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In three dimensions, dipole-dipole interactions which alter atomic level shifts and spontaneous
decay rates only persist over distances comparable to the wavelength of the emitted light. In this
paper we show that it is possible to significantly extend the range of these interactions with the
help of a partially transparent asymmetric mirror interface. Suppose two two-level atoms are placed
on opposite sides of the interface, each at the position of the mirror image of the other. In this
case, their emitted light interferes almost exactly as it would when the atoms are right next to
each other. Hence their dipole-dipole interaction assumes an additional maximum, even when the
actual distance of the atoms is several orders of magnitude larger than the transition wavelength.
Although the resulting ultralong-range interactions are in general relatively weak, we expect them
to find applications in quantum technology, like non-invasive quantum sensing.

I. INTRODUCTION

In 1982, Scully and Drühl [1] proposed a double-slit
experiment in which the slits are two two-level atoms.
As illustrated in Fig. 1(a), the atoms are kept at a con-
stant distance, are continuously driven by laser light and
emit photons at a constant rate. When their distance
is comparable to the wavelength of the emitted light, an
interference pattern forms on a far-away screen. Aver-
aged over many photons, this pattern very closely re-
sembles the interference pattern of classical double-slit
experiments. It only disappears when information about
the origin of each photon becomes available [2]. As in
classical two-slit interference experiments, the distance
between the intensity minima and maxima depends on
the distance between the atoms [3].

When this two-atom double-slit experiment was first
performed by Eichmann et al. in 1993 [2], it raised many
questions, like, how can spontaneously emitted photons
interfere [4]. A closer look at the experiment shows that
it is best to think of the atoms as continuously radiating
dipole antennae [5]. Both atoms constantly transfer en-
ergy into the surrounding free radiation field which only
manifests itself as “individual photons” upon detection
[6, 7]. When an individual photon is registered on a pho-
tographic plate, it contains in general energy from both
atoms. Depending on the direction of emission, radiation
either interferes constructively or destructively, thereby
resulting in a spatial dependence of the intensity of the
emitted light. Moreover, interference effects result in a
spatial dependence of first and second order photon cor-
relations [8–10]. By now, the interference of light from
distant atoms is relatively well understood and has al-
ready found applications in distributed quantum comput-
ing [11–15], in designing mirrors with unusual properties
[16], and in quantum sensing [17].

Different from the classical case, interference in the
two-atom double-slit experiment depends on the inter-
nal state of the slits, since different entangled atomic
states radiate light in different preferred directions [18–

20]. Suppose two atoms are right next to each other and
share a single energy quantum. If the atoms in Fig. 1(a)
are in their maximally-entangled symmetric state, all of
the emitted light interferes constructively. The atomic
coupling to the free radiation field is collectively en-
hanced and a photon is emitted at twice the usual rate.
However, if the atoms are in their anti-symmetric state,
their efforts to transfer energy into the free radiation field
cancel each other out. The spontaneous decay rate of
the antisymmetric state therefore tends to zero. At fi-
nite distances between the atoms which are of the order
of the wavelength of the emitted light, similar alterations
of spontaneous decay rates occur. These are synonymous
with Dicke sub- and superrandiance [21] and indicate the
presence of atomic dipole-dipole interactions [22–25]. A
possible approach to atomic ultralong-range interactions
is therefore the recreation of the interference effects of the
original two-atom double-slit experiment for large atomic
distances. Taking this into account, this paper predicts
mirror-mediated, targeted ultralong-range dipole-dipole
interactions which can persist over distances that are
many orders of magnitude larger than the wavelength
of the emitted light.

Suppose two two-level atoms, a and b, are separated
by a two-sided partially transparent mirror, i.e. a sur-
face with finite reflection and transmission rates ri and
ti (i = a, b) [26, 27], and the position of each atom coin-
cides with the position of the mirror image of the atom
on the opposite side, as illustrated in Fig. 1(b). Compar-
ing Figs. 1(a) and (b) and viewing the atoms as radiat-
ing dipole antennae, we see that—for half of the emitted
light—the two paths from a source to a certain point on
the far-away screen are always of the same length. The
resulting interference pattern is therefore the same as in
the above described two-atom double-slit experiment [1],
apart from a reduction in visibility. Since atomic dipole-
dipole interactions are the result of interference effects
and the interference of spontaneously emitted photons is
the same in Figs. 1(a) and (b), the above discussion sug-
gests an additional maximum of the dipole-dipole inter-
action between two atoms on opposite sides of a partially
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FIG. 1. (a) Schematic view of the two-atom double-slit experiment by Eichmann et al. [2]. The emitted light interferes either
constructively or destructively when arriving at a far away-screen. Which one applies depends only on the collective state of
the atoms, their distance and the direction of propagation of the emitted light. As first pointed out by Dicke [21], for relatively
small distances between the atoms, the interference results in dipole-dipole interactions: spontaneous decay rates change (sub-
and superradiance) and atomic level shifts occur. (b) Schematic view of two atoms on opposite sides of a partially transparent
asymmetric mirror which is smooth on one side but rough on the other. Such a mirror can be realised by placing tiny metallic
islands (represented by yellow semicircles) onto a glass surface, while leaving small gaps between them. If the mirror interface
is smooth on the left hand side, the transmitted light coming from atom a and the reflected light coming from atom b interfere
exactly as in Fig. 1(a) and an analogous interference pattern emerges, if a screen is placed on the left hand side of the setup.
(c) On the right hand side of the mirror interface, the reflected light travels in different (essentially random) directions. Hence
the reflected light coming from atom a and the transmitted light coming from atom b no longer travel exactly the same distance
before arriving at the same point on a far-away screen and the interference pattern disappears.

transparent mirror. As we shall see below, the strength of
this ultralong-range interaction does not depend on the
actual distance of the atoms but on the distance between
atom a and the mirror image of atom b.

