022 

[13] 

FCN, SegNet, UNet, 

UNet++ 

NIH, JRS loss, dice coefficient, 

specificity, mean_iou, 

sensitivity, recall, precision, 

accuracy 

Senthil et al, 

2019 [14] 

K-Means, K-Median, 

PSO, IWPSO, 

GCPSO 

LungCT-

Diagnosis  

accuracy 

Kalinovsky et al, 

2016 [15] 

ED-CNN JRST Dice-Coefficient 

Wang et al, 2023 

[16] 

CA-UNet, UNet, 

DenseUNet, UNet 

++, CoLe-CNN, 

Trans-UNet, Swin-

UNet, 

LIDC-IDRI dice-coefficient index, 

precision and recall scores 

Jalali et al, 2021 

[17] 

ResBCDU, U-Net, 

RU-Net, ResNet34-

UNet, BCDUNet 

LIDC-IDRI precision, recall, f1, accuracy 

and dice coefficient index 

scores 



Zhang et al,2023 

[18] 

NASNet, SegNet, 

UNet DeepLab 

RSNA 

Pneumonia  

IoU and DICE Coefficient 

Index scores 

Usman et al, 

2023 [19] 

DEHA-Net LIDC-IDRI DICE coefficient Index, 

Sensitivity and Positive 

Predictive Value (PPV) scores 

Upadhyay et 

al,2023 [20] 

Modified U-Net, Inf-

Net, nnU-Net, R2-

UNet 

Covid CT accuracy, dice, sensitivity, and 

specificity scores 

Hu et al, 2020 

[21] 

Mask-R-CNN, OPS, 

VFC, CRAD, 

SISDEP, GVF 

Lung CT 

Dataset  

dice coefficient scores 

Proposed 

Implementation 

U-Net, FCN, SegNet, 

GCPSO, Mask-R-

CNN, and U-Net++ 

NIH, 

CheXpert, 

Covid CT, 

Lung-PET-

CT-Dx 

Accuracy, Sensitivity, 

Specificity, F1 Score, 

Intersection over Union (IoU), 

Hausdorff Distance, Dice 

Coefficient, Dice Loss, and 

Matthews Correlation 

Coefficient (MCC) 

 

2.3.Autoencoder Based Models 

The use of advanced ML and DL techniques has completely transformed medical image 

analysis, especially for lung disease segmentation and classification. In the following section, 

we provide a comprehensive analysis of the current studies with a focus on the role of 

autoencoders in this very important area. Autoencoders are unsupervised learning techniques 

that have attracted a great deal of interest and attention because they can learn to represent the 

input data effectively. In the case of lung disease segmentation and classification, autoencoders 

have been used as an integral part of the framework. Autoencoders have been widely used as 

feature extractors and their efficacy has been proven [22] using the compressed representation 

given by Equation 10. The use of such feature extractors can help to learn very complex pattern 

and allow to discover subtle irregularities in the lung images, thus increasing the segmentation 

accuracy. Another characteristic of autoencoders is the ability to use unsupervised learning that 

has been particularly effective in applications with only a limited number of labelled data. The 

unsupervised learning can help with the generalisation of the segmentation models by training 

them on unlabelled images, and this characteristic is very useful when there is a limited number 

of medical images that can be annotated. 𝒉	 = 	𝒇𝜽 	= 	𝝈(𝑾𝒙	 + 	𝒃)      (10) 

where the variable h represents the encoded representation, 𝒇𝜽	represents the whole encoding 

function, σ represents the activation function, W represents the weight matrix, x represents the 

input, and b represents the bias term. A lung disease segmentation model, which seamlessly 

incorporates autoencoders, was proposed in a groundbreaking study [23]. The autoencoder 

served as a feature extractor as shown in Equation 11, allowing the model to derive meaningful 

representations from a wide range of lung images. The results demonstrated superior 

segmentation accuracy in comparison to conventional CNN-based methods. 𝑳	 = 	𝜮ᵢ	𝑫(𝑭(𝑿ᵢ), 𝑿Xg)       (11) 

 

Where L represents the loss function that needs to be minimized during training, N is the total 

number of samples in the dataset, 𝑿ᵢ	is the input data, F is the segmentation model, 𝑿Xg	is the 

reconstructed output of the segmentation model for the input and D is a dissimilarity or 



reconstruction loss function, measuring the difference between the input and the reconstructed 

output. 

Autoencoders, particularly explored for classifying lung disorders, have shown promise in 

unsupervised learning [24]. Despite their potential, challenges persist, including 

interpretability, dataset heterogeneity, and relevance to real-world clinical scenarios [25]. 

