
A simple quantum picture of the relativistic Doppler effect

Daniel Hodgson,1 Sara Kanzi,2 and Almut Beige1

1School of Physics and Astronomy, University of Leeds, Leeds, UK, LS2 9JT
2Faculty of Engineering, Final International University,
North Cyprus Via Mersin 10, Kyrenia, 99370, Turkey

The relativistic Doppler effect comes from the fact that observers in different inertial reference
frames experience space and time differently, while the speed of light remains always the same.
Consequently, a wave packet of light exhibits different frequencies, wavelengths, and amplitudes.
In this paper, we present a local approach to the relativistic Doppler effect based on relativity,
spatial and time translational symmetries, and energy conservation. Afterwards we investigate the
implications of the relativistic Doppler effect for the quantum state transformations of wave packets
of light and show that a local photon is a local photon at the same point in the spacetime diagram
in all inertial frames.

I. INTRODUCTION

When a moving car beeps its horn, the driver and a by-
stander on the pavement hear the sound at different fre-
quencies and observe different wavelengths. This change,
resulting from the relative motion of the driver and the
bystander, is known as the Doppler effect [1, 2] and is
well understood in classical physics. For example, the
frequency heard by the resting observer depends on the
speed of the car relative to the pavement and the orig-
inal frequency of the signal. Due to its simplicity, the
Doppler effect has already found a wide range of applica-
tions, including the policing of speed limit violations by
irresponsible drivers. The relativistic Doppler effect [3–9]
also accounts for differences in how observers experience
space and time. Observers in different inertial reference
frames which move at a relative speed close to the speed
of light receive signals which differ not only in frequency
and wavelength but also in amplitude.

According to Einstein’s principle of relativity [10–16],
there is no privileged frame of reference. The same phys-
ical laws apply in all reference frames if these move with
respect to each other at constant velocity. For exam-
ple, wave packets of light with a well-defined direction
of propagation move at the speed of light c in any refer-
ence frame. For completeness, let us point out that some
authors debate whether this assumption is true or not
[17]. For example, it is believed that some effects, such
as the experimentally verified Sagnac effect [18, 19], are
best understood in terms of anisotropies of the speed of
light [20]. Moreover, some experiments that have been
designed to disprove the existence of an aether may have
been misinterpreted [21, 22]. Other experiments again
claim to verify the constancy of the speed of light with
high accuracy [23, 24]. Here we notice that any physi-
cal theory that involves space and time requires a way
of measuring both using clocks and meters and simply
assume in the following that all clocks and meters are
calibrated such that light travels at the same speed in all
directions in all reference frames.

Recently, our group discussed and promoted the pos-
sible quantisation of the electromagnetic (EM) field

in position space [25–28]. Starting from the assump-
tion that the basic building blocks of light are lo-
calised photons—so-called blips (bosons localised in posi-
tion)—with well-defined positions, polarisations and di-
rections of propagation, we derived a Hamiltonian that
generates their dynamics as well as electric and magnetic
field observables for the calculation of expectation val-
ues. As a first application of our local photon approach,
we constructed locally-acting mirror Hamiltonians for de-
scribing light scattering by partially transparent inter-
faces [26, 29]. However, our approach differs from pre-
vious field quantisation schemes (cf. e.g. Ref. [30] and
references therein) and requires a doubling of the Hilbert
space of the EM field by the inclusion of positive as well
as negative frequency photons. The main purpose of this
manuscript is to verify the consistency of our generali-
sation of standard quantum optics approaches with the
well-known Doppler effect [3, 5–8].
In addition to demonstrating this consistency, we show