Since light coming from atom a and light coming from
atom b travels the same distance before arriving at the
the same point on the screen, it only depends on the
initial state of the atoms whether the resulting interfere
is constructive or destructive. Consequently, as we shall
see below, certain collective atomic states decay more
rapidly, while the decay of other collective atomic states
gets delayed. This effect manifests itself in an alteration
of the spontaneous decay rates of the atoms. For sym-
metric mirrors, which reflect light such that the angle of
incidence always equals the angle of reflection, it can be
shown that the predicted mirror-mediated atomic inter-
actions scale as r∗atb+ t

∗
arb. Unfortunately, we know from

classical optics that symmetric mirrors only conserve the
energy of any incoming wave packets when [26, 27]

|ri|2 + |ti|2 = 1 , r∗atb + t∗arb = 0 . (1)

This means, symmetric mirrors cannot alter the sponta-
neous decay rates of atoms on opposite sides of a partially
transparent interface. Generating remote dipole-dipole
interactions therefore requires the presence of an asym-
metric mirror.

One way of realising an asymmetric mirror is to vary
the surface roughness on both sides of the interface, as il-
lustrated in Figs. 1(b) and (c). For simplicity, we assume
in the following that the partially transparent mirror is
smooth on one side but uneven on the other. Such a mir-
ror is obtained, for example, after placing tiny metallic
droplets onto a glass surface with some space (tiny holes)
between them. On the side of the glass, the surface of
the metal is smooth and light is reflected as it would

be in case of a symmetric mirror (cf. Figs. 1(b)), while
the droplets on the other side reflect light essentially in
random directions (cf. Figs. 1(c)). Light arriving at the
holes, however, travels through without changing direc-
tion, as long as the metal islands and the holes are much
smaller than the optical wavelength and relatively evenly
distributed. When comparing Figs. 1(b) and (c), we see
that the situation is very different in both cases. Now,
light which is emitted into the same direction travels a
different distance when coming from atom a and when
coming from atom b. As a result, all light emitted to the
right side contributes equally to the spontaneous decay
rates of the atoms. As we shall see below, the predicted
interaction therefore scales as t∗arb in this case which is
in general non-zero.
Deriving the quantum optical master equations for the

experimental setup in Fig. 1, while assuming that the ac-
tual distance of the atoms is relatively large, shows that
their spontaneous decay rates are formally the same as in
the case of two nearby atoms with free space dipole-dipole
interactions as long as atom a is close to the mirror im-
age of atom b. However, the actual distance of the atoms
can now be several order of magnitude larger than the
wavelength of the emitted light. This is not surprising,
since dipole-dipole interactions [22–25] are mediated by
photons and photons can travel relatively large distances
one the timescale of the fluorescence lifetimes. For exam-
ple, the effective length of a spontaneously emitted pho-
ton from a single trapped ion in free space easily exceeds
one meter which makes an interaction range of mirror-
mediated dipole-dipole interactions of the order of several
millimeters plausible. As mentioned already above, the
main obstacle to generating ultralong-range atomic in-
teractions is our ability to control the interference of the
emitted light without also having to control its direction
of propagation.
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Atomic dipole-dipole interactions have already been
studied in different environments but so far they have
always been relatively short-range [30, 31]. The only
exception are atoms which couple to the common field
mode inside an optical cavity [32]. Theoretical and ex-
perimental studies usually consider atom-mirror interac-
tions [33–36], interactions between atoms on the same
side of an interface [37–39], atoms separated by nega-
tive index metamaterials and other thin films [40–48] and
atoms near one-dimensional nanofibers and wave guides
[49–52]. Although the mirror-mediated atomic interac-
tions which we predict in this paper are weaker than the
standard dipole-dipole interactions of nearby atoms, they
are expected to find applications, for example, in non-
invasive quantum sensing based on fluorescence lifetime
measurements.

II. RESULTS

A. Local atom-field interactions

In free space, the complex electric field observable E(r)
at position r can be written as a superposition of local
contributions Esλ(r) of travelling waves with polarisa-
tions λ = 1, 2 and directions of propagation s,

E(r) =
∑
λ=1,2

∫
S
dsEsλ(r) . (2)

Here S denotes the set of all three-dimensional unit vec-
tors and the operator Esλ(r) creates local photons with
wave vectors k = ks, normalised polarisation vectors esλ
with es1 · es2 = esλ · s = 0, and bosonic creation opera-

tors a†kλ. Using this notation, Esλ(r) can be written as
[53]

Esλ(r) = −i

∫ ∞

0

dk k2
(

ℏck
16π3ε

)1/2

e−ik·r a†kλ esλ . (3)

Suppose |0F⟩ and UF(t, 0) denote the vacuum state and
the time evolution operator of the free field Hamiltonian
HF, respectively. Then

UF(t, 0)Esλ(r) |0F⟩ = Esλ(r + sct) |0F⟩ , (4)

since a local field excitation with a well defined direction
of propagation s simply travels at the speed of light c in
a straight line away from its source [28, 29]. If created
at an initial time t = 0 at position r, it will be found at
position r + sct at some later time t.