Variational autoencoders (VAEs) outperform traditional autoencoders but face challenges like 

training difficulty and collapse mode [26]. While autoencoders significantly impact lung 

disease segmentation and classification, a unified framework for lung image quality evaluation 

and disease diagnosis is lacking. To address this gap, we propose GAME, integrating attention-

enhanced generative autoencoders into ensemble and unsupervised learning. This approach 

tackles issues like low-quality labeled data and mild symptoms, enhancing robustness and 

accuracy in lung image analysis. Data scarcity and diverse architectural frameworks pose 

challenges to modern models. While pipeline architectures address the latter, the lack of 

reliable data impedes model deployment in real-world scenarios. Our primary goal is to 

develop an automated method capable of analyzing and quantifying any lung image dataset, 

providing insights into model effectiveness in diverse circumstances. 

3. Proposed Methodology 

The proposed methodology aims to address current limitations and enhance the precision and 

robustness of disease identification. The approach focuses on improving lung image quality 

assessment by integrating attention-enhanced autoencoders into an ensemble and 

unsupervised learning paradigm. Leveraging attention mechanisms highlights salient features 

in complex lung images, providing a nuanced understanding of pathophysiology. The 

integration of multiple models allows a comprehensive analysis, and unsupervised learning 

enhances generalization using massive unlabelled datasets. This sophisticated methodology 

promises a more accurate and autonomous system for image quality evaluation and disease 

diagnosis, advancing lung image analysis. Figure 2 illustrates the higher-level description of 

the framework's three essential layers. 

● Phase 1: GAME - This critical initial stage enhances the effectiveness of subsequent 

autoencoder processing. Standardizing input photos to a chosen resolution reduces 

variability and dimensions. The attention mechanism in GAME focuses on salient 

regions, improving feature extraction. A data loader efficiently gathers images into 

batches for further processes. 

● Phase 2: Classification and Unsupervised ROI Generation - Models for classifiers and 

unsupervised ROI generators are applied to the pre-processed dataset. Evaluating the 

dataset's suitability for ROI creation and classification is the goal, forming a crucial 

basis for subsequent decision-making. 

● Phase 3: Image Segmentation Ensemble - The preprocessed dataset undergoes 

evaluation in an image segmentation ensemble model. Performance indicators generate 

a comprehensive report, determining optimal use cases for each model and providing 

insights for further investigation and framework enhancement. 

3.1. Datasets Used 

Various datasets were chosen to create a fair analysis and to suitably benchmark all different 

data representations available in the field for lung image segmentation. This shall aid in the 

development of a robust pipeline for dataset evaluation. In this section, we will discuss the 

datasets that were utilized in this model. Each dataset was split into training and test sets with 

an 80%-20% split ratio. Before anything else, we need to look at the NIH Chest-XRay dataset. 

It is made up of 112,120 frontal view X-ray images of 30,805 patients, and each image can 



have one of 14 illness labels. These disease labels were identified from the appropriate reports 

using data mining techniques [5]. Every label included in the dataset is listed in Table 3. 

Table 3: NIH Chest-X-Ray Data Description 

Label Information 

Atelectasis Patient’s lung has either collapsed or closed 

Cardiomegaly Patient has an abnormal enlargement of the heart 

Effusion Patient’s lung has excess fluid around it 

Infiltration Presence of Infiltration  

Mass Presence of Mass  

Nodule Presence of Nodule 

Pneumonia Patient is diagnosed with Pneumonia  

Pneumothorax Presence of Pneumothorax 

Consolidation Patient’s lungs are partially filled with liquid  

Edema Patient has excessive fluid in lung tissues. 

Emphysema Patient is diagnosed with Emphysema 

Fibrosis Patient is diagnosed with Fibrosis 

Pleural Thickening Patient’s lungs may have pleural thickening 

Hernia Patient is diagnosed with hernia. 

No Finding Patient’s diagnosis is normal 

ChexPert is a comprehensive collection of chest X-rays that are used for the diagnosis of lung 

diseases. It is equipped with uncertainty labels as well as standard evaluation sets that are 

labeled by radiologists. In total, there are 224,316 chest radiographs from 65,240 patients that 

have been tagged for the presence of 14 common chest radiographic observations with this 

collection. The functions of each label in the dataset are outlined in Table 4, along with the 

distribution of those labels. 

Table 4: CheXpert Data Description 

Label Information 

No Finding  Patients’ diagnosis is normal 

Enlarged Cardio 

mediastinum  

Patient has an abnormally enlarged cardio mediastinum  

Cardiomegaly   Patient has an abnormal enlargement of the heart 

Lung Opacity  Patient has opaque lung area  

Lung Lesion  Patient has an abnormal lesion in the lung  

Edema  Patient has excessive fluid in lung tissues  

Consolidation  Patient’s lungs are partially filled with liquid  

Pneumonia  Patient is diagnosed with Pneumonia  

Atelectasis  Patient’s lung has either collapsed or closed  

Pneumothorax  Presence of air or gas in the cavity surrounding the Patient’s 

lungs  

Pleural Effusion  Patient’s lung has excess fluid around it. 

