
This is a repository copy of Evaluation of generative AI models for processing single-cell 
RNA-sequencing data in human pancreatic tissue.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/222102/

Version: Preprint

Preprint:
Turgut-Ogme, S.S., Aydin, N. and Kurt, Z. orcid.org/0000-0003-3186-8091 (Submitted: 
2025) Evaluation of generative AI models for processing single-cell RNA-sequencing data 
in human pancreatic tissue. [Preprint - bioRxiv] (Submitted) 

https://doi.org/10.1101/2025.01.15.633192

© 2025 The Author(s). This preprint is made available under a Creative Commons 
Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

Evaluation of Generative AI Models for Processing Single-Cell 

RNA-Sequencing Data in Human Pancreatic Tissue 

Sultan Sevgi Turgut ÖGME1, Nizamettin AYDIN2, Zeyneb KURT*3  

1 Department of Computer Engineering, Yildiz Technical University, Istanbul, Türkiye 

2 Department of Computer Engineering, Istanbul Technical University, Istanbul, 
Türkiye 

3 Information School, The University of Sheffield, The Wave, 2 Whitham Rd, Sheffield 
S10 2SJ, United Kingdom 

 
* corresponding author:  

E-mail: z.kurt@sheffield.ac.uk  

 

Abstract 

Single-cell RNA-seq (scRNAseq) analyses performed at the cellular level aim to 
understand the cellular landscape of tissue sections, offer insights into rare 
cell-types, and identify marker genes for annotating distinct cell types. Additionally, 
scRNAseq analyses are widely applied to cancer research to understand tumor 
heterogeneity, disease progression, and resistance to therapy. Single-cell data 
processing is a challenging task due to its high-dimensionality, sparsity, and having 
imbalanced class distributions. An accurate cell-type identification is highly 
dependent on preprocessing and quality control steps. To address these issues, 
generative models have been widely used in recent years.  Techniques frequently 
used include Variational Autoencoders (VAE), Generative Adversarial Networks 
(GANs), Gaussian-based methods, and, more recently, Flow-based (FB) generative 
models. We conducted a comparative analysis of fundamental generative models, 
aiming to serve as a preliminary guidance for developing novel automated 
scRNAseq data analysis systems. We performed a meta-analysis by integrating four 
datasets derived from pancreatic tissue sections. To balance class distributions, 
synthetic cells were generated for underrepresented cell types using VAE, GAN, 
Gaussian Copula, and FB models. To evaluate the performances of generative 
models, we performed automated cell-type classification tasks in original and 
dimensionality-reduced spaces in a comparative manner. We also identified 
differentially expressed genes for each cell type, and inferred cell-cell interactions 
based on ligand-receptor pairs across distinct cell-types. Among the generative 
models, FB consistently outperformed others across all experimental setups in 
cell-type classification (with an F1-score of 0.8811 precision of 0.8531 and recall of 
0.8643). FB produced biologically more relevant synthetic data according to 
correlation structures (with a correlation discrepancy score of 0.0511) and cell-cell 
interactions found from synthetic cells were closely resembling those of the original 
data. These findings highlight the potential and promising use of FB in scRNAseq 
analyses. 
 
Keywords: Generative models, single-cell rna-seq, pancreatic tissue, synthetic cells 
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Author Summary 

Single-cell RNA sequencing (scRNA-seq) analyses focus on identifying distinct cell 
types and marker genes. Traditional methods face challenges with high 
dimensionality, sparsity, and sample size imbalances among cell types, limiting 
automated and unbiased cell-type identification. Generative AI models address these 
issues by generating synthetic cells for under-represented types, preserving 
biological and contextual relevance, and employing embedding mechanisms to 
reduce sparsity and dimensionality. We compared widely used generative models 
(Variational Autoencoders, GANs, Gaussian Copula, and FB model) using integrated 
datasets. Synthetic data quality was assessed via cell type classification with 
Random Forest model in original and reduced feature spaces, correlation of 
differentially expressed genes, and ligand-receptor interaction inference. The FB 
model showed the highest potential for creating biologically accurate scRNA-seq 
profiles. We presented a guideline for automated cell-type identification systems by 
addressing gaps in single-cell analysis characteristics through the integration of 
widely used computational biology datasets and generative models (including a 
novel one, FB model). 
 