that a local approach has many advantages and offers
new insight. For example, as we shall see below, it can
easily accommodate spatial and time translational sym-
metries in a straightforward way. In the following, we de-
rive the relativistic Doppler effect with only a minimum
of assumptions, and, as we shall see below, all results
presented here are consistent with the existing literature
[31–39]. The main new result of our investigation will
be the derivation of a relationship between local photons
in different inertial reference frames. More concretely, it
will be shown that a local photon is seen as a local pho-
ton by all observers at the same point in the spacetime
diagram. We are therefore confident that our local ap-
proach will pave the way for systematic studies of even
more complex scenarios, like the Unruh effect [40, 41]
and quantum electrodynamics in reference frames with
time-varying accelerations without the need for approx-
imations, such as the usual assumption of a flat space-
time [42]. Moreover, some of the insights obtained here
might have applications in relativistic quantum informa-
tion [43–51].
In the following we review the basic assumptions made

in the derivation of the relativistic Doppler effect. Sup-
pose an observer—let us call her Alice (A)—is watching a
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wave packet of light with a well-defined direction of prop-
agation s and a well-defined polarisation λ travel along
the x axis. Since this wave packet travels at the speed
of light, its electric field amplitudes EA(xA, tA) seen by
Alice at positions xA at times tA equal

EA(xA, tA) = EA(xA − sctA, 0) (1)

where the initial electric field amplitudes of the wave
packet are given by EA(xA, 0). Here s = −1 and s = 1
correspond to wave packets propagating in the direction
of decreasing and increasing xA respectively. Hence, if
the physical properties of a wave packet seen by Alice
are known at one instant in time, they are known at all
times. The same applies to the electric field amplitudes
EB(xB, tB) seen at (xB, tB) by a second observer—called
Bob (B) —who is travelling at a constant velocity vB
relative to Alice, wherefore

EB(xB, tB) = EB(xB − sctB, 0) (2)

in analogy to Eq. (1). Hence, the electric field ampli-
tudes perceived by both Alice and Bob at any position
and time are only characterised by the values of the pa-
rameters χi = xi−scti with i = A,B. In the remainder of
this paper, we shall use a shorthand notation and replace
Ei(xi, ti) by Ei(χi).

The principle of relativity also suggests that the elec-
tric and magnetic field transformations from observer A
to observer B and vice versa need to be formally the
same. The only difference is that the relative speed of
their reference frames changes from vB to vA = −vB.
This suggests a linear dependence between electric field
amplitudes EB(χB) and EA(χA) at the same point in the
spacetime diagram since this transformation is the only
transformation that remains formally the same when re-
versed. We therefore assume in the following that

EB(χB) = ξBA EA(χA) (3)

where the coordinates χA and χB specify the same space-
time trajectory and ξBA denotes a transformation con-
stant. Analogously, we also know that

EA(χA) = ξAB EB(χB). (4)

Furthermore, the principle of relativity tells us that the
transformation constants ξAB and ξBA relate to each
other such that

ξAB(s, vB) = ξBA(s,−vB) , (5)

since the direction of propagation s of the wave packet is
the same in both reference frames, but the relative speed
of the frames changes sign. When combining Eqs. (3)–(5)
we therefore find that

ξBA(s, vB) = 1/ξBA(s,−vB) . (6)

In the following, this is taken into account when we de-
termine ξAB and ξBA. Whilst some quantisations based

on the vector potential require a gauge fixing condition,
which may not be relativistically invariant, in this pa-
per we shall deal directly with the gauge invariant elec-
tric and magnetic field observables. As a consequence,
Eqs. (3) and (4) are the only transformation conditions
required in this paper.

Next we notice that the spatial and time translational
symmetries of the EM field tell us that the above rela-
tions must hold for all spacetime coordinates χA and χB.
Hence the transformation factors ξBA and ξAB can de-
pend on the direction of propagation s and on the relative
speed vB of Bob’s reference frame with respect to Alice’s,
but not on where and when the electric and magnetic field
amplitudes are measured. The above arguments thus re-
duce the question, how do local electric and magnetic
field observables transform from one inertial frame to an-
other, to the simpler question, how do they transform at a
single point in the spacetime diagram? Nevertheless, the
above equations are not enough to determine the trans-
formation factor ξBA in Eq. (3). To answer this question,
an additional assumption is needed.