Pleural Other  Other abnormality in the pleural space of the Patient’s chest  

Fracture  Patient has a fracture  

Support Devices  Patient has support devices  

 

Another dataset that is investigated in this research is the chest x-ray dataset, which is used for 

the categorization of respiratory diseases. This is intended to be used for the purpose of 

distinguishing COVID-19 from other respiratory disorders such as pneumonia and 



tuberculosis. It is made up of 32687 frontal view X-ray images of 30,805 patients, and each 

image can contain one of four disease labels. These disease labels were derived from the 

appropriate reports using data mining techniques. An overview of the dataset and its labels is 

provided in Table 5, which may be found here. 

Table 5: Chest X-Ray Data Description 

Label Information 

COVID-19  Patient diagnosed with COVID-19 

Lung-Opacity Patient has an opaque lung area 

Normal Patient’s lungs are normal 

Viral Pneumonia  Patient is diagnosed with Pneumonia 

Tuberculosis Patient is diagnosed with tuberculosis 

 

A database that is based on CT scan images, Curated Chest CT.  A database that is employed 

for the detection of COVID-19 disease through the utilization of lung-CT scan imaging is 

referred to as reference source not found. It is produced by combining CT scans from seven 

independent datasets into a single piece of data. There are 112,120 frontal view X-ray images 

of 30,805 patients that make up this collection. Each image has the potential to have one of 

three illness diagnoses, all of which have been validated by radiologists. An overview of the 

labels that are included in the dataset is provided in Table 6. 

Table 6: Curated Chest CT Data Description 

Label Information 

COVID-19 Patient diagnosed with COVID-19 

Normal Patient is normal 

CAP Patient diagnosed with Community Acquired Pneumonia (CAP) 

 

The Lung-PET-CT-Dx is presented by the Cancer Imaging Archive, involves the use of lung 

CT images and lung PET scans to create a large-scale dataset for the identification of lung 

cancer. There are a total of 112,120 frontal view X-ray images of 30,805 individuals included 

in this collection. Each image can be assigned one of four illness classifications. There were 

five academic thoracic radiologists who were accountable for the annotation that indicated the 

location of each tumor. An overview of the labels that are included in the dataset is provided 

in Table 7. 

Table 7: Lung-PET-CT-Dx Data Description 

Label Information 

Adenocarcinoma Patient has cancer in the lung’s glandular cells. 

Small Cell Carcinoma Patient’s lungs have small, cancerous cells. 

Large Cell Carcinoma Patient’s lungs have large, abnormal cancerous cells 

Squamous Cell Carcinoma Patient’s lungs have cancerous squamous epithelial cells 

 

3.2. Model Pipeline 

Figure 3 pipeline integrates proposed cutting-edge methods for enhanced efficiency and 

accuracy in lung image analysis. Comprising three stages, Stage 1 initiates with meticulous 

preprocessing, standardizing photos to a set resolution and introducing a pivotal GAME for 

advanced representation learning and selective attention. In Stage 2, preprocessed data 

undergoes an unsupervised ROI generator and classifier, evaluating dataset suitability for 

classification tasks and precise ROI definition. Stage 3 utilizes an ensemble model for image 



segmentation, producing a detailed report on optimal model use cases. Leveraging 

autoencoders, attention mechanisms, and ensemble learning, this pipeline signifies a 

comprehensive advancement in lung image processing for illness diagnosis and image quality 

assessment.  

 

Fig. 2. Overview of Proposed Architecture 

3.2.1. Stage 1: Generative Autoencoders with Attention Mechanisms  

As the first phase of our research, Stage 1 manages a sophisticated preprocessing model that 

combines enhanced interpretability from a GAME with dimensionality reduction. By 

instructing the autoencoder to concentrate on significant regions of lung images, this critical 

step not only addresses the requirement for image standardization but also enhances the 

preprocessing pipeline's adaptive encoding capabilities. Every lung image is meticulously 

converted to a uniform format to start the standardization process. 

The following is the formula for this standardization (Equation 12). 	𝑋YZ[ =	 (\	A	])^
       (12) 

 

Where 𝑋YZ[ 	denotes Standardized image, X is Original image, μ is a Mean and σ is a Standard 

deviation. The distinguishing feature of Stage 1 innovation is the integration of a GAME. By 

deviating from traditional autoencoders, the encoding process gains dynamism. The embedded 

attention mechanism within dynamically allocates weights during encoding, allowing the 

autoencoder to identify and prioritize prominent regions within the input images. This is the 

definition of the encoding function (Equation 13 & 14). Since crucial features are frequently 

localized in the field of medical imaging, this flexibility is especially helpful. 

 a	 = 	SoftmaxV𝑊_ZZ ∗ tanhV𝑊 ∗ 𝑥a 	+ 𝑏`YY    (13) 

 ℎa =	𝑎a ∗ 	𝑥a        (14) 
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Where a is the Attention weights, 𝑾𝒂𝒕𝒕 is the attention weight parameters,  tanh is the 

hyperbolic tangent activation function, 𝑾𝒈is the parameters for the transformation of input x, 𝒃𝒈 is bias term for the transformation of input x, 𝒂𝒕𝒕 enhanced encoded representation, 𝒉𝒊	is 

the i-th element of the attention-enhanced encoded representation, 𝒂𝒊 is the i-th element of the 

attention weights vector and 𝒙𝒊	is the i-th element of the input image vector.  