1. INTRODUCTION  

 

Single-cell RNA-sequencing (scRNAseq) analysis aims to identify different cell types 

that makeup tissues or tumour microenvironments [1] as well as the marker genes 

that can distinguish particular cell types from others. Various software platforms and 

tools have been presented for the implementation and evaluation of these analyses 

[2,3]. Cell type and marker gene determination usually needs manual operations and 

it is quite time-consuming. Therefore, in recent years, emphasis has been placed on 

automating these steps.  

 

Among the analysis tools, Seurat [2] and Single-Cell-Experiment (SCE) [3] R 

packages stand out and their workflows are similar. Both workflows include; quality 

control, normalization, feature selection, cell integration, dimension reduction, and 

visualization steps. After the pre-processing steps, a clustering method (e.g. 

Kmeans) groups similar cells, and Differential Gene Expression (DGE) is identified 
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for the annotation of cell types. Especially for the annotation purposes, 

time-demanding work is required in addition to various analyses including manually 

comparing differentially expressed genes in each cell cluster. So, researchers 

focused on automation of cell-type identification with low error rates. Comprehensive 

comparative studies have been conducted for this purpose using machine learning 

models such as Random Forest, Support Vector Machines, Multi-Layer Perceptrons, 

and K-Nearest Neighbors, etc. by utilizing datasets from differing species (human, 

mouse) [4,5], different technologies [6], with sizes, and complexity. 

 

Pre-processing steps importantly affect the downstream processes, i.e. the 

identification of cell-types and marker genes. Hence in recent years, researchers 

have been developing frameworks to improve pre-processing steps. Single-cell data 

consists of large-scale and sparse matrix structures that are computationally 

challenging to process. Hence the pre-processing step is crucial in terms of affecting 

the processing time and accuracy of the downstream estimations made. Another 

problem is the imbalanced class distribution across different cell clusters. Since the 

validation of findings needs to be carried out in high-cost laboratory environments 

that contributes to the class imbalance issue, the number of publicly available 

datasets with annotated and labeled cell types is quite limited [7]. Generative models 

can address the class imbalance problem by generating synthetic cells, while their 

embedding mechanisms effectively mitigate the sparsity and high-dimensionality 

issues [8]. 

 

Some studies have utilized the latent space representations of generative models to 

address the sparsity by reducing the dimensionality. Gronbech et al. [9] proposed a 
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Variational Autoencoder (VAE) based single cell VAE (scVAE) method. This method 

skips a precise data preprocessing step by using the original count matrix as input 

and offers a model that can reliably estimate the representations of cells in the latent 

space. The Gaussian Mixture method, proposed by Choi et al. [10] obtained 

embedding representations by using the VAE method on both cell and gene basis. 

Gene-gene relationships and hub genes were identified by creating gene-based 

embedding representations. On the other hand, generative models have been 

investigated to address the issues around imbalanced class distributions by 

generating synthetic cells. Marouf et al. [11] proposed the scGAN model using 

Generative Adversarial Networks (GANs) for a realistic generation of scRNAseqdata. 

Their model learns non-linear gene-gene dependencies from complex, multi-cell type 

samples and uses this information to generate synthetic cells. Yu et al. [12] 

introduced a novel method called MichiGAN, which combines the strengths of VAE 

and GAN models. This deep generative model performs sampling using 

representations that semantically manipulate cells without compromising data 

quality. Heydari et al. [13] presented the Automated Cell-Type-informed Introspective 

Variational Autoencoder (ACTIVA) model, which utilizes conditional VAE conditioning 

on cell-type information during the cell generation process. It consists of three 

networks; an encoder which is employed as a discriminator distinguishing synthetic 

cells from real ones, a decoder that works as a generative network creating synthetic 

data, and a cell-type classification network. ACTIVA demonstrates superior 

performance compared to solely GAN-based models by generating more realistic 

synthetic cells. Palma et al. proposed a flow-based generative model named 

cellFlow [14] utilizing Conditional Flow Matching [15]. This model is based on a 

likelihood model and negative binomial distribution. The authors highlighted the 
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importance of using raw counts for synthetic cell generation and downstream 

analysis. They compared the performance of several generative models to cellFlow, 

finding that cellFlow achieves results comparable to existing methods. 

 

In summary, the structure of single-cell data has urged researchers to adopt 

generative models into their work. The approaches developed predominantly revolve 

around VAE, GAN, Gaussian-based models, and more recently, Flow-Based models. 