Our final assumption in the following derivation of the
relativistic Doppler effect is based on energy conserva-
tion. To implement this we consider a certain “box”
which is a volume of spacetime points obtained by identi-
fying a finite-sized interval along the x axis and extend-
ing it to also contain all future and past points along
light-like trajectories passing through this interval. By
integrating over the positions inside the “box” at a fixed
time we can calculate the total amount of energy that it
contains. By construction, the same “box” must contain
the same amount of energy in Alice’s and Bob’s reference
frames since it contains the same physical system in both
cases. Nevertheless, as Alice and Bob experience space
and time differently, the same “box” appears to have a
different size in each of their frames. For example, parts
of the wave packet that occur simultaneously in the frame
of observer A appear at different times in the reference
frame of observer B. In addition, the density of the pos-
sible trajectories of light changes when moving from one
inertial frame to another; however, the total number of
world-lines in the “box” must remain the same. Taking
this into account, we can finally identify the dependence
of ξBA on s and on vB. When applying Fourier trans-
forms to local electric field amplitudes, we obtain the
usual frequency, wavelength and amplitude changes of
the relativistic Doppler effect.

This paper is structured as follows. Section II reviews
the relativistic Doppler effect in classical physics. We
first study how the coordinates χA and χB of two iner-
tial observers A and B relate to each other when they
correspond to the same point in the spacetime diagram.
Afterwards, we derive the transformation factors ξBA and
ξAB in Eqs. (3) and (4) by imposing the above described
conditions. In Section III, we use a local photon approach
and proceed as described in Refs. [25–27] to quantise the
EM field in different inertial reference frames. Section IV
combines this description with the results of Section II
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FIG. 1. Schematic view of two observers, Alice (a) and Bob (b), in different inertial reference frames which move with respect
to each other at constant velocity. For simplicity, we assume here that both observers are based at the origin of their respective
coordinate system and share the same position at an initial time tA = tB = 0. Suppose Alice emits a short light pulse from

her position towards Bob at a time when her clock reads t
(1)
A which Bob then receives when his clock reads t

(2)
B . By comparing

these two times, the ratio of their spacetime coordinates, i.e. χB/χA, can be determined.

to obtain a quantum picture of the relativistic Doppler
effect. Given the principle of relativity, neither observer
A nor observer B should be able to perform measure-
ments on photonic wave packets which tell them about
their absolute speed. Taking this into account, we find
that the local photon annihilation operators of Alice and
Bob are the same when they refer to the same location
in the spacetime diagram. However, the transformations
of the annihilation operators of monochromatic photons
are more complex. Finally, we summarise our findings in
Section V.

II. THE RELATIVISTIC DOPPLER EFFECT

The motion of an observer affects both the time and
the distance separating two events in spacetime. In the
case of two observers Alice (A) and Bob (B) in flat 1+1
dimensional spacetime (Minkowski space), this difference
in duration and separation can be expressed as a trans-
formation between their natural coordinates χA and χB.
In this section, we provide a derivation of the transforma-
tion between the coordinates of an observer at rest and
an observer moving with a constant velocity. Afterwards,
we use this to identify the constant ξBA for the electric
field amplitude transformation in Eq. (3).

A. Coordinate transformations

Suppose our first observer, Alice, is at rest and provides
a point of reference whilst our second observer, Bob, trav-
els at a constant velocity vB relative to Alice along the
x axis. As illustrated in Fig. 1, the position and time
at which an event takes place from Alice’s point of view
are denoted xA and tA respectively. Analogously, from
Bob’s point of view, events take place at positions xB

and times tB. For simplicity, we assume in the following
that both observers, who are stationary with respect to
their own coordinate systems, are located at the origin.
This means that Alice’s position is given by xA = 0 while

