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In recent years, non-Hermitian quantum physics has gained a lot in popularity in the quantum
optics and condensed matter communities in order to model quantum systems with varying sym-
metries. In this paper, we identify a non-standard inner product that implies bosonic commutator
relations for local electric and magnetic field observables and leads to a natural local biorthogonal
description of the quantised electromagnetic field. When comparing this description with an alter-
native local Hermitian description, in which the states of local photonic particles – i.e. of so-called
bosons localised in position (blips) – are orthogonal under the conventional Hermitian inner prod-
uct, we find that there is an equivalence between the two approaches. Careful consideration needs
to be given to the physical interpretation of the different descriptions. Whether a Hermitian or a
non-Hermitian approach is more suitable depends on the circumstances that we want to model.

I. INTRODUCTION

In classical electrodynamics, the fundamental equa-
tions of motion are Maxwell’s equations: a set of highly-
symmetric differential equations that describe the rela-
tionship between the local electric and magnetic fields
defined at each point in space and time. In contrast to
this, in quantum electrodynamics, we routinely decom-
pose the local electromagnetic (EM) field into objects
called photons which have a well-defined momentum that
does not change in time. Due to the Heisenberg uncer-
tainty principle, monochromatic photons have a maxi-
mally undefined location. A key reason for expressing the
EM field in this way is that monochromatic photons are
energy eigenstates and thus valuable for modelling sce-
narios regarding energy conservation. For example, when
an atom absorbs a photon at its resonance frequency, it
will be excited to a higher energy state separated from
the initial state by a well-defined amount of energy.

As recently emphasized, for example in Refs. [1], the
symmetries of monochromatic photons are too restrictive
making them insufficient to describe all possible wave
packets allowed by classical electrodynamics. For exam-
ple, the solutions of Maxwell’s equations include highly-
localised wave packets which propagate at the speed of
light without dispersion. But when we superpose the
monochromatic photon states that are allowed by stan-
dard quantum electrodynamics [2] to form a highly lo-
calised wave packet, dispersion cannot be avoided. Non-
local descriptions of light [3–6] therefore make it chal-
lenging, for example, to model the dynamics of electric
and magnetic field vectors in the presence of optical el-
ements, which are highly-localised objects. In the lit-
erature, many authors have therefore discussed possible
local quantisations of light and, in particular, considered
how to construct local bosonic excitations of the EM field
(see e.g. Refs. [1, 7–13] and references therein). These lo-
cal excitations, like the monochromatic photon states we
are used to, can be created and annihilated by a set of
creation and annihilation operators that commute at all
non-zero displacements.

Nevertheless, it is often convenient to work with states

of well-defined energy, since they have a particularly use-
ful property. To see this, let us examine Ehrenfest’s the-
orem, which describes how expectation values evolve in
time. When an operator A has no implicit time depen-
dence, Ehrenfest’s theorem states that the time deriva-
tive of the expectation value of A with respect to a time-
dependent state |ψ(t)〉 is simply given by

d

dt
〈ψ(t)|A |ψ(t)〉 = − i

~
〈ψ(t)| [A,H] |ψ(t)〉 , (1)

where H is the Hermitian Hamiltonian of the system.
This equation shows that the dynamics of expectation
values is intimately linked to the commutator between
the Hamiltonian and other operators. When both the
operator A and the HamiltonianH are expressed in terms
of bosonic operators, calculations of time derivatives of
expectation values become very straightforward. Clearly,
utilising operators with bosonic commutator relations is
in general highly advantageous. For this reason, it is
typically the monochromatic photon operators that are
used when constructing observables.

Unfortunately, as mentioned above, monochromatic
photons are non-local which makes modelling interac-
tions with localised objects challenging. For example,
in theoretical descriptions based on the standard inner
product of quantum physics, the commutator of the lo-
cal field observables, E and B, with the system Hamil-
tonian, H, is not simple. In this paper, we therefore
consider an alternative representation of the EM field
in terms of local Fock-space excitations that belong to a
biorthogonal system [14, 15]: a type of system that arises
in non-Hermitian physics and which uses a non-standard
inner product. The main advantage of this description
is that its local electric and magnetic field vectors are
pairwise orthogonal and commute simply with the field
Hamiltonian, H; this is valuable in situations where the
focus is on the dynamics of these vectors. In contrast,
in our previous papers [1, 12, 13], we quantised the EM
field in terms of pairwise orthogonal local energy quanta,
so-called bosons localised in position (blips), which are
well-suited for modelling the dynamics of localised parti-
cles.
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As was explored in Ref. [1], the exact nature of these
blips is determined by the symmetry group of the space
in which they are contained. In particular, in free space,
it is the translation symmetry of the Poincaré group that
leads to the simple form of the blips’ equation of motion.
If the symmetry group of the considered space is reduced,
this has the effect of altering the equation of motion in
some regions of the space [13]. For example, when con-
sidering an optical cavity, the mirrors forming the walls
of the cavity break the full translation invariance, leading
to an altered motion for the blips in the location of the
mirror. Similarly, in order to model the interactions of
an atom with the EM field, our space becomes a pointed
space, with the location of the atom promoted to a dis-
tinguished position. In this case, we again clearly lose
translation invariance but – depending on the sophisti-
cation of the model – potentially retain the rotational
symmetries of the Poincaré group. As with the cavity,
it is the particular set of reduced symmetries that de-
termines the motion of field excitations, and hence the
behaviour of the system.

As in Refs. [1, 7, 11–13], in this paper, we need to
make an adjustment to the standard theory of the quan-
tised EM field. Specifically, we need to extend the Hilbert
space of monochromatic modes to include all modes with
a frequency in the range (−∞,∞). This means we do not
restrict ourselves to positive-frequency photons but allow
photon frequencies to be positive and negative. This ad-
justment ensures that localised excitations in one dimen-
sion that have a clear direction of propagation do not dis-
perse. This is in good agreement with classical electrody-
namics, where wave packets with a well-defined direction
of propagation also travel at the speed of light without
changing their shape [1, 12]. Moreover, the extension of
the frequency range of the photons ensures that our local
description of light does not violate any no-go theorems
concerning the localisability of the photon, which have
been put forward by several authors [16–22].

In the following, we compare the predictions of the
local Hermitian description of the quantised EM field,
which we introduced in Refs. [1, 12, 13], with the non-
Hermitian local description that we introduce here, and
highlight the connection between the two approaches.
Systems possessing curious non-Hermitian structures
have gained much interest in recent years [23, 24], par-
ticularly in quantum optics [10, 11, 25, 26]. For example,
Hawton’s and Debierre’s approach [11] uses biorthogo-
nal quantum mechanics. However, their approach also
uses a time-dependent inner product in an interaction
picture. The inner product we use in this paper is not
time-dependent and can be used in any picture.