Based on this, our study aims to evaluate fundamental generative models as a 

preliminary work to guide the research community on the development of new 

single-cell workflows incorporating generative models. Additionally, we seek to 

highlight the generative capability of relatively more novel and less commonly used 

Flow-Based models compared to other methods. 

  

2. RESULTS 

Fig 1 presents our study’s overall framework. Our workflow consists of dataset 

curation, data preprocessing, dimensionality reduction, synthetic cell generation, and 

cell-type classification. It also incorporates dataset evaluation, marker gene 

identification, and cell-cell interaction analysis as key components in downstream 

analyses.  
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Fig 1. Overall Workflow diagram 

2.1. Preparing the Meta Data 

Pancreatic tissue  datasets are accessible through the R packages scRNAseq and 

the SingleCellExperiment. SingleCellExperiment [3] has a similar flow to that of 

Seurat. Firstly, the dataset labels were corrected based on the literature [16]. Classes 

with less than 10 samples/cells were eliminated and “unclear”, “co-expression”, “not 

applicable”, and “unclassified”     cells were removed from the dataset. Cell types that 

belong to the same cell category but were incorrectly annotated with different labels 

were merged. Quality control analysis is applied to each dataset individually as 
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follows: First, genes expressed in less than 100 cells and cells expressing less than 

100 genes are filtered out. Cells with very high frequencies (doublets, outliers) are 

eliminated. Then, the mitochondrial frequency of the cells and the external RNA 

Controls Consortium (ERCC) were examined and cells with high ERCC values were 

eliminated. However, it is required to examine these values   comparatively, cells with 

low mitochondrial frequency and high ERCC values   may be low quality, while cells 

with high mitochondrial frequency and low ERCC values   may be undamaged active 

cells. After the quality control step, the datasets are individually normalized using 

sum factors and logarithmic transformation. The common genes of the datasets are 

kept to enable meta-analysis for the merged data. Since datasets are curated from 

different resources, their integration may cause an unintentional bias introduced by 

the batch effect. Hence, they need to undergo a batch effect correction process. Fig 

2 shows the plots of meta-analysis data before and after batch correction performed. 

Before the batch effect removal, cells obtained from different studies appear 

separately from one another. But after the batch effect correction, they are more 

homogeneously distributed on the 2D plane, as represented by the first two principal 

components of the cells. In the feature selection step, highly variable genes are 

chosen. The variance of log-expression profiles of each gene is modeled and 

features are determined based on a suitable mean-variance curve. As a result, 7514 

genes were selected from 15839 genes, and the final meta-analysis data has a size 

of 14172 (cells) x 7514 (genes).  
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Fig 2. (A) Before and (B) After batch effect removal  

 

2.2. Dimensionality Reduction 

We provided inputs to the generative models using three different settings: 7514 data 

features with no  dimensionality reduction,  data features reduced to a size of 1500, 

and data features reduced to a size of 2500. We downsized dimensions of the 

original data to 1500 and 2500 using PCA. The elbow method was used to 

determine the optimal dimension size, which returned  2500 (starting point of the 

curve flattens in x-axis) as the optimum value with a variance of 0.7593(y-axis), and 

the relevant graph is shown in Fig 3. Additionally, we tested a lower dimension size, 

1500, which has an explained variance value of 0.5917 to evaluate generative 

models under different downsized space conditions.  
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Fig 3. Determining the optimal dimension size for PCA 

 

2.3. Synthetic Cell Generation 

To address the class imbalance issue in our training dataset, we applied four 

generative AI models: TVAE (Tabular Variational AutoEncoder), ctGAN (conditional 

tabular Generative Adversarial Network), Gaussian Copula (GC), and Flow-Based 

model, respectively. Each model was used to generate synthetic samples to ensure 

a more balanced class distribution across all cell types. 

We explored the sample size distribution across classes within the training dataset to 

determine the optimal number of synthetic samples to generate. The third quartile 

(Q3) value of the sample distribution, which equates to 759, was selected as the 

target sample size for data generation. For the classes that contain fewer than 759 

samples, synthetic cells were generated to reach the number of 759. A minimum 

sample size of 759 cells in each class was ensured, enhancing the robustness of our 

model against the class imbalance issue. Fig 4 shows the number of original train 

samples, synthetic samples and test sets across distinct cell types.  
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Fig 4. Distribution of cell counts across distinct  cell types 

 