Bob’s position is given by xB = 0 for all times tA and tB
respectively. Moreover, we assume that Bob meets Alice
only once at an initial time tA = tB = 0.
In the stationary reference frame, light with a well-

defined direction of propagation s travels along the xA

axis at the speed of light c. Therefore, if Alice observes
any localised pulse of light, its position xA at any time
tA satisfies the relation

χA = xA − sctA = const. (7)

Here χA coincides with the position xA of the light pulse
at tA = 0. The speed of light measured relative to the
rest frame of an inertial observer is always constant and
independent of the motion of the source. Hence, from
Bob’s point of view, the position xB of the same light
pulse at any time tB satisfies the relation

χB = xB − sctB = const. (8)

In general χB does not equal χA, but the direction of
propagation s must be the same in both reference frames.
As both Eqs. (7) and (8) must be satisfied, we have

χB = κχA . (9)

The constant κ provides a connection between the co-
ordinate χA adopted by Alice and the coordinate χB

adopted by Bob, thereby establishing a relation between
the coordinates of identical world-lines. Considering the
cases where s = −1 and s = +1 and solving the above
equations, one can derive the point-like coordinate trans-
formations between spacetime coordinates (xA, tA) and
(xB, tB) which refer to the same point in the spacetime
diagrams of Alice and Bob.

To determine the relating constant κ in Eq. (9) we
assume that Alice sends a short light pulse from her own

position at x
(1)
A = 0 at a time t

(1)
A to Bob (cf. Fig. 1).

From Bob’s point of view, the light is emitted from a

position x
(1)
B at a time t

(1)
B and arrives at his position

x
(2)
B = 0 when his watch reads a time t

(2)
B . As Alice
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FIG. 2. The figures show the spacetime diagram of a short light pulse permanently confined to a spacetime “box” from both
Alice’s (a) and Bob’s (b) points of view. From Alice’s point of view the “box” extends from xA = a1 to xA = a2. The amplitude
of the light pulse in Alice’s frame is illustrated by the red wave form and remains within the box for all tA. From Bob’s point
of view the same “box” extends from xB = b1 to xB = b2. In Bob’s frame the width of the “box” is increased relative to Alice
by a factor of γ(1 + sβ) where β = vB/c. The wave form seen by Bob is shown in blue and remains in the “box” for all tB.

and Bob have both been placed at the origin of their
respective coordinate systems, Eq. (9) tells us that

t
(2)
B = κ t

(1)
A . (10)

According to Alice, a right-moving light pulse is received

by Bob at a position x
(2)
A at a time t

(2)
A where t

(2)
A =

t
(1)
A +x

(2)
A /c and x

(2)
A = vBt

(2)
A . Putting these two relations

together we find that

t
(1)
A = (1− β) t

(2)
A (11)

where the constant β is defined as

β = vB/c . (12)

Analogously, one can also show that

t
(2)
B = (1 + β) t

(1)
B . (13)

Eqs. (11) and (13) specify the relationship between the
times at which the light is emitted and received from the
points of view of both observers.

In general, the time elapsed between two events in Al-
ice’s reference frame is different to the time elapsed be-
tween the same two events in Bob’s frame [11–14]. The
reason for this is that a moving clock ticks at a different
rate than a stationary clock [15, 16]. To properly take
this into account, as the position at which Bob receives
the signal is moving relative to Alice, we suppose that

t
(2)
A = γ t

(2)
B . (14)

Furthermore, as the position of the emitter is stationary
with respect to Alice, but now moving in the opposite
direction with respect to Bob, it must also be that

t
(1)
B = γ t

(1)
A . (15)

By combining Eqs. (11)-(15) it can now be shown that

γ = 1/
√
1− β2 . (16)

Since γ is always larger than 1, clocks run slower in a
moving frame. By putting together Eqs. (13) and (15),
we moreover find that κ = γ(1 + β). By carrying out a
similar calculation for left-propagating light we eventu-
ally obtain the complete relation

χB = γ(1 + sβ)χA . (17)

As one would expect, the constant κ in Eq. (10) depends
on both the direction of propagation of light s and the
relative velocity vB between Alice and Bob.