Next we assume that a partially transparent asymmet-
ric metasurface is placed in the x = 0 plane, as illustrated
in Figs. 1(b) and (c). Suppose this mirror is obtained by
placing a thin metallic film with tiny holes which are
much smaller than the wavelength of the emitted light
onto a glass surface. In this case, the local field exci-
tations which meet the gaps are transmitted and evolve

exactly as they would in free space (i.e. as in Eq. (4)).
However, light which does not meet a hole, is reflected
and evolves such that

UF(t, 0)Esλ(rb) |0F⟩ = E s̃λ(r̃b + s̃ct) |0F⟩ , (5)

if it has been created at the position rb of atom b at
t = 0 and if the mirror surface is smooth on the left. The
tilde indicates that a minus sign has been added to the
x component of the respective vector, thereby ensuring
for example that electric field vectors are always orthog-
onal to their direction of propagation. Similarly, for a
metasurface which is rough on the right, Eq. (4) changes
into

UF(t, 0)Esλ(ra) |0F⟩ = ES(s)λ(Ra(s, t)) |0F⟩ (6)

for reflected light originating from atom a at position ra
at t = 0. Here S(s) and Ra(s, t) denote the direction of
propagation and the position of the respective (s, λ) field
excitation at time t. The exact values of these two vari-
ables do not need to be known. All we need to take into
account is that the surface roughness stops transmitted
and reflected light from interfering efficiently on the right
hand side of the mirror interface. The only assumption
we make in the Methods section for simplicity is that the
S(s) vectors cover the right hand side of the x = 0 plane
relatively evenly.

In the following, we denote the electron charge and the
complex dipole moment of atom i with ground state |1⟩i
and excited state |2⟩i by e and D

(i)
12 , respectively. Then,

within the dipole and the rotating wave approximation,
the interaction Hamiltonian between the atoms and the
surrounding free radiation field can be written as [22–25]

HAF = e
∑
i=a,b

D
(i)
12σ

−
i · E(ri) + H.c. (7)

with σ−
i = |1⟩ii⟨2| denoting the lowering operator of atom

i. In Methods, we analyse the dynamics generated by
this Hamiltonian using second order perturbation the-
ory. As we shall see below, as long as we know how the
atomic operators σ−

i and the local electric field observ-
able Esλ(ri) evolve in the absence of atom-field interac-
tions, the dynamics of the two two-level atoms in Fig. 1
can be analysed in a relatively straightforward way.

B. Dynamics of atomic states

Quantum optical master equations describe the dy-
namics of atomic density matrices ρA(t) on a coarse
grained time scale ∆t which is much larger than their
inverse transition frequency 1/ω0 but also much smaller
than their atomic lifetime 1/Γfree [6, 7]. To derive the
master equations for the experimental setup in Fig. 1,
we assume in the following that the free radiation field is
initially in its vacuum state |0F⟩, evolve atoms and field
for a time ∆t with their Hamiltonian H in Eq. (17) and
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follow these dynamics with a measurement as to whether
or not a photon has been emitted. Proceeding as de-
scribed in Methods, one can then show that the time
derivative of the atomic density matrix ρA equals

ρ̇A = − i

ℏ

(
HcondρA − ρAH

†
cond

)
+ L(ρA) (8)

to a very good approximation. The reset operator L(ρA)
and the non-Hermitian Hamiltonian Hcond in this equa-
tion can be used to analyse the dynamics of the two two-
level atoms in a time interval (0,∆t) under the condition
of a photon emission and no emission, respectively.

C. Dicke sub- and superradiance

Taking into account that some of the light that has
been emitted by each atom travels to the opposite side of
the mirror interface where it interferes with the reflected
light originating from the atom on the opposite side, one
can show that the operators L(ρA) and Hcond in Eq. (8)
can be written as

L(ρA) =
∑

i,j=a,b

Re
(
Γ
(ij)
mir

)
σ−
i ρAσ

+
j ,

Hcond = HA − iℏ
2

∑
i,j=a,b

Γ
(ij)
mir σ

+
j σ

−
i . (9)

The constants Γ
(ij)
mir in these equations depend on the

properties of the atoms and on the average reflection and
transmission rates ti and ri of the mirror interface. In
the following, we assume that these do not depend on
the angle of incidence and the frequency of the incom-
ing light. Such a dependence would alter the strength
of the predicted interactions but we expect that our re-
sults remain valid also in the more general case, at least
qualitatively.

Here we are especially interested in the case where the
distance between atom a the mirror image of atom b,
i.e. the difference between ra = (xa, ya, za) and r̃b =
(−xb, yb, zb), is relatively small. For simplicity, let us as-
sume that ya = yb and za = zb such that the relative
effective distance ξ = k0∥ra − r̃b∥ equals k0(xa + xb).
Using this notation and considering real mirror trans-
mission and reflection rates for simplicity, one can show
that

Γ
(ab)
mir =

3

8
tarbΓfree

[
D̂

(a)

12 · D̂
(b)

12

(
1

iξ
+

1

ξ2
− 1

iξ3

)
−
(
D̂

(a)

12 · x̂
)(

D̂
(b)

12 · x̂
)( 1

iξ
+

3

ξ2
− 3

iξ3

)]
eiξ

− 3

16
tarbΓfree

[
D̂

(a)

12 · D̂
(b)

12

(
1

iξ
− 2

iξ3

)
+
(
D̂

(a)

12 · x̂
)(

D̂
(b)

12 · x̂
)( 1

iξ
+

6

iξ3

)]
, (10)

while Γ
(aa)
mir = Γ

(bb)
mir = Γfree and Γ

(ba)
mir = Γ

(ab)∗
mir . Here Γfree

denotes the single-atom free space decay rate and D̂
(i)

12

and x̂ are unit vectors which point in the direction of the

(real) dipole moment vector D
(i)
12 and of the positive x

axis, respectively.