2.4. Differentially Expressed Genes (DEG) Identification 

Differential Gene Expression Analysis was performed on the test data to identify the 

top five DEGs associated with each distinct cell type. Among the identified DEGs 

(adjusted P< 0.05 and log2FC> 1), genes that are mutually exclusive with other cell 

type categories can be identified as candidate marker genes. [17,18]. For each cell 

type, violin plots of the top five significant DEGs were generated, and mutually 

exclusive genes were identified as candidate marker genes for the corresponding 

cell type. Examples of the generated violin plots are shown in Fig 5. We conducted a 

literature review to explore previous studies that validated any of the genes listed 

among the top five DEGs using resources such as DisGeNET [19,20], GeneCards 

[21,22], and a PubMed search. Some examples of mutually exclusive DEGs that are 

found in pancreatic tissue, relevant cell-type and associated with tumour include: 

S100A14 [23], FLT1 [24], PVALP [25,26], RGS5 [27], TPSAB1 [28,29], ITGB2 

[30,31], CSF1R [32,33].  
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Fig 5. Example of mutually exclusive DEGs found in literature (A) S100A14 (B)FLT1, 

(C) PLVAP, (D) RGS5, (E) TPSAB1, (F) ITGB2, (G) CSF1R 

 

2.5. Evaluation of Cell Embeddings 

The original training samples, test samples, and generated cells (created solely from 

training samples) were embedded in a 2-dimensional space using PCA. The 

distribution of samples (original cells plus synthetic cells created using different 

generative models) on a 2-D scatter plot is shown in Fig 6. Generative models 

should preserve both biological and contextual patterns present in original data 

points and retain the relationship motives that exist between original features. So, we 

evaluated the correlations of the top-5 genes and analyzed the differences between 

the original and generative sets. To assess this, the Correlation Discrepancy (CD) 
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metric was used, CD calculates the differences in correlation structures. Lower CD 

values indicate that the generated data has a similar structure to that of the original 

data.  We used the top five DEGs as features while calculating the CD. We avoided 

using the training data samples, while calculating the CD scores, as the training set’s 

CD scores would be expected to be close to zero. Instead, we used unseen and 

unprocessed test set samples for comparison to assess which generative model 

demonstrates better generalizability.  As shown in Table 1, the FB model has the 

lowest CD value, showing its superiority to the other three generative models in 

creating real-like synthetic data.  

 

Fig 6. Distribution of original training, generated (synthetic) and test cells in 

2-dimensional space where data generation is done by (A) ctGAN, (B) TVAE, (C) 

GC, (D) FB 
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Original Train  

vs  
Test 

ctGAN  
vs  

Test 

TVAE  
vs  

Test 

GC  
vs  

Test 

FB  
vs  

Test 

CD 0.0149 0.0590 0.0902 0.1602 0.0511 

      Table 1 CD values calculated between the synthetic and test data 

 

2.6. Cell Type Classification 

Cell type classification was performed using the Random Forest (RF) classification 

model. We trained the RF with solely original data (i.e. real cells) as well as with 

merging the original (real) data with synthetic cells that are generated by different 

generative models. Afterward, the RF model was evaluated on a separate test set, 

which was not used for synthetic data generation to avoid any data leakage, for each 

experimental setup. Table 2 demonstrates the evaluation results where we have not 

applied any feature extraction process and used selected highly variable genes 

among the original features as inputs. The best-performing result is highlighted in 

bold, while a star next to a result indicates the second-best performance. The results 

show that while ctGAN demonstrated a slight advantage in the Precision metric, the 

Flow-Based model achieved the highest overall performance across all metrics. 

 

 Original ctGAN TVAE GC FB 

precision 0.8161 0.8548 0.7957 0.8135 0.8531* 

recall 0.7884 0.8702* 0.8041 0.7975 0.8811 

F1 0.7996 0.8594* 0.7977 0.8038 0.8643 

Table 2 Test results for cell-type classification without performing feature extraction 
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A secondary approach to comparing generative models is where we generated 

synthetic cells from the original data, whose dimensionality is reduced to 1500 and 

2500, respectively, utilizing PCA. Similarly, the generated cells were combined with 

the original cells, and cell type classification was performed using the RF model. Fig 

7 shows Precision, Recall, and F1-measure results for experimental setups where 

the first 1500 and 2500 principal components were used as input features. FB 

performs superior to all other generative models across all evaluation metrics, 

followed by TVAE. 