B. Field amplitude transformations

Although light propagates at the same speed in all
reference frames, depending upon the direction of the
wave packet and the relative speed between Alice and
Bob, wave packets will appear to be either stretched or
squeezed from the point of view of a moving observer.
This occurs due to the difference in how space and time is
perceived by a moving observer compared to an observer
at rest, as we described in the previous subsection. As
a consequence of this transformation, a wave packet of
light may appear to have different energies in Alice’s and
Bob’s reference frames. However, the energy associated
with the same number of light trajectories must be the
same for Alice and Bob simultaneously. The purpose of
this subsection is to exploit energy conservation in order
to determine the transformation coefficient ξBA defined
in Eq. (3). To do so, we now investigate the energy of a
bundle of light trajectories from both Alice’s and Bob’s
points of view.
More concretely, as illustrated in Fig. 2, we now place a

“box” that confines a bundle of light-like world-lines with
coordinates χA ∈ [a1, a2] into the spacetime diagram of
Alice. From Alice’s point of view, the “box” has a width
∆xA = a2 − a1, which corresponds to an instant in time,
and contains all past and future points associated with
this spatial interval. Entirely analogous to Alice, the
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same bundle of world-lines creates an analogous “box”
in Bob’s spacetime diagram, but its width ∆xB along
the xB axis differs from ∆xA. As shown in Fig. 2, we
denote the endpoints of the “box” in Bob’s spacetime
diagram at tB = 0 by b1 and b2. Hence ∆xB = b2 − b1
and Bob’s world-line coordinates are χB ∈ [b1, b2].

Suppose now that hA and hB denote the density of the
bundle of world-lines in Alice’s and in Bob’s reference
frame respectively. By taking into account conservation
of the total number of world-lines within the “box,” we
see that

hA ∆xA = hB ∆xB . (18)

Since β and γ are defined such that

[γ(1 + sβ)]
−1

= γ(1− sβ) , (19)

by using Eq. (17) we can show that

hB = γ(1− sβ)hA . (20)

Due to the change in the space and time coordinates
between Alice’s and Bob’s reference frames, from Bob’s
point of view, the position density of the trajectories of
light has changed by a factor of γ(1− sβ).
The space and time transformations that take place

between Alice’s and Bob’s reference frames are unknown
to them. We, however, knowing that there is a change
in the energy density along the χ axis must take this
into account when we look more closely at Alice’s and
Bob’s energy observables. Doing so, we conclude that the
actual amounts of energy associated with a fixed number
of trajectories in both Alice’s and Bob’s “boxes” are only
the same when [30]

Aε

2hA

∫ a2

a1

dχA

[
EA(χA)

2 + c2 BA(χA)
2
]

=
Aε

2hB

∫ b2

b1

dχB

[
EB(χB)

2 + c2 BB(χB)
2
]
. (21)

Here A is the area occupied by the EM field in the y− z
plane, which is unchanged by boosts along the x axis,
and ε is the permittivity of free space. Eq. (21) can
now be used to obtain an expression for ξBA. As the
ratio between the electric and magnetic field amplitudes
of travelling waves must be the same in every reference
frame, which implies that BB(χB) = ξBA BA(χA) in anal-
ogy to Eq. (3), and substituting Eqs. (3), (17) and (20)
into Eq. (21), we conclude that

γ(1 + sβ) ξ2BA = γ(1− sβ) (22)

and hence

ξBA(s, vB) = γ(1− sβ) . (23)

This expression for the electric field transformation con-
stant ξBA satisfies Eq. (6).