As we shall see below, the real part Re(Γ
(ab)
mir ) of

the complex rate in Eq. (10) results in corrections to
the spontaneous decay rate of certain symmetric atomic

state, while its imaginary part ∆mir = Im(Γ
(ab)
mir ) de-

scribes level shifts. Fig. 2 shows both frequencies for
different orientations of the atomic dipole moments and
for different effective relative distances ξ between atom

a and the mirror image of atom b. The rate Γ
(ab)
mir is only

non-zero when ξ is comparable to the wavelength of the
emitted light, however, the actual distance of the atoms
can be much larger. In the absence of a mirror inter-

face, the reflection rate rb = 0 and Γ
(ab)
mir tends to zero,

as one would expect. Formally, Eq. (8) is exactly the
same as the master equations of two atoms experiencing
Dicke sub- and superradiance [22–25]. The only differ-
ence is the overall factor 3

8 tarb in Eq. (10). In addition,
there are some additional imaginary terms in the third
and fourth line of this equation.

III. DISCUSSION

A. Alterations of atomic level shifts and
spontaneous decay rates

Having a closer look at the conditional Hamiltonian
Hcond in Eq. (9), we see that it contains a Hermitian
and a non-Hermitian contribution. The Hermitian con-
tribution contains the atom Hamiltonian HA and terms

proportional to ∆mir = Im(Γ
(ab)
mir ). These describe the

free dynamics of the atoms as well as interaction-induced
level shifts. As one can see when comparing Eq. (10) with
the equations in Refs. [21–25], the level shifts in the first
two lines of Eq. (10) are essentially the same as the level
shifts in the presence of free-space dipole-dipole interac-
tions between two two-level atoms at positions ra and r̃b.
The only difference is the above mentioned overall factor,
which occurs since not all emitted light contributes to the
generation of the interaction. In addition there are some
additional level shifts in the last two lines of Eq. (10).
However, as illustrated in Fig. 2(a), these do not signifi-
cantly alter the general dependence of the level shifts on
the relative effective distance ξ of the two atoms. For ex-
ample, when ξ tends to zero, ∆mir tends to infinity due
to the above quantum optical model treating the atoms
as point particles. Because of these similarities, we refer
to the mirror-mediated interaction which we predict here
as a dipole-dipole interaction.
The remaining terms in the conditional Hamiltonian

Hcond in Eq. (9) describe the damping of population in
excited atomic states. By diagonalising Hcond we find
that the spontaneous decay rate of the state |22⟩ of the
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(b)(a)

^ ^

FIG. 2. (a) The imaginary part ∆mir = Im(Γ
(ab)
mir ) which is responsible for the level shifts of certain collective atomic states as a

function of the distance ξ between atom a and the mirror image of atom b for different orientations of the atomic dipole moment

vectors D
(a)
12 and D

(b)
12 for tarb = 0.5. For simplicity, we assume here that D

(a)
12 = D

(b)
12 = D12 and that D12 is a real vector,

while x̂ is a unit vector pointing in the direction of the positive x axis. When |D̂12 · x̂| = 1, both atomic dipole moments are
orthogonal to the mirror surface in the x = 0 plane. As one would expect, the mirror mediated interactions between the atoms
are relatively weak in this case. These assume their maximum, when D12 is parallel to the mirror surface and |D̂12 · x̂| = 0. (b)

The real part of Γ
(ab)
mir in Eq. (10) which represents changes to the spontaneous decay rates as a function of ξ and for different

values of |D̂12 · x̂|.

two two-level atoms with both atoms in their excited
state equals 2Γfree, as usual. However, collective atomic
states which share only one excitation now have the spon-
taneous decay rates

Γ± = Γfree ± Re(Γ
(ab)
mir ) . (11)

As we can see from Eq. (10) and Fig. 2(b), up to an
overall factor, the differences between Γ± and Γfree are
what they would be in the presence of a free-space dipole-
dipole interaction between two atoms at positions ra and
r̃b [21–25]. As shown in Section III B, the atomic states
with well-defined spontaneous decay rates are the same as
for dipole-interacting atoms, namely the double-excited
state |22⟩ and the single-excited symmetric and antisym-

metric states |±⟩ = (|12⟩ ± |21⟩)/
√
2.

Changes to spontaneous decay rates can be detected,
for example, with the help of fluorescence lifetime mea-
surements. Moreover, when the atoms are driven by a
common laser field, we expect their higher order pho-
ton correlation functions [8–10] to change and an inter-
ference pattern to emerge, if the spontaneously emitted
photons are collected on a far-away screen, as illustrated
in Fig. 1(b). As described in Methods, the only assump-
tions regarding the distance of the two two-level atoms
made in the derivation of the above equations are:

1. The actual distance between the atoms and be-
tween an atom and the mirror interface should be
relatively large. This applies when k0|xa−xb| ≫ 1.

2. The actual distance between the two atoms in
Figs. 1(b) and (c) should not be so large that the
time it takes light to travel from one atom to the
other becomes comparable to the lifetime of excited
atomic states.

The first condition allows us to ignore direct atom-atom
and atom-mirror interactions which are relatively short-
range. The second condition simplifies the modelling of
light propagation in the presence of the mirror interface
and is not very restrictive. For example, light can travel
a 1mm distance in less than 3.4 · 10−12 s which is much
shorter than the typical lifetime 1/Γfree of excited atomic
states. However, when analysing atomic interactions over
very large distances, retardation effects need to be taken
into account and the dynamics of the two atoms can no
longer be described by a simple Markovian master equa-
tion, like the one in Eq. (8).