 

 

Fig 7.  Test performance results for cell-type classification where feature extraction is 

performed, where the dimension is reduced to 1500 and 2500, respectively  (A) 

precision (B) recall (C) F1-score 

 

 

2.7. Inferring Cell-Cell Interactions 
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For inferring cell-cell interactions through identifying potential ligand-receptor 

communication pairs, CellPhoneDB tool is frequently preferred [34,35]. We 

investigated the cell-cell interactions in the test, and generative models  data. Fig 8 

presents heatmaps illustrating the total number of significant cell-cell interactions that 

exist between different cell types.  

From Fig 8-A (heatmap of cell-cell interaction for the test data),  

● Cell type crosstalks between PSC (Pluripotent stem cell)-mesenchymal and 

PSC-activated stellate show the highest number of interactions. 

● Mesenchymal cells interact with cell types PSC, activated stellate, endothelial, 

quiescent stellate. 

● PSC cells interact with: mesenchymal, activated stellate, endothelial, 

quiescent stellate. 

● Activated stellate cells interact with: PSC, mesenchymal, ductal, endothelial. 

● Endothelial, ductal and Quiescent stellate cells interact with: PSC, 

mesenchymal cells. 

The cell-cell interaction heatmap for the  test set samples is shown in Fig 8-A. 

Heatmaps for the cells generated by the four generative models (Fig 8 B-E) have 

higher numbers of interactions but their patterns are similar to the heatmap of the 

test set, except for the GC model.  
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Fig 8. Total number of significant interactions between cell types for (A) Test set, (B) 

FB, (C) TVAE, (D) ctGAN, (E) GC.   

 

Additionally, we discovered ligand-receptor pairs, representing the cell-cell 

crosstalks, for the test set and generative models. Fig 9 demonstrates ligands, 

receptors and their interactions for the test set samples. We used the top first most 

significant DEGs of all cell types for plotting. Due to the large number of interactions 

between cells, we are unable to show all of the potential ligand-receptor pairs that 

are identified on a single dotplot. The X-axis refers to cell-cell interaction pairs, the 

y-axis refers to ligand-receptor pairs. The size of the dots reflects the percentage of 

the cells in interaction for the corresponding cell types, and the color of the dots, 

changing from blue to yellow, represents the average of the mean expression value 

of ligand-receptor pairs in corresponding cells (yellow represents higher 

expressions).  The red outline indicates statistically significant (p < 0.05) 

16 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 19, 2025. ; https://doi.org/10.1101/2025.01.15.633192doi: bioRxiv preprint 



 

ligand-receptor interaction observations. Therefore, it can be assumed that dots with 

a statistically significant (red outline) representation and a high-valued (yellow) 

expression are the strongest  and most significant interactions.  

Fig 9 Ligand-receptor pairs representing the cell-cell interactions. 

 

Fig 9 can be summarized as follows;   

Ligands correspond to cell type 1, while receptors correspond to cell type 2. First, we 

listed the cell types associated with the ligands and then identified significantly 

observed and high-valued (red outline and yellow dots) pairs.   

● COL4A2 (ligand) - integrin-a10b1-complex (receptor), a11b1-complex 

(receptor), a1b1-complex (receptor), a2b1-complex (receptor): Ligands 

listed here belong to mesenchymal and PSC cell types. Significant and 

high-valued interactions (red outline and yellow dots) exist between the 

mesenchymal-PSC pair, mesenchymal-endothelial pair, and 

mesenchymal-mesenchymal pair.      
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● COL6A2 (ligand) - integrin-a10b1-complex (receptor), 

integrin-a11b1-complex (receptor), integrin-a1b1-complex (receptor), 

integrin-a2b1-complex (receptor): Ligands listed here belong to PSC, 

activated stellate, mesenchymal, and quiescent stellate cell types. Significant 

and high-valued interactions (red outline and yellow dots) exist between the 

activated stellate-PSC pair, activated stellate-endothelial pair, and activated 

stellate-mesenchymal pair. 

● GHRL (ligand) - GHSR (receptor): Represent significant and high-valued 

interactions (red outline and yellow dots) between the epsilon-delta cell type 

pair. 

● SST (ligand) - SSTR1 (receptor), SSTR2 (receptor), SSTR3 (receptor): 

Represent interactions between delta cells and others including 

activated-stellate and PSC cells. 