There are five sections in this paper. In Section 2, we
shall cover some requisite background material on the
quantised EM field and biorthogonal quantum mechan-
ics. In Section 3, we shall model the EM field using
biorthogonal quantum mechanics, and in Section 4 we
shall describe how this biorthogonal approach connects
to our earlier Hermitian approach. Finally, we present

our conclusions in Section 5. Some mathematical details
have been placed in Appendices A-C to simplify the read-
ing of the manuscript.

II. THEORETICAL BACKGROUND

In this section, we introduce the theoretical back-
ground and concepts used throughout the rest of the pa-
per. Before examining biorthogonal quantum mechanics
and pseudo-Hermitian physics, we first review the stan-
dard description of the quantised EM field, which can be
found in many quantum optics textbooks (see e.g. Ref. [2]
and references therein).

A. The quantised EM field

The classical theory of electromagnetism describes the
evolution of two fundamental quantities: the electric field
and the magnetic field, E(x, t) and B(x, t). The dynam-
ics of these fields is governed by Maxwell’s equations,
which take the form

∇ ·E(x, t) = 0 , ∇ ·B(x, t) = 0 ,

∇×E(x, t) = − ∂

∂t
B(x, t) ,

∇×B(x, t) =
1

c2
∂

∂t
E(x, t) (2)

in the absence of any charges or source currents. The
classical Hamiltonian Heng of the free-space EM field is

Heng =

∫
V

dV

(
ε0E(x, t)2 +

1

µ0
B(x, t)2

)
, (3)

where V denotes the volume enclosing the EM field, while
c is the speed of light and ε0 and µ0 are the permittivity
and the permeability of free space.

One way of quantising the EM field created by light
travelling along the x-axis is to assume that its basic
building blocks are monochromatic photons [2]. Adopt-
ing the notation which we employ also later in this paper,
we can model these monochromatic photons by using the

bosonic Fock ladder operators, asλ(k) and a†sλ(k), where
s = ±1 denotes the direction of propagation along the
x-axis, λ = 1, 2 denotes their polarisation and ω = ck
denotes their frequency, with k ∈ (0,∞). These opera-
tors satisfy the bosonic commutation relations

[asλ(k), as′λ′(k
′)] =

[
a†sλ(k), a†s′λ′(k

′)
]

= 0 ,[
asλ(k), a†s′λ′(k

′)
]

= δss′δλλ′δ(k − k′) . (4)

Using these operators we can create a single-photon state
by acting a creation operator on the vacuum state |0〉,

|1sλ(k)〉 = a†sλ(k) |0〉 , (5)
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where the vacuum state satisfies 〈0|0〉 = 1 and
asλ(k) |0〉 = 0 for all s, k and λ. Clearly, monochromatic
single-photon states are pairwise orthogonal, since

〈1sλ(k)|1s′λ′(k′〉 =
[
asλ(k), a†s′λ′(k

′)
]

= δss′δλλ′δ(k−k′) .
(6)

We can construct further states of the quantised EM field
by acting on |0〉 with multiple creation operators.

For light propagating only along the x-axis, the field
observables for the quantised EM field at a point x can
be written as [2]

E(x) =
∑
s,λ

√
~c

4πεA

∫ ∞
0

dk
√
k eiskx asλ(k) eλ +H.c. ,

B(x) =
∑
s,λ

s

c

√
~c

4πεA

∫ ∞
0

dk
√
k eiskx asλ(k) ex × eλ

+H.c. , (7)

where H.c. denotes the Hermitian conjugate and where
the eλ are unit vectors oriented in the y and z directions.
The Hamiltonian that generates the free-space dynamics
of light is given by

Heng =
∑
s,λ

∫ ∞
0

dk ~ck a†sλ(k)asλ(k) (8)

up to a constant term – the zero point energy – which
does not contribute to the dynamics. Under this Hamil-
tonian, field expectation values evolve as predicted by
Maxwell’s equations. However, as mentioned above, the
asλ(k) operators correspond to non-local photons and
therefore do not always provide an intuitive description.

B. Biorthogonal quantum mechanics

Let us now review some relevant properties of biorthog-
onal quantum mechanics. A defining feature of a Hilbert
space is its inner product. Since this paper uses differ-
ent inner products, we denote the inner product between
two states on different Hilbert spaces in the following by
〈|ψ〉 , |φ〉〉ss, with the superscript labelling the particu-
lar inner product. For simplicity, the conventional inner
product will be denoted with no superscript. The expec-
tation value of an operator A with respect to a state |ψ〉
under the conventional inner product is

〈A |ψ〉 , |ψ〉〉 = 〈ψ|A |ψ〉 . (9)

In the following, we use the term “non-Hermitian op-
erators” to refer to operators that are non-Hermitian
with respect to the conventional inner product. How-
ever, note that this does not necessarily mean they are
non-Hermitian with respect to a different inner product.
We reserve the dagger notation † to denote the Hermitian
adjoint of an operator with respect to the conventional
inner product.

Suppose a set of N linearly independent states {|αn〉}
for n ∈ {1, ..., N} spans an N -dimensional Hilbert space,
but is not necessarily orthonormal with respect to the
conventional inner product. Then it is possible to obtain
a set of N states {|βn〉} such that 〈βi|αj〉 = δij . To see
this, for a given |αm〉 one can select a state |βm〉 from the
one-dimensional subspace of the Hilbert space orthogonal
to the span of {|αn〉}n 6=m such that 〈βm|αm〉 = 1. If we
continue this process for all |αn〉, we can construct the set
{|βn〉} [15]. The set {|βn〉}Nn=1 is called the biorthonor-
mal basis associated with {|αn〉}Nn=1. Given a state

|ψ〉 =
∑
n

an |αn〉 , (10)

we define an associated state

|ψ̃〉 =
∑
n

an |βn〉 . (11)

The biorthonormal quantum mechanical (BQM) inner
product can then be defined on this Hilbert space as

〈|ψ1〉 , |ψ2〉〉BQM = 〈ψ̃2|ψ1〉 . (12)

Under this inner product, the set {|αn〉}Nn=1 forms an
orthonormal basis. Furthermore, operators of the form

A =
∑
n,m

anm |αn〉 〈βm| (13)

for real anm are Hermitian with respect to the BQM in-
ner product and are therefore known as biorthogonally
Hermitian operators.

Collectively the set of states {|αn〉 , |βn〉}Nn=1 con-
stitutes a biorthogonal system. In the literature on
biorthogonal quantum mechanics, it is shown that if a
state |ψ〉 belongs to a Hilbert space H, its associated

state |ψ̃〉 is said to belong to the dual Hilbert space H∗.
To avoid confusion with other definitions of a dual space,
we refer to H∗ in this paper as the bio-conjugate Hilbert
space. Hence, for every state |ψ〉 in Hilbert space, there

exists a state |ψ̃〉 in the bio-conjugate space. In the case
that {|αn〉}Nn=1 already forms an orthonormal basis, se-
lecting |βn〉 = |αn〉 reduces the BQM inner product to
the standard inner product, and the Hilbert space and
bio-conjugate space become the same.