 

 
Fig. 3. Workflow of the Proposed Model 

 

Algorithm I GAME 

Step 1: Load_image Function 

function load_image(image_file: str) → Tensor 

    image ← read_and_decode(image_file) 

    return image 

end load_image 

Step 2: Encoder Function 

function encoder(labels: List[str]) → Array 

    label_binarizer ← create_label_binarizer() 

    ohe_labels ← label_binarizer.fit_transform(labels) 

    return ohe_labels 

end encoder 

Step 3: Normalize_image Function 

function normalize_image(img_array: Array) → Array 

    norm_img ← [] 

    for img in img_array do 

        img_np ← convert_to_numpy(img) 

        scal ← max(img_np) - min(img_np) 

        sub ← min(img_np) 

        norm_img_array ← (img_np - sub) / scal 

        norm_img.append(norm_img_array) 

    end for 

    return norm_img 
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end normalize_image 

Step 4: Resize_and_normalize_image Function 

function resize_and_normalize_image(image: Tensor, target_size: dims) → Tensor 

    attention_enhanced_image ← autoencoder_with_attention_preprocessing(image) 

    resized_image ← resize_to_target(attention_enhanced_image, target_size) 

    normalized_resized_image ← normalize_image(resized_image) 

    return normalized_resized_image 

end resize_and_normalize_image 

Step 5: Generator Function 

function generator(images: List[str], labels: List[str], batch_size: int, target_size: dims) → 

Tuple(Array, Array) 

    L ← length(images) 

    while True do 

        batch_start ← 0 

        batch_end ← batch_size 

        while batch_start < L do 

            limit ← min(batch_end, L) 

            paths ← images[batch_start:limit] 

            X ← [] 

            for path in paths do 

                img ← load_image(path) 

                processed_img ← resize_and_normalize_image(img, target_size) 

                X.append(processed_img) 

            end for 

            Y ← encoder(labels[batch_start:limit]) 

            yield (X, Y) 

            batch_start += batch_size 

            batch_end += batch_size 

        end while 

    end while 

end generator 

Step 6: Autoencoder_with_attention_preprocessing Function 

function autoencoder_with_attention_preprocessing(image: Tensor) → Tensor 

    attention_enhanced_image ← autoencoder_attention_process(image) 

    return attention_enhanced_image 

end autoencoder_with_attention_preprocessing 

 

The processed images are effectively arranged into batches using a dataloader after attention-

enhanced encoding. In order to optimize computational resources and guarantee a smooth 

transition of pre-processed images into pipeline stages that follow, this step is essential. The 

core of Stage 1 is captured by this method, which coordinates the incorporation of attention-

enhanced autoencoder preprocessing. The method converts unprocessed lung images into a 

dataloader that is ready for the next steps in our ground-breaking lung image analysis pipeline. 

To sum up, Stage 1 establishes a complex equilibrium between standardization and adaptive 

encoding, laying the groundwork for a sophisticated, effective, and cutting-edge lung image 

analysis research project. Algorithm 1 represents the data processing using GAME. 

3.2.2. Stage 2: Classification and Unsupervised ROI Model 

The input datasets are first loaded into a CNN based classifier model, which is constructed 

based on the number of classes to predict for that input dataset. CNN classifier is used for 



benchmarking input lung scans is due to their lower computational complexity in processing 

medical image datasets, especially for the disease classification task [35] . Furthermore, such 

models remain advantageous for this application due to their robust performance with relatively 

smaller datasets [36]. Our proposed implementation is visualized in Figure 4. This step involves 

classifying the input dataset using a model intended to classify lung images according to 

predetermined classes. Using previously processed photos, the classification model forecasts 

the probability of each class. Multiclass classification frequently makes use of the SoftMax 

activation function. One way to view the output is as probability assigned to every class as 

shown in Equation 15. 𝑃 Nb1
c
T = d21

∑ d234
3'5

       (15) 

where 𝑃 Nb1
c
Tis the predicted probability of class, 𝑋a is the logit (raw score) for class i and N 

is the total number of classes. An unsupervised model for generating Regions of Interest is 

simultaneously applied to the input dataset. This method may detect important regions inside 

the lung images without the need for labelled training data. ROIs designate areas that, because 

of possible anomalies or distinctive features, demand closer inspection. The procedure of 

creating a ROI from a pre-processed lung image is described in Equation 16. 𝑅𝑂𝐼 = 	𝑓efg(𝑋a) = Morph(Threshold(Segment(Extract(Image)))) (16) 

 

 
Fig. 4. Implemented Classifier Architecture 

 

 
Fig. 5. Generated Regions of Interest Masks for input images from the  

(a) Chexpert dataset, (b) Covidct dataset, (c) Chest-x-ray dataset 

 

The function f_ROI autonomously identifies and extracts relevant regions in an image, 

targeting anomalies or distinctive features without requiring labelled training data. Employing 

diverse image processing techniques and unique unsupervised ROI algorithms, f_ROI aims to 

(b) (a) 

(c) (d) 



pinpoint regions of interest. The subsequent Extract function focuses on acquiring pertinent 

features from the pre-processed lung image, such as edges, textures, and intensity changes. 