Dot plots of generative models (S1 Appendix) are similar to those of the test set, with 

the exception of GC. Generative models have a higher number of interactions 

overall. However, the significant and high-valued cell-type interaction pairs remain 

consistent with the test. We observed that the heatmaps shown in the Fig 8 are in 

line with dot plots representing the strong interactions between cell types PSC, 

mesenchymal, and activated stellate cells, and so on. 

 

3.  DISCUSSION  

Preprocessing steps in scRNAseq analysis are crucial for identifying cell types, 

because single cell data is sparse, has large-dimensionality and imbalanced class 

distributions. Although there are various publicly available scRNAseq datasets in the 

literature, certain cell types are under-represented and form a minority category, so 
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especially the automated identification of these cell groups is challenging. To 

address these issues,  generative models have been proposed and used in recent 

years. The VAE model has been widely employed in several studies [9,13]. 

Additionally, GANs and Gaussian-based models have also been explored [11,36]. 

Flow-based models have very recently been applied to single-cell analysis studies 

and indicated a promising potential. We conducted a comparative study by using the 

most prominent and promising generative models within a well-defined workflow. Our 

aim was to provide a preliminary pilot study that can serve as a reference guidance 

for developing new, more robust, and automated cell type identification workflows 

that benefit from generative models to address class imbalance, sparsity, and 

high-dimensionality issues. 

We conducted a meta-analysis by merging commonly used four scRNAseq datasets 

[4–6,37]  including cell type annotations with a focus on pancreatic tissue, which has 

been rarely examined. Subsequently, we used four generative models to balance the 

number of samples across different classes by increasing the sample sizes of 

minority classes. Synthetic cells generated by each generative model were 

combined with the training data. The purpose of generative models is to produce 

synthetic data which is similar to the original one. We demonstrated distributions of 

training, test, and generated cells along with their cell type annotations in Fig 6. 

While distinct cell types appear to be separable across all models, the 2-D plot of the 

FB model (Fig 6-D) shows more distinct separation between different cell types, as 

expected for the original cells. To validate this observation, the Correlation 

Discrepancy (CD) metric was used for measuring the discrepancy between train vs 

test set (as a ground-truth) samples and generated (synthetic) vs test set samples. A 

smaller CD value indicates higher similarity and the FB model achieved the smallest 
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CD value, 0.0511 (Table 1), implying that it generates samples most similar to the 

original test data. 

The RF, which is a supervised classification model, was trained for cell type 

classification. Trained models were tested on a previously unseen  test dataset. As 

given in Table 2, the FB model outperformed other methods, followed by the ctGAN 

model. TVAE and GC models lagged behind. Furthermore, one of the key steps in 

single-cell analyses is the dimensionality reduction step, where many 

scRNAseq-analyser tools utilize PCA. Similarly, we reduced the dimensions of the 

original data from 7514 to 1500 and 2500, respectively, using PCA to evaluate the 

performance of generative models in the realistic data generation task. As shown in 

Fig 7, the FB model demonstrates superiority in terms of precision, recall, and 

F1-measure over other methods. TVAE performed better when the dimensionality 

reduction is performed, while other methods are less effective with dimensionality 

reduction when compared to the case of using original, i.e. high-dimensional, input 

features. 

Original single-cell data contains further biological insights, so it is expected that the 

synthetic data can indicate  biologically similar and meaningful outputs. To assess 

this, cell-cell interactions were inferred and analyzed. In Fig 8, heatmaps of cell-cell 

interactions were generated using ligand-receptor pairs for test and generative 

model sets. Among the generative models, the number of cell-cell interactions is 

similar to those of the test set, except for the GC model.  To validate these outputs, 

ligand-receptor pairs were analyzed and cell-cell interactions inferred between cell 

types (e.g. Fig 9 and S1 Appendix) were found to be consistent with interactions 

shown in the heatmaps (Fig 8). 
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As a result, synthetic cells produced by generative models were analyzed in terms of 

their cell type classification performances, feature associations, and ability to 

describe the cell-cell interactions. Overall, the FB model is a promising technique 

that is suggested to be considered and included in newly developed single-cell 

analysis tools while addressing computational issues common to scRNAseq 

processes (i.e. class imbalance, sparsity and high-dimensionality). Consequently, we 

presented a guideline for a generative model-based automated cell-type 

identification, which is our contribution to the knowledge and is open to further 

improvement and developments. In the future, we also aim to explore pancreatic 

cancer scaRNA-seq datasets to identify interactions between and potential 

biomarkers of distinct cell types that make up the tumor microenvironment. 