C. Pseudo-Hermitian Physics

Biorthogonal quantum physics is closely related to
pseudo-Hermitian physics. To see that this is so, sup-
pose that we have a Hamiltonian H acting on an N -
dimensional Hilbert space H. This Hamiltonian is said
to be pseudo-Hermitian if it satisfies the relation

H† = ηHη−1 (14)
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for some invertible operator η satisfying η = η† also act-
ing on H. If one defines an inner product 〈·|·〉η such that

〈|ψ1〉 , |ψ2〉〉η = 〈ψ2| η |ψ1〉 , (15)

then by using Eq. (14) one may show that

〈H |ψ1〉 , |ψ2〉〉η = 〈|ψ1〉 , H |ψ2〉〉η . (16)

Because this is the definition of Hermiticity, it fol-
lows that a pseudo-Hermitian Hamiltonian H satisfying
Eq. (14) is Hermitian in the proper sense with respect to
the η-inner product given in Eq. (15).

It is well known that the eigenstates of a Hermitian
operator are orthogonal and that their eigenvalues are
real. Because H is Hermitian with respect to the η-inner
product, the eigenstates of H can also be shown to be
orthogonal to one another under the same inner prod-
uct. Assuming H to be non-degenerate, let us denote
the set of N normalised and orthogonal eigenstates of H
by {|αn〉}Nn=1. If we define the states

|βn〉 = η |αn〉 (17)

then we can see by taking the η-inner product between
αn states, and by using the orthogonality of such states
that

〈αn|η|αm〉 = 〈βn|αm〉 = δnm . (18)

Hence {|αn〉 , |βn〉}Nn=1 describes a biorthonormal system
just as was discussed previously. Moreover,

Id =

N∑
n

|αn〉 〈βn| (19)

represents the identity operator for such a system.
Using the definition in Eq. (17) one can further show

that, whereas the |αn〉 states are orthonormal with re-
spect to the η-inner product, the |βn〉 states are orthonor-
mal with respect to the η−1 inner product,

〈|ψ1〉 , |ψ2〉〉η
−1

= 〈ψ2| η−1 |ψ1〉 . (20)

So, if {|αn〉 , |βn〉}Nn=1 is a biorthonormal system
equipped with the η-inner product, then {|βn〉 , |αn〉}Nn=1

is a biorthonormal system equipped with the η−1-inner
product. Note that this means these sets of states, while
belonging to the same vector space, do not belong to the
same Hilbert space. Since a defining feature of a Hilbert
space is its inner product, if we define the inner product
between the |αn〉 states to be the η inner product, and
the inner product between the |βn〉 states to be the η−1

inner product, then the two Hilbert spaces are distinct.
Unlike the |αn〉 states, the |βn〉 states are not in general
also orthonormal with respect to the η-inner product. To
see this simply compute

〈|βn〉 , |βm〉〉η = 〈αm| η3 |αn〉 6≡ δnm . (21)

FIG. 1. A schematic diagram of a biorthogonal system. If a
state |ψ〉 ∈ H then it evolves with H and its associated state

|ψ̃〉 ∈ H∗ evolves with H†.

Note that, if η is the identity operator on H, Eq. (15)
reduces to the conventional inner product of quantum
mechanics.

Eq. (21) is not a problem if the only states of con-
cern are those normalised with respect to the η-inner
product, and if the only observables of concern are of
the form given in Eq. (13). In this case, one can se-
lect the η-inner product for the Hilbert space and will
find that pseudo-Hermitian quantum mechanics is indis-
tinguishable from conventional Hermitian quantum me-
chanics [15]. Likewise, if all states of concern are those
normalised with respect to the η−1-inner product and
all observables are Hermitian with respect to this inner
product, one can simply select the η−1-inner product for
their Hilbert space.

D. Time-evolution

The time dependence of states that belong to the
Hilbert space H can be calculated using the time-
dependent Schrödinger equation, which implies that

|ψ(t)〉 = e−
i
~Ht|ψ(0)〉 (22)

for a given initial state |ψ(0)〉. However, the associated

states |ψ̃〉, which are shown in Fig. 1 and belong to the
Hilbert space H∗, evolve with the Hermitian conjugate
of H such that

|ψ̃(t)〉 = e−
i
~H
†t|ψ̃(0)〉 (23)

for a given initial associated state |ψ̃(0)〉. In contrast to
conventional Hermitian quantum physics, states do not
all evolve according to the same Hamiltonian. Again, the
two Hilbert spaces H and H∗ differ solely by their inner
products since both contain the same vector space.

Looking at the basis states, the initial state |ψ(0)〉 =
|αn〉 evolves into the state

|ψ(t)〉 = e−
i
~Ent|αn〉 (24)

because the states |αn〉 are eigenstates of H with eigen-
values En. Using Eqs. (14) and (17) one can show that
the state |βn〉 is an eigenstate of H† with the same eigen-
value, En, as its orthogonal partner |αn〉. Therefore, the
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initial state |ψ̃(0)〉 = |βn〉 evolves into

|ψ̃(t)〉 = e−
i
~Ent|βn〉 . (25)

Thus, |αn〉 and |βn〉 evolve identically. Nevertheless, or-
thogonal states under the inner product of H are, in gen-
eral, not orthogonal under the inner product of H∗ and
vice versa. Hence, evolving states unitarily requires that
the states in H and in H∗ experience different Hamilto-
nians.

III. A LOCAL NON-HERMITIAN
DESCRIPTION OF THE QUANTISED EM FIELD

Writing the electric and magnetic field observables in
terms of local (x-dependent) ladder operators as

E(x) =
∑
s,λ

√
~c

2εA
Asλ(x) eλ +H.c. ,

B(x) =
∑
s,λ

s

c

√
~c

2εA
Asλ(x) ex × eλ +H.c. , (26)

the above expressions are consistent with the standard
momentum-space field observables given in Eq. (7) when
the annihilation operators Asλ(x) are given by

Asλ(x) =

∫ ∞
0

dk

√
k

2π
eiskx asλ(k) . (27)

Using Eq. (II A), we find that the above annihilation op-
erator commutes with itself for any s, λ and x, as does
its Hermitian conjugate. However, the commutator be-
tween annihilation and creation operators is non-zero and
equals[

Asλ(x), A†s′λ′(x
′)
]

= δss′δλλ′
1

2π

∫ ∞
0

dk k eisk(x−x
′) .

(28)
This commutator is not locally bosonic; that is, it is
not proportional to δ(x− x′). As such, the argument in
Eq. (6) does not apply, and the single-excitation states

A†sλ(x)|0〉 and A†sλ(x′)|0〉 are not pairwise orthogonal.