Pixel grouping through clustering or segmentation processes, like region-growing or k-means, 

identifies coherent areas. Intensity thresholds highlight abnormal pixel intensities, with specific 

thresholds applied to define ROI pixels. To enhance ROI accuracy, morphological operations 

like erosion and dilation refine the discovered region's shape and boundaries. This ROI model, 

utilizing a k-means clustering algorithm with four clusters, automatically generates image 

segmentation masks, as illustrated in Figure 5, while Algorithm 2 elucidates the functioning of 

the classification and unsupervised ROI Model. 

 

Algorithm II Classification and Unsupervised ROI Model 

Inputs: X - Input image dataset 

Outputs:Y - Predicted labels  

Step 1: Define CNN Classification Model 

Define the CNN architecture with convolutional layers, pooling layers, batch normalization

, and fully connected layers 

Initialize model weights and biases. 

Forward pass through the CNN: 

function classifier(input_shape: shape, num_classes: int) → Model: 𝑐𝑜𝑛𝑣hi = 𝜎(𝑐𝑜𝑛𝑣[;hi𝑋hi; 𝑤[ = 32, dc) 𝑋jklmnopqrshi = BatchNorm(𝑋hi) ΓYt = 	𝑚𝑎𝑥𝑝𝑜𝑜𝑙	(𝑑hi𝑋jklmnopqrshi )    	𝑐𝑜𝑛𝑣uv = 𝜎(𝑐𝑜𝑛𝑣[;uv𝑋uv; 𝑤[ = 64, dc) 𝑋jklmnopqrsuv = BatchNorm(𝑋uv) ΓYi = 	𝑚𝑎𝑥𝑝𝑜𝑜𝑙	(𝑑uv𝑋jklmnopqrsuv ) 𝑐𝑜𝑛𝑣tiw = 𝜎(𝑐𝑜𝑛𝑣[;tiw𝑋tiw; 𝑤[ = 128, dc) 𝑋jklmnopqrstiw = BatchNorm(𝑋tiw) ΓYh = 	𝑚𝑎𝑥𝑝𝑜𝑜𝑙	V𝑑tiw𝑋jklmnopqrstiw Y 𝑋xy_ZZdzd[ = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋{||yv)	 𝐹𝐶}ti = 𝜎(𝑑𝑒𝑛𝑠𝑒[;}ti𝑋}ti; 𝑤[ = 512, dc) 
    model ← Model(inputs ← inputs, outputs ← outputs) 

    return model 

end classifier 

Step 2: Unsupervised Clustering 

class Cluster: 

    procedure initiate_class(cluster, no_units: integer): 

        cluster.k_model ← KMeans(n_clusters ← no_units) 

    end procedure initiate_class 

    function train_predict_labels(cluster, dataset: Array) → Array: 

        cluster.k_model.fit(dataset) 

        return cluster.k_model.predict(dataset) 

    end function train_predict_labels 

    function model_return(cluster) → KMeans: 

        return cluster.k_model 

    end function model_return 

end class Cluster 

Step 3: Classification Followed by Clustering 

function classify_and_cluster(images: Array, num_classes: int, no_units: int) → Array: 

    classification_results ← classifier(images) 



    c ← Cluster(no_units ← no_units) 

    cluster_labels ← c.train_predict_labels(classification_results) 

    return cluster_labels 

end function classify_and_cluster 

Step 4: Perform Classification Followed by Clustering 

hybrid_results ← classify_and_cluster(images, num_classes, no_units) 

 

 
Fig. 6. Proposed Ensemble Model Architecture 

 

3.2.3. Stage 3: Ensemble Architecture 

By combining various segmentation methods, such as U-Net, FCN, SegNet, GCPSO, Mask-

R-CNN, and U-Net++, a potent ensemble model specifically designed for lung disease 

segmentation is created. Through independent training on datasets, each algorithm learns to 

recognize distinct patterns and traits linked to lung disorders. With this customized training, 

the group can better tackle the different obstacles that come with analyzing lung images by 

utilizing the unique capabilities of each algorithm. This hybrid technique combines the output 

of each algorithm to produce a robust and flexible segmentation model, is responsible for the 

effectiveness of ensemble learning. This ensemble is evaluated using samples from multiple 

datasets, providing a comprehensive view of its performance in different scenarios. The quality 

of segmentation is quantified using metrics such as recall, accuracy, precision, and Dice 

coefficient. Apart from improving accuracy, the ensemble facilitates detailed investigation of 

algorithmic contributions and emphasizes the relative benefits and drawbacks of each. The 

result of this repeated evaluation and improvement procedure is an ensemble model that 

performs very well in lung disease segmentation, providing a promising new avenue for the 

development of medical image analysis. After receiving individualized training, every model 

in the ensemble is put through a rigorous evaluation process. 