The main difference between the above-described
mirror-mediated dipole-dipole interactions and the usual
dipole-dipole interactions between two atoms in free
space is that the former can be felt over much longer
distances. As we have shown above, mirror-mediated re-
mote dipole-dipole interaction can persist over distances
which are several orders of magnitude longer than the
wavelength of the emitted light. They assume a maxi-
mum when the relative distance ξ between the position
ra of atom a and the position r̃b of the mirror image of
atom b is of the order of one. This can be the case even
when the actual distance ∥ra − rb∥ of the atoms is sev-
eral orders of magnitude larger than the wavelength of
the emitted light. The interaction which we predict here
is therefore ultralong-range and targeted.

Another requirement for the atomic interactions which
we predict in this paper is the presence of an asymmetric
mirror interface. As illustrated in Fig. 1, such a mirror
can be realised with the help of a different surface rough-
ness on both sides of the reflecting layer. If both sides of
the mirror surface were smooth, the interaction constant

Γ
(ab)
mir in Eq. (10) would be proportional to r∗atb + t∗arb
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(a) (b)

FIG. 3. (a) Time dependence of the photon emission rate I(t) in Eq. (16) for different initial populations p of the excited

atomic state in the presence of mirror-mediated dipole-dipole interactions. Here Re
(
Γ
(ab)
mir

)
= 0.05Γfree. (b) The rate I(t) differs

from the emission rate I0(t) of the atoms in the absence of interactions for the same p. As one would expect in the case of a
broadening of spontaneous decay rates, the loss of atomic excitation happens faster at relatively short times and slower at later
times.

which is zero, as we know from classical optics [27]. For
mirrors which are equally smooth on both sides, the inter-
action which we predict here therefore simply disappears.
However, for the asymmetric mirror interface shown in
Figs. 1(b) and (c), the predicted atomic interaction scales
as t∗arb which is in general non-zero.

B. Predictions for fluorescence lifetime
measurements

To determine the spontaneous decay rates of two atoms
with ground states |1⟩i and excited states |2⟩i on oppo-
site sides of a partially transparent mirror interface, we
absorb all the Hermitian terms of the conditional Hamil-
tonian Hcond in Eq. (9) into the free atomic Hamiltonian
HA. Doing so, Hcond can be written as

Hcond = HA − iℏ
2

[
Γ+ L

†
+L+ + Γ− L

†
−L−

]
(12)

where the Γ± are the spontaneous decay rates of the two
atoms in Eq. (11) and where the L± with

L± = (σ−
a ± σ−

b )/
√
2 (13)

are atomic lowering operators. Hence the time evolution
operator Ucond(t, 0) = exp (−iHcondt/ℏ) which describes
the dynamics of atom a and atom b under the condition
of no photon emission in (0, t) equals, in the interaction
picture with respect to H0 = HA and t = 0,

Ucond(t, 0) = |+⟩⟨+| e−Γ+t/2 + |−⟩⟨−| e−Γ−t/2

+|11⟩⟨11|+ |22⟩⟨22| e−Γfreet . (14)

with |±⟩ = (|12⟩ ± |21⟩/
√
2, as mentioned already in the

beginning of this section.

Suppose an incoherent excitation process prepares each
atom with probability p in its excited state, thereby
creating a statistical mixture of the atomic states |11⟩,
|12⟩, |21⟩ and |22⟩. In this case, the probability P0(t) =
∥Ucond(t, 0) |ψI⟩∥2 for no photon emission in (0, t) is the
sum of three exponentials and equals [6, 7]

P0(t) = (1− p)2 + (1− p)p
(
e−Γ+t + e−Γ−t

)
+p2 e−2Γfreet . (15)

For p ≪ 1, the probability of finding both atoms in the
excited state becomes negligible and the probability den-
sity I(t) for a photon emission at t coincides with the
probability density w1(t) = −d/dt P0(t) for the emission
of a first photon at t. Hence,

I(t) = 2p
[
Γfree cosh

(
Re
(
Γ
(ab)
mir

)
t
)

−Re
(
Γ
(ab)
mir

)
sinh

(
Re
(
Γ
(ab)
mir

)
t
)]

e−Γfreet (16)

to a very good approximation. This equation holds up
to first order in p. As illustrated in Fig. 3, this emis-
sion rate is qualitatively different from the emission rate
I0(t) of the atoms in the absence of dipole-dipole interac-
tions. It is therefore possible to use fluorescence lifetime
measurements to detect the above described changes of
spontaneous decay rates and to obtain a signature of the
remote mirror-mediated dipole-dipole interactions which
we predict in this paper.

IV. CONCLUSIONS

In this paper we derived the quantum optical mas-
ter equations of two two-level atoms on opposite sides
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of a partially transparent asymmetric mirror interface by
evolving the atoms and the free radiation field for a short
time interval ∆t using second order perturbation theory.
Our approach allows us to deduce the time derivative of
the atomic density matrix ρA from the classical dynamics
of light in the absence of any atom-field interactions. We
then showed that the two atoms can experience an effec-
tive dipole-dipole interaction when atom a is close to the
position of the mirror image of atom b and vice versa.
The main result of this paper is the prediction of tar-
geted, remote, mirror-mediated ultralong-range dipole-
dipole interactions which are likely to find a wide range
of applications in the design of novel photonic devices for
quantum technology applications, like non-invasive quan-
tum sensing with fluorescence lifetime measurements.