This means that we cannot interpret A†sλ(x) as the cre-
ation operator for a single excitation localised at x.

A. Orthogonal local field excitation states

At this point, we will deviate from the standard de-
scription of quantum electrodynamics [2] in order to pro-
duce annihilation operators for field excitations that are
locally bosonic. As in our earlier papers [1, 12, 13],
we suppose that the allowed range of frequencies k is
extended to include all real values encompassing the
negative frequencies as well as the positive ones, while
Eqs. (26)-(28) remain valid up to a change of the lower

integral limit in Eqs. (27) and (28) to negative infinity.
In addition, we replace k in Eqs. (27) and (28) by |k|. In
other words, we replace the operators Asλ(x) in Eq. (27)
by two new operators, namely

Asλ(x) =

∫ ∞
−∞

dk

√
|k|
2π

eiskx asλ(k) ,

Abiosλ (x) =

∫ ∞
−∞

dk

√
1

2π|k|
eiskx asλ(k) . (29)

When we calculate the commutator relations for these
operators, with the help of Eq. (II A), we now find that[

Abiosλ (x), A†s′λ′(x
′)
]

= δss′δλλ′δ(x− x′) , (30)

which is different from Eq. (28). Therefore, A†sλ(x)
can be considered to be a bosonic creation operator
while Abiosλ (x) is the corresponding annihilation opera-
tor. Clearly Abiosλ (x) is not the Hermitian conjugate of

A†sλ(x). Usually, this would be a problem; however, if the

single-photon state Abio †sλ (x)|0〉 is the associated state of

A†sλ(x)|0〉, we obtain a biorthogonal system in which the

A†sλ(x) states are locally bosonic.
In other words, we need to alter the conventional inner

product of quantum physics. In the following, we there-
fore identify an inner product such that the annihilation

operator corresponding to the creation operator A†sλ(x)

is indeed Abiosλ (x). However, before proceeding, there are
a couple of points that we must be aware of. Firstly, by
taking the Hermitian conjugate of Eq. (30) we find that[

Asλ(x), Abio †s′λ′ (x
′)
]

= δss′δλλ′δ(x− x′) . (31)

Therefore the states generated by Abio †sλ (x) are locally
bosonic when their annihilation operators are given by
the Asλ(x) operators. This means that we now have two
distinct pairs of locally commuting Fock operators: we

have the {Abio †sλ (x), Asλ(x)} pair, and we also have the

{A†sλ(x), Abiosλ (x)} pair. Because the EM field observables

in Eq. (26) are a linear sum of Asλ(x) and A†sλ(x), the
field observables are expressed in terms of creation and
annihilation operators that do not belong to the same
pair of Fock operators. This must be taken into account
when we construct the corresponding Hamiltonians H
and H† of the quantised EM field in the position repre-
sentation.

Secondly, we need an inner product under which the
field excitations are locally bosonic. It is important
that the introduction of such an inner product does not
spoil the orthogonality of the monochromatic photons,
thereby causing previously normalised states to be non-
normalisable. Taking care that this is not the case and
preserving the orthogonality of the monochromatic states
is important because it allows us, for example, to con-
struct coherent states of the EM field that oscillate like
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classical sinusoidal waves. In the following, we there-
fore adjust the standard inner product accordingly. To
proceed we define a single local and a single bio-local
excitation state, respectively, as

|1sλ(x)〉 = A†sλ(x) |0〉 ,
|1sλ(x)〉bio = Abio †sλ (x) |0〉 . (32)

In order to utilise the bosonic commutation relations in
Eqs. (30) and (31), when analysing the dynamics of ex-
pectation values we require that the above states be pair-
wise orthonormal. However, under the standard inner
product

〈|1sλ(x)〉 , |1sλ(x′)〉〉 6= δ(x− x′) ,
〈|1sλ(x)〉bio , |1sλ(x′)〉bio〉 6= δ(x− x′) . (33)

To address this, using the commutator in Eq. (30) one
can show that for every state |1sλ(x)〉 there is a state

|1sλ(x′)〉bio such that

〈|1sλ(x′)〉bio , |1sλ(x)〉〉 = δ(x− x′) . (34)

Therefore, it would be useful to identify the EM field
in the following with a biorthogonal system where

|1sλ(x)〉bio is the associated state of |1sλ(x)〉. Likewise,

for every |1sλ(x)〉bio there is a state |1sλ(x′)〉 such that

〈|1sλ(x′)〉 , |1sλ(x)〉bio〉 = δ(x− x′) . (35)

To provide a connection with the previous section, we
may initially try to define appropriate η and η−1 opera-
tors. As shown in App. A, these are given by [24]

η =
∑
s,λ

∫ ∞
−∞

dx |1sλ(x)〉bio 〈1sλ(x)|bio ,

η−1 =
∑
s,λ

∫ ∞
−∞

dx |1sλ(x)〉 〈1sλ(x)| . (36)

With these operators, we can define an η and an η−1

inner product by

〈|ψ〉 , |φ〉〉η = 〈φ| η |ψ〉 ,

〈|ψ〉 , |φ〉〉η
−1

= 〈φ| η−1 |ψ〉 , (37)

from which it follows that

〈|1sλ(x′)〉 , |1sλ(x)〉〉η = 〈|1sλ(x′)〉bio , |1sλ(x)〉bio〉
η−1

= δ(x− x′) . (38)

Now the local and bio-local states are pairwise orthonor-
mal with respect to the η and the η−1 inner product
respectively. Unfortunately, neither of the above inner
products is satisfactory for our purposes because if we,
for example, apply them to photon states and bio-local
states we find that

〈|1sλ(k′)〉 , |1sλ(k)〉〉η
−1

6= δ(k − k′) ,

〈|1sλ(x′)〉bio , |1sλ(x)〉bio〉
η
6= δ(x− x′) . (39)

B. A generalised inner product

What we want is an inner product where the local,
bio-local and monochromatic photon states are all pair-
wise orthonormal. Therefore, we shall next describe a
more suitable and general way of defining the biorthogo-
nal conjugate of a given state vector. To achieve this, we
first replace

√
|k| in Eq. (29) with a general (real) func-

tion f(k). This means we replace Asλ(x) and Abiosλ (x) by
the two operators

Asλ(x) =

∫ ∞
−∞

dk
f(k)√

2π
eiskx asλ(k) ,

Abiosλ (x) =

∫ ∞
−∞

dk
1

f(k)
√

2π
eiskx asλ(k) . (40)

Here f(k) should be chosen such that

a†sλ(k) =

∫ ∞
−∞

dx
1

f(k)
√

2π
e−iskxA†sλ(x) , (41)

since this gives the correct commutation relation, leading
to Eq. (35). In the following we refer to f(k), similarly
to Ref. [10], as the Fourier weight function and demand

that the A†sλ(x) operators generate local excitations.
Consider now a state |ψ〉 where

|ψ〉 =
∑
s,λ

∫ ∞
−∞

dx ψsλ(x)A†sλ(x)|0〉 ,

|ψ〉bio =
∑
s,λ

∫ ∞
−∞

dx ψsλ(x)Abio †sλ (x)|0〉 . (42)