 



The models are given five training epochs to fine-tune their parameters based on the 

characteristics of the sampled images. After this training phase, the predictions made by each 

model are combined using an average method. Through the utilisation of each model's unique 

insights and abilities, this prediction pooling ensures a comprehensive and well-balanced 

ensemble output. The averaging process increases the resilience of the ensemble by lessening 

the impact of any outliers and raising the precision of the final segmented mask predictions. In 

essence, this approach leverages the features of many segmentation algorithms while 

emphasizing a collaborative and synergistic approach. The ensemble's ability to integrate 

several model predictions into a coherent output highlights its flexibility and suitability for 

difficult medical image analysis tasks, particularly in the field of lung disease segmentation. 

The ensemble architecture of the suggested method is shown in Figure 6. In the final stage, a 

report will be produced after the ensemble model results are considered. The viability of the 

input dataset is indicated in this report.  

4. Results and Discussion 

4.1. GAME Performance 

The proposed lung image quality assessment method was notably enhanced by integrating 

attention mechanisms into generative autoencoders (GAME). This improvement skillfully 

highlighted salient features in medical images, resulting in enhanced clarity and preservation 

of anatomical details. Quantitative measures, including structural similarity index (SSI) and 

signal-to-noise ratio (SNR), demonstrated substantial improvements in image quality. Sample 

images from NIH Chest X-ray and cheXpert data, showcased in Figure 7, depict the impact of 

GAME on image quality before and after application. Table 8 presents SNR and SSI values, 

indicating increased image quality after employing GAME in the data pre-processing step. 

Noteworthy improvements in structural similarity index and signal-to-noise ratio were 

observed across datasets, exemplified by a 4.6% SNR increase and a 7% improvement in SSI 

for NIH Chest X-ray. This pattern persisted in various datasets, illustrating the efficacy of the 

proposed method in enhancing lung image quality.  

 

 

 
Fig. 7. GAME in NIH Chest X-Ray and cheXpert datasets 

 

Table 8: Comparison of GAME Performance (Four Datasets) 

Dataset Before SNR After SNR Before SSI After SSI 

NIH Chest Xray      20.7      25.3    0.84 0.91 

CheXpert 18.6 27.8 0.77 0.86 

Curated Chest CT 22.6 28.2 0.91 0.97 

Lung-PET-CT-Dx 19.9 24.5 0.86 0.95 



 

4.2. Classification and Unsupervised ROI Performance 

Our CNN-based classification step underwent rigorous testing on four distinct datasets: NIH 

Chest Xray, Curated Chest CT, Lung-PET-CT-Dx, and CheXpert. The evaluation showcased 

the model's effectiveness in recognizing and categorizing various lung conditions. Notably, on 

the NIH Chest Xray dataset, the model achieved an F1 Score of 0.954, Accuracy of 0.957, 

Precision of 0.956, and Recall of 0.957, with an AUC-ROC value of 0.754. The CheXpert 

dataset demonstrated high accuracy, resulting in an F1 Score of 0.951, Accuracy of 0.952, 

Precision of 0.953, and Recall of 0.952, accompanied by an AUC-ROC value of 0.874. 

Remarkable performance on the Curated Chest CT dataset yielded an F1 Score of 0.960, 

Accuracy of 0.960, Precision of 0.962, and Recall of 0.960, with an AUC-ROC score of 0.958. 

Similarly, the Lung-PET-CT-Dx dataset showed proficiency, achieving an F1 Score of 0.960, 

Accuracy of 0.961, Precision of 0.960, and Recall of 0.961, supported by an AUC-ROC value 

of 0.862. AUC curves for NIH and CheXpert datasets are illustrated in Figures 8 and 9, 

providing unique AUC values for each class. The comprehensive analysis presented in Table 

9 affirms the classification model's accuracy and reliability in recognizing intricate patterns 

indicative of lung diseases, facilitated by performance metrics for precise diagnosis and 

categorization.  

Table 9: Comparison of Classification Performance (Four Datasets) 

Dataset F1 Accuracy Precision Recall AUC- ROC 

NIH Chest Xray 0.954 0.957 0.956 0.957 0.754 

CheXpert 0.951 0.952 0.953 0.952 0.874 

Curated Chest CT 0.960 0.960 0.962 0.960 0.958 

Lung-PET-CT-Dx 0.960 0.961 0.960 0.961 0.862 

 
Fig. 8. ROC Curve for the NIH X-ray Dataset        Fig. 9. ROC Curve for the CheXpert 

Dataset 

 

The proposed method's efficacy was simultaneously assessed using the Unsupervised ROI 

model, focusing on its capability to identify relevant Regions of Interest (ROI) through Cosine 

Similarity across datasets. Notably, the Unsupervised ROI model exhibited remarkable 

efficacy on the NIH Chest Xray dataset, achieving a Cosine Similarity of 0.981, highlighting 

its ability to recognize and emphasize pertinent regions in lung scans. Similarly, the model 

performed well on the CheXpert dataset, achieving a Cosine Similarity of 0.988, highlighting 

its competence in locating significant areas of interest in lung images. Exceptional performance 

was observed on the Curated Chest CT dataset, with a Cosine Similarity of 0.915, indicating 

the model's capability to identify and extract relevant regions from complex chest CT images. 