V. METHODS

Our starting point for the derivation of the quantum
optical master equations in Eq. (8) is the system Hamil-
tonian H which can be written as

H = HA +HF +HAF . (17)

Here HA and HF denote the free energy of the atoms
and of the electromagnetic field, i.e. in the absence of
the mirror interface. An expression for the interaction
Hamiltonian HAF between the atoms and the local exci-
tations of the surrounding free radiation field within the
usual dipole approximation can be found in Eq. (7) [22–
25]. As we shall see below, in addition, we only need to
know how the atomic dipole moments and electric field

observables evolve in the Heisenberg picture in the ab-
sence of atom-field interactions.
Suppose ρA(0) is the initial density matrix of the two

atoms in the Schrödinger picture, while the surrounding
free radiation field is initially in its vacuum state. We
then evolve the atom-field density matrix |0F⟩ρA(0)⟨0F|
for a time ∆t with the time evolution operator U(∆t, 0) of
the above Hamiltonian H. Subsequently performing an
absorbing measurement on the surrounding free radiation
field leads to the atomic density matrix

ρA(∆t) = TrF
[
U(∆t, 0)|0F⟩ρA(0)⟨0F|U†(∆t, 0)

]
. (18)

Here the trace over the field degrees of freedom is
taken to ensure that a measurement on the surround-
ing electromagnetic field does not change the prop-
erties of the atoms, if its outcome is ignored. As
requested by locality, the density matrices ρA(∆t)
and U(∆t, 0)|0F⟩ρA(0)⟨0F|U†(∆t, 0) must have the same
atomic expectation values. Next, we introduce the time
derivative

ρ̇A =
1

∆t
(ρA(∆t)− ρA(0)) (19)

which describes the dynamics of the atomic density ρA on
the coarse grained time scale ∆t, while the free radiation
field at the position of the atoms remains effectively in
its vacuum state [6, 7].
Since the time evolution operator U(∆t, 0) in Eq. (18)

cannot be calculated easily analytically, we write the to-
tal Hamiltonian H of the experimental setup in Fig. 1(c)
in the following as the sum of the free Hamiltonian
H0 = HA + HF and the interaction HAF. As long as
∆t is neither too long nor too short, as described in Re-
sults, we can analyse the dynamics of the system using a
Dyson series expansion which implies that

U(∆t, 0) = U0(∆t, 0)−
i

ℏ

∫ ∆t

0

dt U0(∆t, t)HAF U0(t, 0)−
1

ℏ2

∫ ∆t

0

dt

∫ t

0

dt′ U0(∆t, t)HAF U0(t, t
′)HAF U0(t

′, 0)

(20)

to a very good approximation. Combining Eqs. (18) and (20), while only taking terms in zeroth order in ∆t into
account, leads to

ρA(∆t) =
1

ℏ2

∫ ∆t

0

dt

∫ ∆t

0

dt′ TrF

[
U0(∆t, t)HAF U0(t, 0) |0F⟩ρA(0)⟨0F|U†

0 (t
′, 0)HAF U

†
0 (∆t, t

′)
]

− 1

ℏ2

∆t∫
0

dt

t∫
0

dt′ ⟨0F|U0(∆t, t)HAF U0(t, t
′)HAF U0(t

′, 0)|0F⟩ρA(0) + c.c.

+⟨0F|U0(∆t, 0)|0F⟩ρA(0)⟨0F|U†
0 (∆t, 0)|0F⟩ (21)

which applies in first order in ∆t. To obtain the above equation, we took into account that HAF either creates or
annihilates a photon, while H0 preserves the number of excitations in the free radiation field. Carefully comparing
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this equation with Eqs. (8) and (19), we see that

L(ρA) =
1

ℏ2∆t

∫ ∆t

0

dt

∫ ∆t

0

dt′ TrF

[
U0(∆t, t)HAF U0(t, 0) |0F⟩ρA⟨0F|U†

0 (t
′, 0)HAF U

†
0 (∆t, t

′)
]
,

Hcond = HA − i

ℏ∆t

∆t∫
0

dt

t∫
0

dt′ ⟨0F|U0(∆t, t)HAF U0(t, t
′)HAF U0(t

′, 0)|0F⟩ . (22)

To further simplify the above expressions, we notice that H0 is the sum of two commuting Hamiltonians, namely
HA and HF. Hence, U0(t, 0) = UA(t, 0) ⊗ UF(t, 0), where UA(t, 0) and UF(t, 0) denote the time evolution operators
associated with HA and HF, respectively. In addition, we introduce the short hand notation

D(i)(t) = U†
A(t, 0)D

(i)
12σ

−
i UA(t, 0) (23)

and notice that the vacuum state is invariant under UF. Hence, using Eqs. (7) and (22), one can show that

L(ρA) =
e2

ℏ2∆t
∑

i,j=a,b

∫ ∆t

0

dt

∫ ∆t

0

dt′ TrF

[
D(i)(t) · UF(∆t, t)E(ri) |0F⟩ρA⟨0F|D(j)(t′)† · E(rj)† U†

F(∆t, t
′)
]
,

Hcond = HA − ie2

ℏ∆t
∑

i,j=a,b

∆t∫
0

dt

t∫
0

dt′ D(j)(t)† · ⟨0F|E(rj)† U†
F(t

′, 0)D(i)(t′) · UF(t, 0)E(ri) |0F⟩ (24)

in zeroth order in ∆t. Here L(ρA) contains all the contributions of the atom-field density matrix which correspond to
the presence of a photon at ∆t in the free radiation field. It therefore equals the (unnormalised) density matrix of the
atoms conditional on the creation of a photon in (0,∆t). Analogously, the non-Hermitian Hamiltonian Hcond only
contains contributions in which excitation has been created in (0,∆t) but is later re-absorbed by the atoms. Hence it
describes atomic dynamics in the absence of an emission [6, 7].