Here |ψ〉bio is the associated state of |ψ〉. Let S be an
operator that inverts any Fourier weight terms contained
within any state it acts upon. One can then see that S
maps |ψ〉 to an associated state |ψ〉bio = S(|ψ〉). S is also
its own inverse since S(|ψ〉bio) = |ψ〉. For a momentum
state, i.e. a state with

|ψ〉 =
∑
s,λ

∫ ∞
−∞

dk ψsλ(k)a†sλ(k)|0〉 , (43)

we have S(|ψ〉) = |ψ〉, since

S
(
a†sλ(k) |0〉

)
= S

(∫ ∞
−∞

dx
f(k)√

2π
eiskxA† biosλ (x) |0〉

)
=

∫ ∞
−∞

dx
1

f(k)
√

2π
eiskxA†sλ(x) |0〉

= a†sλ(k) |0〉 . (44)

In momentum space, all states are equal to their asso-
ciated states. We therefore refer to them as photonic
states.

For a given f(k), let us define an inner product such
that

〈|ψ〉 , |φ〉〉bio = S (〈φ|) |ψ〉 . (45)
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Under this inner product,

〈|1sλ(k′)〉 , |1sλ(k)〉〉bio = δ(k − k′) ,

〈A†sλ(x) |0〉 , A†sλ(x) |0〉〉
bio

= δ(x− x′) ,

〈A† biosλ (x) |0〉 , A† biosλ (x) |0〉〉
bio

= δ(x− x′) . (46)

Using the above generalised inner product, the photon
as well as the local and the bio-local states all form pair-
wise orthogonal sets. We therefore use this generalised
inner product in the following to model the quantised
EM field. The biorthogonal conjugate, or bio-conjugate,
Obio of an operator O can now be defined as the operator
that satisfies

〈|ψ〉, Obio †|φ〉〉bio = 〈O|ψ〉, |φ〉〉bio . (47)

To calculate the biorthogonal conjugate Obio of an oper-
ator O that depends on f(k), we must replace f(k) with
its reciprocal, 1/f(k).

If we are aiming for a description of the quantised EM
field in which the local electric and magnetic field op-
erators E(x) and B(x) each obey bosonic commutator
relations, the Fourier weight function of the operators
Asλ(x) and Abiosλ (x) in Eq. (40) of field excitations needs
to be

f(k) =
√
|k| (48)

which again turns these operators into the Asλ(x) and
Abiosλ (x) operators in Eq. (29). However, how we use these
operators has now changed. States with the above weight
function are localised in the sense that the corresponding
field excitations generate local electric and magnetic field
expectation values. Later on in Section IV, we will have a
closer look at alternative definitions of local EM field an-
nihilation and creation operators which are bosonic with
respect to the conventional inner product of quantum
physics and will pay more attention to the physical in-
terpretations of the above operators.

C. Time evolution in the biorthogonal
representation of the EM field

As shown in our earlier work [1, 12, 13], in this new
biorthogonal description of the EM field, the free-space
Hamiltonian H that generates the dynamics of light is

H =
∑
s,λ

∫ ∞
−∞

dk ~ck a†sλ(k)asλ(k) . (49)

Notice that this Hamiltonian no longer coincides with the
energy observable Heng of the EM field. For example,

despite the a†sλ(−k) |0〉 being a negative-frequency state,
i.e. an eigenstate of the Hamiltonian H with a negative
eigenvalue, it still has a well-defined positive energy ex-
pectation value. This is so because when we substitute

the EM field observables into the classical energy observ-
able in Eq. (3), we obtain the positive operator [1, 12]

Heng =
∑
s,λ

∫ ∞
−∞

dk
~c|k|

2
(asλ(k) +H.c.)

2
. (50)

When we restrict the Hilbert space of the EM field again
to positive-frequency states, H and Heng coincide per-
fectly, as they do in the standard description of the EM
field [2]. Here the negative-frequency photons have been
added, since they ensure for example that wave pack-
ets of any shape can travel at the speed of light in one
direction, i.e. without dispersion.

However, before we can study the dynamics of electric
and magnetic field expectation values, we must first ex-
amine how the dynamics of this system differs from both
a conventional quantum system and a typical biorthog-
onal system. To ensure that our time-evolution opera-
tors U(t) are unitary under the generalised inner prod-
uct, we require the inner product between states in the
Schrödinger picture to be constant in time. Given two
states |ψ0〉 and |φ0〉 at a time t = 0, we require that

〈U(t) |ψ0〉 , U(t) |φ0〉〉bio = 〈|ψ0〉 , |φ0〉〉bio (51)

which implies that U bio †(t)U(t) = I d and is true when

Hbio † = H . (52)

In the following, we only consider Hamiltonians that sat-
isfy this relation and refer to them as bio-Hermitian.
Taking the Hermitian conjugate of each side of the above
equation gives us Hbio = H†. Hence the bio-conjugate
of a bio-Hermitian Hamiltonian is equal to its Hermitian
conjugate and Hbio and H† can be used interchangeably.

Fortunately, the condition in Eq. (52) holds for the
field Hamiltonian H in Eq. (49) which generates the dy-
namics of free photons. This is not surprising, since local
and non-local photons all propagate alike. Because wave
packets of any shape all propagate at the same speed c,
the Hamiltonian does not depend on the particular choice
of f(k) that defines a local excitation. For a proof that
H equals its biorthogonal conjugate, see App. B.

1. The dynamics of states

According to biorthogonal quantum physics, the EM
field states in H evolve with H and states in H∗ evolve
with H† = Hbio [14]. The general solutions of the corre-
sponding Schrödinger equations can be found in Eqs. (22)
and (23). Next we therefore need to decide whether a
state belongs to H or to H∗. Before we do, however, we
point out that H and H∗ are both equipped with the
same inner product and so can be thought of as part of a
larger Hilbert space H∪H∗. The key distinction between
the two Hilbert space is the dynamics of their states.

In the following, H \ H∗ denotes the space spanned
by the Fock states that are generated by acting the lo-

cal creation operators A†sλ(x) in Eq. (29) on the vacuum
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FIG. 2. A schematic diagram of our EM system. In con-
trast to the previous figure, the intersection between the
Hilbert space of states and its bio-conjugate space is non-
empty. Shown above are the number states of H∗, H ∩ H∗
and H. Those states contained in H ∩ H∗ are normalisable
under either inner product.

state. Similarly, H∗\H is spanned by the Fock states that
are generated by acting the bio-local creation operators

A† biosλ (x) in Eq. (29) on the vacuum state. Clearly, for
every state in H its bio-conjugate state is in H∗ and vice
versa. Lastly, H∩H∗ contains the Fock space spanned by
the Fock states that are generated by acting monochro-

matic photon creation operators, a†sλ(k), on the vacuum
state, since any monochromatic photon Fock state is its
own bio-conjugate (see Fig. 2). An immediate question
that arises, then, is whether it matters if a photonic state
is evolved using H or Hbio. The answer is yes, but to un-
derstand why this is the case, we need to look at how
operators evolve in time.