For completeness, let us add that the usual expressions
for the total energy of the EM field in Alice’s and Bob’s
reference frames are given by [30]

H(i)
energy =

Aε

2

∫ ∞

−∞
dχi

[
Ei(χi)

2 + c2 Bi(χi)
2
]

(24)

with i = A,B. Not taking into account the different
densities hA and hB of light trajectories, but neverthe-
less employing the results in Eqs. (17) and (23), we find
that the above expressions are related by the relativistic
transformation

H(B)
energy = γ (1− sβ)H(A)

energy . (25)

There now seems to be a difference in the energy of the
EM field seen by Alice and the energy seen by Bob.
However, as we have seen above, energy conservation is
restored when we correctly account for the space and
time transformations between Alice’s and Bob’s reference
frames. The above discussion also shows that the total
amount of energy of the EM field in a given reference
frame i can only be calculated up to an overall factor un-
less there is a way of determining its world-line density
hi.

C. Frequency and wavelength transformations

Whilst the previous subsection deals only with changes
in the magnitude of the local energy, the Doppler effect is
normally associated with frequency and wavelength shifts
of monochromatic waves seen by two different inertial ob-
servers [52]. These shifts are not surprising since the fre-
quency of a monochromatic wave seen by Alice and Bob
is the number of complete wavelengths that pass their
positions per unit time. Frequency and wavelength are
therefore strongly connected with the clock or meter be-
ing used as a measuring device [53]. For completeness,
we therefore now also have a closer look at the momen-
tum representation of electric field amplitudes. Since the

complex electric field amplitudes Ẽi(ki, ti) and Ei(xi, ti)
in momentum and in position space relate to each other
via a Fourier transform, we have [27]

Ei(xi, ti) =
1√
2π

∫ ∞

−∞
dki e

iskixi Ẽi(ki, ti) (26)

with

Ẽi(ki, ti) = e−ickiti Ẽi(ki, 0) (27)

for i = A,B. Here ckA and ckB are the frequencies of a
monochromatic wave observed by Alice and Bob respec-
tively.
By again using the coordinates χi defined in Eqs. (7)

and (8), and taking into account the main result of the
previous subsection, i.e. by combining Eqs. (3) and (23),
we see that

EB(χB) = γ(1− sβ)EA(χA) . (28)
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Substituting the above Fourier transform into this rela-
tion yields

1√
2π

∫ ∞

−∞
dkB eiskBχB ẼB(kB, 0)

=
1√
2π

γ(1− sβ)

∫ ∞

−∞
dkA eiskAχA ẼA(kA, 0) . (29)

By taking the inverse Fourier transformation of both
sides of Eq. (29) with respect to the coordinate χB, we
can now show that

ẼB(kB, 0) =
1

2π
γ(1− sβ)

∫ ∞

−∞
dχB

∫ ∞

−∞
dkA

×eis(kAχA−kBχB) ẼA(kA, 0) . (30)

After substituting χA for χB using Eq. (17), the χB in-
tegration can be solved. This integration leads us to the
final result

ẼB(kB, 0) = ẼA(γ(1 + sβ)kB, 0) . (31)

The above equality specifies the relationship between the

Fourier components ẼA(kA, 0) and ẼB(kB, 0) of the elec-
tric field amplitudes measured by Alice and by Bob. If,

for instance, ẼA(kA, 0) is non-zero for a wave with a sin-
gle frequency ckA only, then Bob observes a monochro-
matic wave with frequency

ckB = γ(1− sβ) ckA . (32)

This shift in frequency is consistent with previous deriva-
tions of the relativistic Doppler shift for light propagating
in the s direction [54, 55].

III. THE QUANTISED EM FIELD IN THE
STATIONARY FRAME

For a long time it has been believed that photons do
not have a wave function and that light cannot be lo-
calised [56–58]. However, quantum physics should ap-
ply to all particles and photons should not be an excep-
tion. For example, when a single-photon detector clicks,
it measures the position of the arriving photon at that
instant in time [59, 60]. Defining a time of arrival oper-
ator for a localised photon detector, however, has been a
significant problem and could not be achieved within the
standard Hilbert space of the quantised EM field [61–65].
The origin of the wave function problem was that many
authors like to identify the wave function of the photon
with its electric field amplitudes, but the complex electric
field amplitudes at different positions do not commute.
The eigenstates of the electric field observable are there-
fore not local, although they can be made to appear local
by altering the scalar product that is used to calculate
the overlap of quantum state vectors [25, 66].