Although slightly lower, the Unsupervised ROI model demonstrated notable effectiveness on 

the Lung-PET-CT-Dx dataset, with a Cosine Similarity of 0.715. Table 10 summarizes these 

Cosine Similarity values, affirming the model's ability to recognize, highlight, and capture 

significant regions of interest in lung images across diverse medical imaging datasets, 

highlighting its precision and focus on image analysis. 

Table 10: Comparison of Unsupervised ROI Performance (Four Datasets) 

Dataset Cosine Similarity 

NIH 0.981 

ChexPert 0.988 

Curated Covid CT 0.915 

Lung-PET-CT-Dx 0.715 

Table 11: Comparison of Ensemble Model Performance (Four Datasets) 

 Ensemble Model 

Dataset F1 Score Dice Coefficient Index 

NIH Chest XRay 0.842 0.852 

ChexPert 0.857 0.865 

Curated Chest CT 0.766 0.794 

Lung-PET-CT-Dx 0.701 0.820 

The Ensemble Model, incorporating advanced techniques like U-Net, FCN, SegNet, GCPSO, 

Mask-R-CNN, and U-Net++, underwent thorough testing on four datasets. It exhibited 

precision and accuracy in sickness diagnosis and segmentation, achieving an F1 Score of 0.842 

and a Dice Coefficient Index of 0.852 on the NIH Chest XRay dataset. On the CheXpert 

dataset, it demonstrated proficiency with an F1 Score of 0.857 and a Dice Coefficient Index of 

0.865. Remarkable performance on the Curated Chest CT dataset was evident with an F1 Score 

of 0.766 and a Dice Coefficient Index of 0.794. Despite challenges in PET-CT images, the 

model identified disease-related regions effectively on the Lung-PET-CT-Dx dataset, 

achieving an F1 Score of 0.701 and a Dice Coefficient Index of 0.820. These results, detailed 

in Table 11, underscore the Ensemble Model's adaptability and effectiveness across various 

medical imaging modalities, establishing it as a reliable tool for comprehensive lung imaging 

analysis.  

4.3. Ensemble Model Performance 

The ensemble algorithms' performance, focusing on both training and testing accuracy, was 

evaluated across four datasets: NIH Chest XRay, CheXpert, Curated Chest CT, and Lung-PET-

CT-Dx. Trained for a brief five epochs, the model showcased rapid learning and accurate 

predictions with minimal CPU resources. Figure 10 visually represents the training and testing 

accuracy patterns for each dataset over the training epochs, offering insights into the models' 

adaptability to dataset features and their generalization in a limited timeframe. This emphasis 

on a short training phase underscores the goal of optimizing computing efficiency while 

maintaining robust learning. The graphical depiction serves as a valuable tool for assessing the 

model's swift learning and prediction accuracy across diverse medical imaging datasets, 

providing a concise overview of the training process. 

 



 
Fig. 10. Training and Testing Accuracy for 5 Epochs (Four Datasets) 

 

4.4. Comparative Analysis 

Using the NIH Chest X-ray, CheXpert, Curated Chest CT, and Lung-PET-CT-Dx datasets, 

among other datasets, the suggested technique demonstrated impressive resilience. The group 

of models demonstrated consistently strong performance on datasets containing a range of 

imaging modalities and acquisition strategies after integrating GAME with ensemble learning. 

The remarkable ability of the suggested method to generalize across a range of datasets 

demonstrates both its adaptability and possible therapeutic value. The proposed model 

outperformed the most sophisticated methods currently available for lung image analysis, 

according to a comparative performance analysis that measured its accuracy, sensitivity, 

specificity, F1 score, intersection over union (IoU), Hausdorff distance, dice coefficient, dice 

loss, and Matthews Correlation Coefficient (MCC). The proposed method is a promising tool 

for automated lung image quality assessment and lung disease diagnosis, utilizing attention-

guided methods in combination with a robust and adaptable ensemble. The results obtained, as 

shown in Table 12, indicate that the suggested approach has the potential to be a reliable and 

flexible solution in the field of medical image analysis. This is evidenced by its ability to 

produce high-quality findings across different datasets. 