2. The dynamics of operators

To identify if a state evolves according to H or Hbio in
the Schrödinger picture, we look at whether the state is
contained in H or H∗. Similarly, to identify if an oper-
ator evolves using H or Hbio in the Heisenberg picture,
we look at whether it acts on H or H∗. This identifi-
cation is perhaps easier to see in our system where we
use Fock state operators to construct our operators and

states. For example, because A†sλ(x) |0〉 evolves using H
in the Schrödinger picture, both it and its correspond-
ing annihilation operator, Abiosλ (x), should evolve with re-
spect to H in the Heisenberg picture. Likewise, because

A†biosλ (x) |0〉 evolves using Hbio in the Schrödinger picture,
then both it and its corresponding annihilation operator
should evolve with respect to Hbio in the Heisenberg pic-
ture.

For example, suppose an operator B is of the form
B =

∑
iBi, where for each i, Bi is a map from either

H → H or from H∗ → H∗. If Bi maps states from H to
H, we use H to generate its dynamics in the Heisenberg
equation and

d

dt
Bi(t) = − i

~
[Bi(t), H] (53)

with Bi(t) = U†bio(t)BiU(t). Conversely, if it maps

states from H∗ to H∗ we use Hbio to generate its dy-
namics in the Heisenberg equation

d

dt
Bi(t) = − i

~
[
Bi(t), H

bio
]

(54)

with Bi(t) = U†(t)BiU
bio(t). This means that the local

Fock operators, Abiosλ (x) and A†sλ(x), evolve according to
Eq. (53), and the bio local Fock operators, Asλ(x) and

A†biosλ (x), evolve according to Eq. (54). If Bi = Bbioi , such

as is the case with the asλ(k) and a†sλ(k) operators, then

either H or Hbio can be used to generate their dynamics.

3. The dynamics of expectation values

When calculating the time-dependent expectation val-
ues of an operator, it should not matter whether the ex-
pectation value is calculated in the Schrödinger picture
or in the Heisenberg picture. The same applies to the
biorthogonal system that we consider here. For example,
if we have an operator B : H → H and a state |ψ〉 ∈ H
then the corresponding expectation value is

〈B |ψ(t)〉 , |ψ(t)〉〉bio = bio〈ψ(t)|B|ψ(t)〉
= bio〈ψ|U†bio(t)BU(t)|ψ〉
= bio〈ψ|B(t)|ψ〉
= 〈B(t) |ψ〉 , |ψ〉〉bio , (55)

where B(t) satisfies Eq. (53). Similarly one can show
that if we have an operator B : H∗ → H∗ and a state
|φ〉 ∈ H∗ then

〈B |φ(t)〉 , |φ(t)〉〉bio = bio〈φ(t)|B|φ(t)〉
= bio〈φ|U†(t)BU bio(t)|φ〉
= bio〈φ|B(t)|φ〉
= 〈B(t) |φ〉 , |φ〉〉bio , (56)

where B(t) satisfies Eq. (54). Therefore, expectation val-
ues can only be valid if the Schrödinger and Heisenberg
pictures agree.

If we have an operator that satisfies B = Bbio and

a photonic state with |ψ〉bio = |ψ〉, using either H or
Hbio leads to the same real expectation value with re-
spect to the generalised inner product so long as B is
bio-Hermitian. This is so because

〈BU(t) |ψ〉 , U(t) |ψ〉〉bio = 〈ψ|U† bio(t)BU(t) |ψ〉
= (〈ψ|U† bio(t)BU(t) |ψ〉)∗

= 〈ψ|U†(t)BU bio(t) |ψ〉

= 〈BU bio(t) |ψ〉, U bio(t) |ψ〉〉bio .
(57)

In the second line we have used the property that the ex-
pectation value is real and is therefore equal to its com-
plex conjugate, which is denoted by the asterisk. In the
third line we have used the property that B is Hermitian,
since it is both bio-Hermitian and its own bio-conjugate.
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There are certain operators, however, such as the elec-
tric and magnetic field observables, that contain op-
erators acting on both H and H∗. As can be seen
from Eqs. (26) and (29), we need to use both H and
Hbio to determine the time evolution of the expecta-
tion value of such an operator. As an example, suppose
we have the Hermitian, but not bio-Hermitian, opera-

tor A = Asλ(x) + A†sλ(x). This operator evolves in the
Heisenberg picture as

A(t) = U†(t)Asλ(x)U bio(t) + U†bio(t)A†sλ(x)U(t) (58)

and so remains Hermitian as time passes, since A(t) =
A†(t). The corresponding expectation value of this oper-

ator with respect to a photonic state |ψ〉 = |ψ〉bio is the
real quantity

〈A(t) |ψ〉 , |ψ〉〉bio = 〈Asλ(x)U bio(t) |ψ〉 , U bio(t) |ψ〉〉bio

+ 〈A†sλ(x)U(t) |ψ〉 , U(t) |ψ〉〉
bio

= 〈ψ|A(t)|ψ〉 , (59)

and is a valid expectation value because photonic states
evolve in the same way when using either H or Hbio.
The last line is simply the expectation value of a Her-
mitian operator in the standard inner product, which
is real. However, within this expectation value in the
Schrödinger picture, the photonic state still has to evolve
with the form of the Hamiltonian such that the expec-
tation value agrees with the Heisenberg-picture expecta-
tion value. This is why the states in the first line above
evolve with Hbio but the states in the second line evolve
with H. Again, just because a photonic state can evolve
with either H or Hbio when considered by itself, it does
not mean that within an expectation value it can evolve
with either. It has to evolve such that it agrees with the
Heisenberg picture; otherwise, the expectation value is
not valid.

However, we cannot calculate the time-dependent ex-
pectation value of A with respect to non-photonic states,
because these states evolve using only H or only Hbio.
The corresponding expectation values in the Heisenberg
and Schrödinger pictures would therefore not be in agree-
ment.