An alternative way of establishing the wave function
of a single photon is to double the Hilbert space of the

quantised EM field to include both positive and negative
frequency photons and to separate light from its carriers
[26–28]. The carriers of the quantised EM field in mo-
mentum space are non-local monochromatic waves. The
Fourier transforms of these carriers, however, so-called
blips (bosons localised in position) form a complete set of
pairwise orthonormal local carriers of the quantised EM
field in position space. Similar to how a point mass is a
carrier for a gravitational field, blips are carriers of non-
local electric and magnetic field amplitudes. When ex-
pressing the observables of the electric and magnetic field
in free space in terms of blip annihilation and creation
operators, these include contributions from blips at all
points along the position axis. By applying a constraint
to the blip dynamics, a relativistically form-invariant rep-
resentation of the EM field is derived. Below these ex-
pressions are used to derive a transformation between
blips in Alice’s and Bob’s reference frames.

A. Local photons

Let us first have a closer look at the modeling of the
quantised EM field in Alice’s resting reference frame.
Here blips are characterised by their position xA ∈
(−∞,∞) at a given time tA ∈ (−∞,∞) as well as their
direction of propagation s and their polarisation λ. For
boosts and translations along the xA and tA axes, s and
λ are invariant. The parameter s = ±1 denotes propa-
gation in the direction of increasing and decreasing xA

respectively. We shall assume that λ = H,V are two lin-
ear polarisations orthogonal to the xA axis [26, 27]. The

creation operator a†sλ(xA) adds to the system a single
blip located at a position xA at a time tA = 0 with direc-
tion of propagation s and polarisation λ. In the above †
denotes complex conjugation and distinguishes a†sλ(xA)
from the annihilation operator asλ(xA) which removes
the same blip from the system.
For consistency with Maxwell’s equations, all blips

must propagate at the speed of light. This constraint
imposes the following condition: at some time tA, the

time-evolved operator UA(tA, 0) a
†
sλ(xA)U

†
A(tA, 0) must

be equivalent to the blip creation operator at a position
xA − sctA. Hence

UA(tA, 0) a
†
sλ(xA)U

†
A(tA, 0) = a†sλ(xA − sctA) (33)

where UA(tA, 0) is the time evolution operator of the
quantised EM field in Alice’s reference frame. As a con-
sequence of this, all blips characterised by the same co-
ordinate χA = xA − sctA are identical. From this point
onwards we shall therefore denote blip creation and an-

nihilation operators in Alice’s reference frame a†sλ(χA)
and asλ(χA) respectively. Blips that are characterised by
non-identical values of χA, s or λ are distinguishable from
one another, and therefore pairwise orthogonal. Hence,
we can determine that[

asλ(χA), a
†
s′λ′(χ

′
A)

]
= δss′ δλλ′ δ(χA − χ′

A) . (34)



7

FIG. 3. The diagram shows the contribution of right-
propagating blips to the field observables measured by Alice
at the origin. From one point of view, blips distributed along
the xA axis (solid red) contribute non-locally to the field ob-
servable. As blips at one point in spacetime can be identified
with blips at all other points along their world-lines (marked
in yellow), blips distributed along xA − ctA axis (hollow red)
provide an equivalent contribution to the field observables as
blips along the xA axis on the same world-line.

All creation operators commute with one another, as do
the annihilation operators.