A. The free-space dynamics of atoms and field

Suppose ℏω0 is the energy gap between the ground and the excited state of atom i. Then the atom Hamiltonian
HA can be written as HA =

∑
i=a,b ℏω0 σ

+
i σ

−
i with σ+

i = |2⟩ii⟨1| and σ−
i = |1⟩ii⟨2|. Hence the time-dependent dipole

moment operator D(i)(t) in Eq. (23) equals

D(i)(t) = e−iω0t D
(i)
12 σ

−
i . (25)

From Eq. (24) we see that the only other expression needed for the derivation of the quantum optical master equations
in Eq. (8) is the state UF(t, 0)Esλ(r) |0F⟩ of the free radiation field. This state is obtained when creating a local field
excitation with direction of propagation s and polarisation λ at time t = 0 at position r and subsequently evolving
the resulting state for some time t. Since ∆t is much larger than the time it takes light to travel from the atoms to the
mirror surface, light emitted at t = 0 in the direction of the mirror has either already been reflected or transmitted
after almost all times t ∈ (0,∆t). Neglecting very small times t for which light has not yet reached the mirror interface
and using Eqs. (4) and (5), we therefore find that

UF(t, 0)Esλ(ra) |0F⟩ = Θ(−sx)
[
ra(s)ES(s)λ(Ra(s, t)) + ta(s)Esλ(ra + sct)

]
|0F⟩+Θ(sx)Esλ(ra + sct) |0F⟩ ,

UF(t, 0)Esλ(rb) |0F⟩ = Θ(sx) [rb(s)E s̃λ(r̃b + s̃ct) + tb(s)Esλ(rb + sct)] |0F⟩+Θ(−sx)Esλ(rb + sct) |0F⟩ (26)

for direction vectors s = (sx, sy, sz). Here the Heavyside function Θ(sx) equals 0 for sx < 0 and 1 otherwise. Moreover,
the real reflection rates ri(s) for light travelling from atom i in the s direction either equal 0 or 1, depending on whether
light arrives at a metallic island or at a gap in the mirror interface (cf. Fig. 1). The corresponding transmission rates
ti(s) are given by ti(s) = 1 − ri(s), since light with a well defined direction of propagation and source cannot be
reflected and transmitted by the mirror surface. Later on, we will take into account that the effective reflection and
transmission rates of the mirror are given by

ri =
1

2π

∫
Si

ds ri(s) and ti = 1− ri , (27)

where Sa = {s ∈ S : sx < 0} and Sb = {s ∈ S : sx > 0}. As previously mentioned in the Results section, S(s)
and Ra(s, t) denote the direction of propagation and the position of a local electric field excitation at time t after its
creation by atom a at t = 0 and after its subsequent reflection on the rough side of the mirror interface.
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B. The conditional Hamiltonian Hcond

Substituting Eq. (25) into Eq. (24), we can show that the conditional Hamiltonian Hcond can indeed be written as

in Eq. (9), if we define the constants Γ
(ij)
mir such that

Γ
(ij)
mir =

1

∆t

∫ ∆t

0

dt

∫ t

0

dt′
e2c

8ℏπ3ε
eiω0(t−t′) γ

(ij)
mir (t, t

′) (28)

with γ
(ij)
mir (t, t

′) given by

γ
(ij)
mir (t, t

′) =
16π3ε

ℏc
D

(j)
12 · ⟨0F|E(rj)† U†

F(t
′, 0)D

(i)
12 · UF(t, 0)E(ri)|0F⟩ . (29)

Using Eqs. (2), (3) and (26) and performing one of the k integrations, we therefore find that

γ
(aa)
mir (t, t′) =

∑
λ=1,2

∫
dk k e−ick(t−t′)

[
(ta(s)Θ(−sx) + Θ(sx))

(
D

(a)
12 · esλ

)2
+ ra(s)Θ(−sx)

(
D

(a)
12 · eS(s)λ

)2]
γ
(bb)
mir (t, t

′) =
∑
λ=1,2

∫
dk k e−ick(t−t′)

[
(Θ(−sx) + tb(s)Θ(sx))

(
D

(b)
12 · esλ

)2
+ rb(s)Θ(sx)

(
D

(b)
12 · es̃λ

)2]
(30)

with dk = dsdk k2. Next we introduce polar coordinates k ∈ (0,∞), φ ∈ (0, 2π) and ϑ ∈ (0, π) such that

s =

 cosϑ
cosφ sinϑ
sinφ sinϑ

 , es1 =

 0
sinφ

− cosφ

 , es2 =

 sinϑ
− cosφ cosϑ
− sinφ cosϑ

 , (31)

while ds = dϑdφ sinϑ. After replacing the reflections and transmission rates ri(s) and ti(s) by their average values
ri and ti in Eq. (27), which is well justified when the metallic islands which form the mirror interface are much smaller
then the wavelength of the emitted light, Eq. (30) contains the integral∫ ∞

0

dk k3 e−ickτ = − iπ

c4
δ(3)(τ) (32)

with δ(3)(τ) denoting the third derivative of δ(τ) with respect to τ . Hence we can now show that

1

∆t

∫ ∆t

0

dt

∫ t

0

dt′ eiω0(t−t′)

∫ ∞

0

dk k3 e−ick(t−t′) =
iπ

c3∆t

∫ ∆t

0

dt

∫ t

0

dτ eiω0τ δ(3)(τ) =
πω3

0

c4
. (33)

Combining the above equations and assuming that the direction vectors S(s) cover the half-space on the right hand
side of the mirror interface evenly, we then find that

Γ
(ii)
mir =

e2ω3
0

8π2ℏεc3
∑
λ=1,2

∫
ds
[
ri Θ(∓sx)

(
D

(i)
12 · es̃λ

)2
+ (ti Θ(∓sx) + Θ(±sx))

(
D

(i)
12 · esλ

)2]
, (34)

respectively. Which signs apply depends on whether i equals a or b. Moreover, introducing the notation D
(i)
12 =

∥D12∥ (d(i)1 , d
(i)
2 , d

(i)
3 )T with |d(i)1 |2 + |d(i)2 |2 + |d(i)3 |2 = 1, one can now show that the above Γ

(ii)
mir both equal the

free-space decay rate of an atom with dipole moment D
(i)
12 = D12,

Γ
(aa)
mir = Γ

(bb)
mir = Γfree with Γfree =

e2ω3
0 ∥D12∥2

3πℏεc3
(35)

since ri + ti = 1. As we shall see below, this result does not mean that photons are emitted at their free-space rate
Γfree, if initially only one of the two atoms is excited.