IV. THE CONNECTION WITH HERMITIAN
DESCRIPTIONS

A. Local bosonic excitations

The standard approach to EM field quantisation is to
work with the momentum eigenstates. Due to the uncer-
tainty principle, these states are necessarily completely
delocalised and can be thought of as waves that fill the
volume under consideration, as in Fig. 3(a). Attempts to
define a local excitation in this approach run into prob-
lems. While it is possible to produce an instantaneously
localised field configuration with a suitable Fourier sum

at a time t = 0, this configuration spreads infinitely
quickly for all times t 6= 0. That is, attempts to pro-
duce local excitations in the standard approach lead to
apparent superluminal propagation. However, in a re-
cent paper [1] we showed that it is possible to introduce
local excitations by allowing for both positive-frequency
and negative-frequency states, with

asλ(x) =
1√
2π

∫ ∞
−∞

dk eiskx asλ(k) . (60)

These asλ(x) operators satisfy the commutation relation

[asλ(x), a†s′λ′(x
′)] = δss′δλλ′δ(x− x′) (61)

meaning they are locally bosonic under the conventional
inner product. For this reason, we named these excita-
tions blips (boson localised in position). The defining
equation of motion for these blip operators guarantees
propagation at the speed of light.

We have successfully utilised these blips to quantise the
EM field in position space [1] and construct locally act-
ing mirror Hamiltonians [12]. For the latter, we showed
that it is possible to construct a mirror Hamiltonian that
reproduces the classical mirror image effect for the local
operators asλ(x). This Hamiltonian was a significant find
because, until that point, no locally acting mirror Hamil-
tonian for the EM field had been derived, and there is
much interest in this topic in the literature [27–31]. Thus,
there are certain situations in which blips provide a more
physically intuitive description for modelling light-matter
interactions compared to monochromatic photons.

Blips act on a Hilbert space of the same dimensions
as that on which the operators Asλ(x) act. In both
cases, creation operators generate excitations that are
characterised by a position x, a direction of propagation
s and a polarisation λ. Furthermore, because the pairs

of Fock operators {Abiosλ (x), A†sλ(x)} and {asλ(x), a†sλ(x)}
have the same commutation relations there is a one-to-
one correspondence between the two. Therefore either
can be used as a representation of the local excitations
of the EM field.

In the context of the generalised inner product we have
utilised so far, this correspondence can be emphasised by
pointing out that the conventional inner product can be
thought of as a specific example of the generalised inner
product in which blips are the bio-conjugate of them-
selves. As a consequence of this, for any operator O we
find that Obio = O in both the position and momen-
tum representations. Furthermore, this means that all
states evolve alike according to a single time-evolution
operator U(t) = U bio(t). This implies, therefore, that if

we view the A†sλ(x) states as being localised and evolv-
ing according to a bio-Hermitian Hamiltonian, then we

can also view an a†sλ(x) as being localised and reproduce
the exact same dynamics using a Hermitian rather than
bio-Hermitian Hamiltonian. Since only a subset of Her-
mitian operators are also bio-Hermitian, however, these
two Hamiltonians are in general not the same.
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(a) (b)

(c) (d)

FIG. 3. Comparing the locality of different descriptions. In (a), momentum states are completely delocalised, with local
excitations leading to superluminal propagation. In (b), a single blip allows for a local excitation that travels at c. However,
if we choose the excitation to be local, then the fields associated with the excitation are not completely localised. In order
to localise the field, we must superpose a non-local set of blips, as in (c). Since each blip travels at c, the resulting field
configuration also travels travels at c. In (d), we localise both the excitation and the field by introducing a non-standard scalar
product. This requires us to keep track of both the state and the conjugate state, since these in principle now evolve differently.

In section III B, we noted that the dynamical Hamil-
tonian is both Hermitian and bio-Hermitian, even when
using the generalised inner product. That is to say that
Hbio † = H = H†; see App. B for more information.
Such a Hamiltonian generates unitary dynamics under
the conventional and generalised inner products, and im-

parts the exact same dynamics on both the A†sλ(x) and

a†sλ(x) operators:

U†(t)asλ(x)U(t) = asλ(x− sct) .
U† bio(t)Asλ(x)U(t) = Asλ(x− sct) . (62)

Of course here U† bio(t) = U†(t), but for a more gen-
eral Hamiltonian this may not be true, and we would no
longer see an equivalence in the dynamics of the fields
and the blips when we have only a single Hamiltonian as
we do above. For more information see App. C. From
the above equations, both the blips and local field modes
therefore propagate at the speed of light along the x-axis
in the direction specified by the parameter s.

Although both of these excitations can be interpreted
as local excitations under a suitable inner product, and
identical unitary dynamics can be generated for both
states, there are pros and cons to both descriptions.
In the blip description, because all states are the bio-
conjugate of themselves there is only one pair of locally
bosonic Fock operators, as opposed to two pairs in the
generalised scheme. This is because there is a single rep-
resentation for a localised state. Furthermore, again be-
cause all states are equal to their bio-conjugate states, all
states evolve according to the same Hamiltonian, mean-

ing that the Schrödinger and Heisenberg pictures are al-
ways in agreement.

B. Field observables

Using the blip operators as defined above, we previ-
ously showed in [1] that the EM field observables, Eq. (7),
can be expressed in the form

E(x) =
∑
s,λ

√
~c

2εA
R(asλ(x)) eλ +H.c. ,

B(x) =
∑
s,λ

s

c

√
~c

2εA
R(asλ(x)) ex × eλ +H.c. , (63)

where and R is a superoperator such that

R(asλ(k)) =
√
|k|asλ(k) . (64)

The nature of the superoperator R is to smear out
the field around the blip. That is, while the blip exists
at a single point in space, the field associated with that
blip is spread out, with a maximum expectation value
at the location of the blip, as in Fig. 3(b). As a result,
the commutation relations for the fields are not standard
bosonic relations and have a non-zero overlap at non-zero
displacements. We can interpret this in one of two ways.
Firstly, we can consider the field fundamental, and think
of the blips as the mean position of field excitations. Al-
ternatively, we can consider the blips the fundamental
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entities and think of them as “carrying” around a non-
local field. It is possible to localise the fields in the blip
approach, but this requires the introduction of a non-
local set of blips, as in Fig. 3(c). If we were to insist that
both the excitations and their associated fields simulta-
neously obey bosonic relations, we require that the field
observables are directly proportional to the ladder oper-
ators. This can only be achieved with a non-standard
scalar product. Here we see the difference in approach.
The standard approach would be to attempt to localise
the fields, which leads to problems. The blip approach
localises the underlying “field carriers”, which requires
that the fields themselves become delocalised. Finally,
the non-Hermitian approach localises both the fields and
the underlying excitations, at the expense of the stan-
dard inner product. In this approach, we must consider
both the state and the conjugate state, as in Fig. 3(d),
since their evolution is distinct.

On first inspection, this seems to suggest that the
non-Hermitian formalism is superior. However, it should
be noted that each approach introduces additional sub-
tleties, and that both contain aspects of non-locality. For
example, in the case of an optical cavity, the non-local
field associated with a blip has a non-trivial interaction
with the cavity walls even when the blip is not at the
boundary. Indeed, we have shown in Ref. [13] that it is
this non-local interaction that leads to the Casimir effect
in this formalism. If we were to use the non-Hermitian
formalism to model the same optical cavity, we would
first need to find the appropriate scalar product for the
cavity. In general, the appropriate scalar product would
be dependent on the boundary conditions of the system
under consideration. That is, while individual calcula-
tions in the non-Hermitian approach may appear truly
localised, non-local effects have already been introduced
in modelling the particular situation.