Pancreatic cancer calls for a better understanding due to its prevalence, poor 

prognosis and low survival rates [38,39]. We also plan to extend application of our 

pipeline to scaRNA-seq data from other cancer types or health conditions.  

4. MATERIALS AND METHODS  

4.1. Datasets 

Relatively limited attention is paid to pancreatic tissue in the literature compared to 

other tissues. To conduct a comprehensive meta-analysis through integrating various 

datasets, the human pancreas scRNAseq datasets were curated from sources 

including  GEO Repository [40]. Among the datasets frequently used in 

computational studies, Baron [4], Muraro [5], Segerstolpe [6], and Xin [37] were 

selected for our meta-analysis. These datasets, which are appropriate for a 

preliminary work while assessing generative models, were selected as they possess 

labels/annotations for cells, have a reasonable size, and are widely used. Table 3 

displays the technologies and the cell counts. 
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Dataset Technology Cell 

Baron et al year inDrop 8569 

Muraro CEL-Seq2 2126 

Seg Smart-Seq2 2038 

Xin SMARTer 1600 

Total  14333 

     Table 3 Datasets 

 

4.2. Dimensionality Reduction 

We used PCA [41], which is one of the most commonly used dimensionality 

reduction methods . The basic idea underlying the   PCA is to find the first principal 

component with the largest variance in the data and then search for the second 

component that is uncorrelated with the first component and explain the next largest 

variance in the same way, and proceed with the identification of the next components 

similarly. This process is repeated until the new component becomes almost 

ineffective in terms of contributing to explaining variance in the original data. It 

consists of the following steps: standardizing the data, creating a covariance matrix, 

eigenvalue decomposition, and representing the data in the latent space. PCA is 

commonly used for both dimension reduction and visualization. We used the PCA 

function from the Python scikit-learn library. The optimal number of PCs is 

determined using an elbow plot. Components with highest variance values are kept, 

so the cumulative sum of the explained variance ratios (shown in the y-axis) is 

calculated for each number of components (x-axis) in the elbow plot. The elbow point 

(or knee point), where the starting point of the curve flattens and has most of the 
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variance without redundant components, is selected as the optimal PC number. We 

created the elbow plot with KneeLocator function from the Python kneed library. 

 

4.3. Class Imbalance Issue in scRNAseq Data 

In scRNAseqdata, there is usually an imbalance in sample sizes of distinct cell type 

categories. There are various approaches to eliminate this problem. Synthetic 

sample generation is an approach to creating new synthetic samples for classes with 

fewer samples. The main purpose of generative models is to capture the underlying 

pattern and structure of the training data and create new synthetic data points that 

are statistically similar to the original data.  

Patki et al. [42] created a synthetic data generation python library  called Synthetic 

Data Vault (SDV) for processing tabular data. It is designed to learn complex 

dependencies of features in datasets and create synthetic data that preserves these 

dependencies. Generative models are mostly used for creating images; however, the 

SDV library was particularly developed to facilitate the use of generative models on 

tabular data. This library includes ctGAN, TVAE, and GC models and it has not been 

applied to scRNAseq datasets before. To the best of our knowledge, our study is the 

first to apply this library to a scRNAseq dataset.  

Generative models were employed with the training data, while separate test data 

was reserved for downstream analyses and cell type classification. This approach 

ensured that there was no data leakage from the test set during the synthetic data 

generation process. 

 

4.3.1. Conditional Tabular GAN (ctGAN) 
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ctGAN is a  GAN model specifically designed for tabular data. The model learns 

patterns of the features from the original dataset and generates synthetic data 

samples that preserve these patterns. GANs [43] consist of two networks that 

compete with each other: one is a generative network that takes a random noise as 

input and generates new samples that look like samples from the dataset, and the 

other one is a discriminator network that tries to distinguish between the real and 

generated (synthetic) samples. Throughout this comparative training process, the 

overall model tries to generate more realistic and diverse samples. ctGAN was 

trained with 50 iterations and other parameters were kept at default values.  

 

4.3.2 Tabular Variational Autoencoder (TVAE) 

TVAE is a VAE model designed for tabular data. VAE models learn to encode input 

data into a lower-dimensional latent space and then generate new examples by 

randomly decoding data points from this space. VAE models learn a distribution 

representing the patterns in the dataset and then generate new samples using these 

patterns learned.  TVAE was run with 50 iterations and other parameters were kept 

at default values. 