The two remaining constants Γ
(ab)
mir and Γ

(ba)
mir in Eq. (9) can be derived analogously. Since we are only interested

in the case where the distance of each atom from the mirror interface and the distance between atom a and atom b
are much larger than the wavelength of the emitted light, we can safely ignore terms describing direct interactions
between both atoms and between an atom and its own mirror image. These are known to be relatively short-range.
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However, terms describing interactions between an atom and the mirror image of the atom on the opposite side must
be kept, when ra and r̃b are relatively close. Using Eqs. (2) and (29) we therefore find that

γ
(ab)
mir (t, t

′) =
16π3ε

ℏc
∑
λ=1,2

∫
dsΘ(sx)

[
ta(s̃)rb(s)D

(b)
12 · ⟨0F|E s̃λ(r̃b + s̃ct′)† D

(a)
12 · E s̃λ(ra + s̃ct)|0F⟩

+

∫
ds′ Θ(−s′x) ra(s′)tb(s)D

(b)
12 · ⟨0F|Esλ(rb + sct′)† D

(a)
12 · ES(s′)λ(Ra(s

′, t))|0F⟩
]

(36)

and γ
(ba)
mir (t, t

′) = γ
(ab)
mir (t, t

′)∗ to a very good approximation. If the scattering operator S scrambles the wave vectors
of light originating from atom a more or less randomly upon reflection, the second term in this equation becomes
negligible. However, the first term in the above equation does not average away and is in general non-zero. For
simplicity, let us assume that ra and rb have the same y and z coordinates. In this case

eik·(ra−r̃b) = eik cosϑ(xa+xb) . (37)

Replacing ta(s̃) and rb(s) by their average values in Eq. (27), proceeding as described in the previous subsection and
using again Eq. (33), leads us to

Γ
(ab)
mir =

3tarbΓfree

8π

∑
λ=1,2

∫ π

π/2

dϑ e−iξ cosϑ sinϑ

∫ 2π

0

dφ
(
D̂

(a)

12 · esλ
)(

D̂
(b)

12 · esλ
)
. (38)

The hat symbols indicate that the vectors D
(i)
12 have been normalised, the polarisation vectors esλ can be found in

Eq. (31), and ξ = k0(xa + xb) with k0 = ω0/c is a relative effective distance. Performing the φ integration and
substituting u = − cosϑ yields

Γ
(ab)
mir =

3tarbΓfree

16

∫ 1

0

du eiξu
[
2d

(a)
1 d

(b)
1

(
1− u2

)
+
(
d
(a)
2 d

(b)
2 + d

(a)
3 d

(b)
3

) (
1 + u2

)]
. (39)

Performing the final integration, the above constant simplifies to

Γ
(ab)
mir =

3tarbΓfree

16

[
3∑

i=2

d
(a)
i d

(b)
i

(
2eiξ

(
1

iξ
+

1

ξ2
− 1

iξ3

)
− 1

iξ
+

2

iξ3

)
− 2d

(a)
1 d

(b)
1

(
2eiξ

(
1

ξ2
− 1

iξ3

)
+

1

iξ
+

2

iξ3

)]
(40)

which coincides with Eq. (10) in the main text. Analogously, one can show that Γ
(ba)
mir = Γ

(ab)∗
mir . If the y and the z

coordinates of the position of atom a and atom b are not the same, additional terms have to be taken into account in
the above derivation. However, our physical intuition tells us that the remote interaction between atom a and atom
b depends also in this case only on the relative effective distance ξ and not on the actual distance of the atoms.

C. The reset operator L(ρA)

For completeness, we now also calculate the state L(ρA) of the atoms in case of an emission. Substituting Eq. (25)
into Eq. (24) and introducing the variables τ = ∆t− t and τ ′ = ∆t− t′ yields

L(ρA) =
∑

i,j=a,b

Γ̃
(ij)
mir σ

−
i ρAσ

+
j (41)

with Γ̃
(ij)
mir given by

Γ̃
(ij)
mir =

e2

ℏ2∆t

∫ ∆t

0

dτ

∫ ∆t

0

dτ ′ eiω0(τ−τ ′) D
(j)
12 · ⟨0F|E(rj)U†

F(τ
′, 0) D

(i)
12 · UF(τ, 0)E(ri)† |0F⟩ . (42)

These constants have many similarities with the constants Γ
(ij)
mir in Eqs. (28). The only differences are a missing factor

2 and a different upper limit on the second time integral. Proceeding as in the previous subsection, we find that
evaluating Eq. (42) now leads to time integrals of the form∫ ∆t

0

dτ

∫ ∆t

0

dτ ′ eiω(τ−τ ′) = 2Re

(∫ ∆t

0

dτ

∫ τ

0

dτ ′ eiω(τ−τ ′)

)
(43)

with ω = ω0 − ck. Hence all the constants Γ̃
(ij)
mir are real and Γ̃

(ij)
mir = Re

(
Γ
(ij)
mir

)
which yields the reset operator
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L(ρA) in Eq. (9).
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