The reality is that the two approaches are equivalent,
with each a re-framing of the other. Since only matrix
elements are measurable, we can use the differing inner
products to transform from one formalism to the other, as
we saw in Eq. (59). Thus, we really have two parametri-
sations of the same formalism. In one, we can simplify
calculations by using the fact that all commutation rela-
tions are bosonic, and in the other we can simplify cal-
culations by using the fact that the scalar product is the
standard product and states are their own conjugates.
Which approach works best will undoubtedly depend on
the particular scenario to be modelled.

V. CONCLUSIONS

This paper has shown how to model the EM field us-
ing a non-Hermitian approach that utilises biorthogo-
nal physics and negative wavenumbers. A key finding

was that we represented the EM field as a biorthogonal
system with a non-zero intersection between its Hilbert
space and bio-conjugate Hilbert space. Consequently,
the EM field observables at a point x were a linear

sum of a Fock bosonic creation operator, A†sλ(x), and
a Fock bosonic annihilation operator, Asλ(x), that did
not belong to the same creation-annihilation pair. This

had implications for calculations; for example, A†sλ(x)
evolved using H in the Heisenberg equation whereas
Asλ(x) evolved using H†, where H need not be equal
to H†. In contrast, for an expectation value with a pho-
tonic operator and with a photonic state, either H or
H† can generate dynamics because they lead to the same
expectation value. Within this system, we used an inner
product under which the EM field observables were not
Hermitian. However, for this inner product, we showed
how these observables still gave real expectation values
for certain states, including photon coherent states and
normalised monochromatic photon states.

To the best of our knowledge, there is nothing in the
literature concerning mathematical structures of the form
in Fig. 2, where we have a biorthogonal system with a
non-zero intersection between its Hilbert space and bio-
conjugate Hilbert space. In this paper we showed how to
use such a biorthogonal system to model the EM field.
This paper is not, however, a paper on the general prop-
erties of a biorthogonal system with a non-zero intersec-
tion between its Hilbert and bio-conjugate Hilbert spaces.
We leave this to the mathematical physicists to explore.
Nevertheless, we expect authors to find interest in our
work: for example, in the quantum optics community
where spatial properties of light are concerned [32–34],
as this will help aid our understanding in light-matter
interactions [35, 36]; in quantum information, where re-
searchers are increasingly utilising various modes of the
EM field [37–39]; in the non-Hermitian community, where
researchers are applying non-Hermitian and, in particu-
lar, biorthogonal quantum mechanics to physical systems
[11, 14, 25, 26, 40].

Acknowledgement. J.S. and A.B. acknowledge finan-
cial support from the UK Engineering and Physi-
cal Sciences Research Council (EPSRC) through the
Oxford Quantum Technology Hub NQIT (Grant Nr.
EP/M013243/1). Moreover D.H. acknowledges an EP-
SRC PhD studentship (Award Ref. Nr. 2130171). State-
ment of compliance with EPSRC policy framework on
research data: This publication is theoretical work that
does not require supporting research data.

Appendix A: Calculation of ηη−1

By using the definitions of η and η−1 given in Eq. (36)
we can calculate
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ηη−1 =
∑
s,λ

∫ ∞
−∞

dx |1sλ(x)〉bio 〈1sλ(x)|bio
∑
s′,λ′

∫ ∞
−∞

dx′ |1s′λ′(x′)〉 〈1s′λ′(x′)|

=
∑
s,λ

∑
s′,λ′

∫ ∞
−∞

dx

∫ ∞
−∞

dx′δss′δλλ′δ(x− x′) |1sλ(x)〉bio 〈1s′λ′(x′)|

=
∑
s,λ

∫ ∞
−∞

dxA† biosλ (x) |0〉 〈0|Asλ(x)

=
∑
s,λ

∫ ∞
−∞

dk

∫ ∞
−∞

dk′

√
|k′|
|k|

(
1

2π

∫ ∞
−∞

dx e−isx(k−k
′)

)
a†sλ(k) |0〉 〈0| asλ(k′)

=
∑
s,λ

∫ ∞
−∞

dk

∫ ∞
−∞

dk′

√
|k′|
|k|

δ(k − k′) |1sλ(k)〉 〈1sλ(k′)|

=
∑
s,λ

∫ ∞
−∞

dk |1sλ(k)〉 〈1sλ(k)| . (A1)

Therefore, ηη−1 behaves as an identity operator for single
excitation states.

Appendix B: Different representations of the free
space Hamiltonian

Using Eq. (29), the monochromatic photon operators
can be represented in terms of the local and bio-local
operators as follows

a†sλ(k) =

∫ ∞
−∞

dx

√
|k|
2π

eiskxA† biosλ (x)

=

∫ ∞
−∞

dx

√
1

2π|k|
eiskxA†sλ(x) . (B1)

We can therefore write the free space Hamiltonian in the
following representations

Hfree =
∑
s,λ

∫ ∞
−∞

dk ~ck a†sλ(k)asλ(k)

=
∑
s,λ

~c
∫ ∞
−∞

dx

∫ ∞
−∞

dx′G(x− x′)A† biosλ (x)Asλ(x′)

=
∑
s,λ

~c
∫ ∞
−∞

dx

∫ ∞
−∞

dx′G(x− x′)A†sλ(x)Abiosλ (x′) ,

(B2)

where

G(y) =
1

2π

∫ ∞
−∞

dk keisky = −is d

dy
δ(y) (B3)

and is independent of f(k) =
√
k. Therefore, the free-

space Hamiltonian is both bio-Hermitian and Hermitian,
i.e. H† bio = H† = H.

Appendix C: Eq. (62) is not true in general

To see why Eq. (62) is not true in general, we choose
an H1 such that at some time t1

U†1 (t1) a†sλ(x)U1(t1) = b1 a
†
sλ(x, t1) + b2 asλ(x, t1) (C1)

where b1 and b2 are chosen such that b1, b2 > 0 and
|b1|2 − |b2|2 = 1. Taking the one-to-one correspondence

a†sλ(x) → A†sλ(x) and asλ(x) → Abiosλ (x) in the above
equation we have

U†bio2 (t1)A†sλ(x)U2(t1) = b1A
†
sλ(x, t1) + b2A

bio
sλ (x, t1) .

(C2)
We therefore have

R
(
U†1 (t1) a†sλ(x)U1(t1)

)
= b1A

†
sλ(x, t1) + b2Asλ(x, t1)

6= U†bio2 (t1)A†sλ(x)U2(t1) .

(C3)
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