 

4.3.3 Gaussian Copula (GC) 

GC is a statistical technique used for modeling the dependency structure between 

variables. Copula models the marginal distributions of individual variables 

independently and then learns the dependency structure between these independent 

variables using Gaussian distribution. GC was run with 50 iterations and other 

parameters were kept at default values. 
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4.3.4 Flow-Based Model (FB) 

FB generative models estimate the exact likelihood of data points, and learn to map 

data to a latent space and vice versa using invertible transformations. The basic idea 

of   these models [44] is to map a simple distribution, usually a Gaussian distribution, 

to the target data distribution as close as possible. By applying a series of reversible 

transformations, these models can capture the gene-gene (i.e. feature) 

dependencies in the data. nflows [45] python library was used and  

MaskedAffineAutoregressiveTransform [46] was selected as a transformation 

module. We utilized the method presented in [47] for implementation.  For 

hyperparameter optimisation, combinations of the number of layers {1,2,3,4}, the 

number of hidden features {128, 256, 512, 1024}, and the learning coefficients {1e-2, 

1e-4, 1e-6} were tested. The optimal number of layers was identified as 1, the 

number of hidden features as 1024, the learning coefficient as 1e-6, and the model 

was executed through 50 iterations.  

4.4. Cell Type Identification 

We used labeled/annotated data to overcome the class imbalance issue. Therefore, 

the RF, which is a frequently preferred and employed supervised learning model 

[25,26], was used. A comparative study was conducted to evaluate the classification 

performance of the experimental setups where  synthetic cells generated by four 

generative models in both the original feature and dimensionality-reduced spaces.  

RF is defined as a forest of decision trees. Decision trees place samples in a 

hierarchical tree structure from the root node to the leaves. The 

RandomForestClassifier function was used by using sklearn library, and the gain 

criterion parameter was set to "entropy". The "n\_estimators" parameter, which 

specifies the number of trees in the forest, was set to 100. The "max\_depth" 
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parameter specifies the maximum depth of the tree and was set to "none", which is 

the default value. 

 

4.5. Performance Metrics 

We evaluated the cell-type classification performance of cells generated by 

generative models using precision, recall, and F1-score metrics. Additionally, to 

assess the correlation between synthetic and original cells, Correlation Discrepancy 

metric [13] was utilized. 

Precision: A metric that measures the ratio of accurately predicted positive samples 

to all samples predicted as positive. TP: true positives, FP: false positives. 

TP/(TP+FP) (Eq. 1)  

 

Recall: Measures the ratio of accurately predicted positive samples to all actual 

positive samples. FN: false negatives 

TP/(TP+FN)  (Eq. 2)  

 

F1-measure: A metric that strikes a balance between precision and sensitivity. 

F1-measure is calculated using the harmonic mean of precision and recall values. 

2*Precision*Recall/(Precision+Recall) (Eq. 3)  

 

Accuracy: The ratio of correctly predicted samples to the total number of samples. 

TN: true negatives 

(TP+TN)/(TP+TN+FP+FN)  (Eq. 4)  
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Correlation Discrepancy (CD): measures pairwise correlation matrices of two sets of 

data by using Pearson correlation, represented by R. Then, it calculates the 

differences of two correlation matrices and gets their average value. We used this 

metric  to assess the similarity of synthetic (generated) samples to the original ones. 

    CD=mean(|R(original) −R(generated) |)  (Eq. 5)  

 

4.6. Differentially Expressed Genes Identification 

Differential Gene Expression Analysis is performed to detect genes expressed 

differently  across distinct cell types. DEGs demonstrate statistically significant 

differences in gene expression profiles between cell types. DEGs were detected 

using Seurat R-package with findAllMarkers function     [50]. Statistical test parameter 

was selected as LR (Logistic Regression). The statistical thresholds are adjusted 

P-value < 0.05 and average log2 Fold Change(log2FC) > 1. We identified the top 5 

DEGs for each cell type to evaluate the differences in correlations between features 

for original and generated cells [13]. 

 

4.7. Inference of Cell-Cell Interactions and Ligand–Receptor Pairs 

Inferring cell-cell communications is essential for understanding several biological 

processes [28,29]. CellphoneDB is a publicly available tool that identifies 

ligand-receptor interactions. Cell-cell interactions between cell types are predicted 

using the Python package CellPhoneDB v5.0.0 [51] with default parameters. 
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