Table 12: Comparative Analysis with State-of-the-Art Techniques (Two Datasets) 

Datase

t 

Metric Proposed 

Approac

h 

Nastnetlarge

-net-Post 

[25] 

ConvNeXt-  

ImageNet-21K 

[26] 

NIH  

X-ray  

Accuracy 0.96 0.92 0.84 

Sensitivity 0.96 0.88 0.82 

Specificity 0.96 0.94 0.82 

F1 Score              0.95 0.90 0.26 (mean) 



IoU 0.88 0.87  0.83 

Hausdorff 

Distance     

3.21 5.61 6.89 

Dice 

Coefficient       

0.85 0.92 0.73 

Dice Loss             0.15 0.08 0.27 

MCC 0.87 0.82 0.74 

cheXpe

rt 

Metric Proposed 

Approac

h 

CheXpertSh

ifa-NET [27] 

CheXpert 

Architecture 

[28] 

Accuracy 0.95 0.89 0.93 

Sensitivity 0.95 0.84 0.91 

Specificity 0.95 0.91 0.95 

F1 Score              0.95 0.92 0.92 

IoU 0.86 0.85 0.85 

Hausdorff 

Distance     

3.79 6.45 4.89 

Dice 

Coefficient       

0.82 0.86 0.89 

Dice Loss             0.18 0.14 0.11 

MCC 0.84 0.79 0.85 

 

Table 12 provides a thorough comparison between the proposed method and two existing 

approaches, Nastnetlarge-net-Post and ConvNeXt-ImageNet-21K, using various performance 

metrics on the NIH X-ray dataset. The proposed strategy demonstrates superior specificity, 

sensitivity, and accuracy compared to the other methodologies. Notably, it excels in 

maintaining a balance between precision and recall, evident in the F1 Score and Dice 

Coefficient metrics. Evaluating the cheXpert dataset, the developed technique exhibits 

impressive performance metrics, showcasing its effectiveness in disease identification and 

classification. Accurate segmentation is highlighted by higher IoU and Dice Coefficient values, 

confirming the model's precision in identifying and delineating diseased areas. In summary, 

the comparative study validates the recommended method as a reliable and versatile solution 

for medical image analysis, outperforming other approaches across various datasets. 

5. Future Works & Limitations 

Further development of our work could be explored by the implementation of explainable ai 

(xAI) based layers atop across each stage of the pipeline, that could provide a reasonable, 

trustworthy and logical understanding of the model’s decision [32]. Additionally, integrating 

feature attribution methods or saliency maps could help highlight regions that contribute 

significantly to the predicted outcome. Another avenue that could be explored is the 

implementation of advanced computer vision models such as vision transformers (ViT), which 

are known for being able to capture long range dependencies and fine-grained details within 

images [33], within the ensemble model layer. 

 

5.1.Limitations 

Although our model has performed admirably in identifying suitable datasets for lung image 

segmentation and classification, certain limitations can be observed in its implementation. One 

such limitation is the lack of transparency due to the use of black-box deep learning-based 

algorithms that do not provide reasoning for the decisions made during the prediction of the 



output [32]. Another limitation is the heavy use of computational resources, such as memory, 

during model training, which may require future implementations to either devise hardware-

accelerated solutions or utilize algorithms that are less resource-intensive. Apart from this, the 

evaluation of the images on the classification task is done solely using a CNN-based classifier. 

Future work could explore the implementation of alternate classifier models, such as vision 

transformers. Furthermore, it should be noted that data sources used to train the model may 

have an inherent bias in the collection process due to various factors, such as 

underrepresentation of a specific population demographic for lung X-rays [34] or variations 

in imaging protocols across studies. This unknown bias may slightly impact the future quality 

assessment of new images due to differences in the model's expectations. 

6. Conclusion 

This research paper proposed a novel framework for lung image quality analysis and diagnosis. 

The proposed approach involved integrating Attention Mechanisms in Generative 

Autoencoders in ensemble and unsupervised learning, showed notable improvements in lung 

disease diagnosis and image quality assessment. Across a range of datasets, the ensemble 

model—which comprised U-Net, FCN, SegNet, GCPSO, Mask-R-CNN, and U-Net++—

performed admirably. These datasets comprised Lung-PET-CT-Dx, Curated Chest CT, 

CheXpert, and NIH Chest Xray. Not only did the GAME help to detect illnesses and improve 

image quality, but they also greatly increased the model's ability to identify key components. 

The comparison analysis revealed that the suggested method outperformed the current methods 

in terms of accuracy, sensitivity, specificity, F1 Score, IoU, Hausdorff Distance, Dice 

Coefficient, Dice Loss, and MCC. The ensemble model's adaptability and effectiveness were 

immediately obvious, and it continuously yielded positive results for a variety of metrics and 

datasets. The investigation additionally showcased the ensemble model's versatility in handling 

diverse medical imaging modalities, indicating its potential for application in an expanded 

array of clinical contexts. The approach described here offers a strong and flexible tool for 

automated diagnosis of lung disorders, in addition to providing important insights into disease 

patterns and improving patient treatment. The proposed method not only advances the field of 

lung image analysis but also sets a benchmark for future medical image processing and 

machine learning research. Future work could explore the implementation of xAI atop the 

model layers, and ViT based algorithms within the ensemble model. 
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