B. Field observables in position representation

As mentioned already above, Alice’s electric and mag-
netic field observables EA(xA, tA) and BA(xA, tA) in the
Heisenberg picture, which are measured at a position xA

and time tA, contain non-local contributions from blips
at all points along the xA axis [27, 67]. All her blips
contribute simultaneously to these field observables inde-
pendently of their separation from Alice. For a moving
observer like Bob, however, events that take place along
the xA axis at a fixed time tA are no longer simultaneous
and do not occur at a single time tB. For this reason, one
has to be careful when defining field observables by super-
posing simultaneous blips at different positions along the
x axis. Fortunately, blips can be identified with all other
blips along their individual trajectories which allows us
to represent the field observables as a non-local superpo-
sition over the χA = xA − sctA coordinates. This change
in representation is illustrated in Fig. 3 for a field prop-
agating to the right. In this diagram the field observable
at the origin can be determined as a non-local superpo-
sition of blips along the xA axis at a fixed tA (marked in
red). Alternatively, they can be identically determined
as a superposition of blips dispersed along the χA axis.
By fixing the time tA, this new representation returns to
it’s original form.

As in Section II and for simplicity, we shall restrict

ourselves in the following to only one polarisation λ. Let
us say λ = H. In this case, the electric field is horizon-
tally polarised whereas the magnetic field is vertically
polarised, but we consider only the amplitude of Alice’s
electric and magnetic field vectors. Taking this into ac-
count, EA(χA) and BA(χA) can be written as

EA(χA) =
∑
s=±1

∫ ∞

−∞
dχ′

A cR(χA − χ′
A) asH(χ

′
A)

+H.c. ,

BA(χA) =
∑
s=±1

∫ ∞

−∞
dχ′

A sR(χA − χ′
A) asH(χ

′
A)

+H.c. (35)

These operators represent the observables of the electric
and magnetic field amplitudes respectively at position
xA = χA at tA = 0 and at every position along the
χA = contant trajectory. In the expressions above, the
contribution of each blip to Alice’s field observables is
weighted by a non-local distribution R(χA − χ′

A), which
we shall refer to as the regularisation function. By taking
into account that a single monochromatic photon has the
positive energy h̄c|kA|, the function R(χA − χ′

A) can be
determined explicitly and can be shown to be given by
[25, 27, 28]

R(χA − χ′
A) = −

√
h̄

4πεcA
· 1

|χA − χ′
A|3/2

. (36)

This highly non-local function is closely related to the 1-
dimensional Feynman propagator for two excitations of
the EM field observables. The Feynman propagator is
non-local whereas correlations between blips are strictly
localised. As R(χA − χ′

A) is non-zero for all values of
χA ̸= χ′

A, we view each blip as carrying with it static
and non-local electric and magnetic fields.

C. EM excitations in the momentum
representation

In Section IIC, the position-dependent electric field
amplitudes Ei(xi, ti) with i = A,B were expressed as
Fourier transforms of the momentum space field am-

plitudes Ẽi(ki, ti), characterised by the wave numbers
ki, which provided an alternative view of the classi-
cal Doppler transformation. The same transformation
can also be performed for the blip annihilation opera-
tors asH(χA). Doing so, we obtain annihilation operators
ãsλ(kA) with

ãsλ(kA) =
1√
2π

∫ ∞

−∞
dχA e−iskAχA asλ(χA) (37)

which describe field excitations characterised by a fixed
wave number kA, direction of propagation s and polari-
sation λ. Using commutation relation (34), we can show
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that the following commutation relation is satisfied:[
ãsλ(kA), ã

†
s′λ′(k

′
A)

]
= δss′ δλλ′ δ(kA − k′A) . (38)

All other commutators are zero. Due to the orthogo-
nality of the ãsλ(kA) operators, ãsλ(kA) annihilates an
excitation with a unique wave number kA. The operator

ã†sλ(kA) is the creation operator for this excitation. The
inverse transformation of Eq. (37) is given by

asλ(χA) =
1√
2π

∫ ∞

−∞
dkA eiskAχA ãsλ(kA) (39)

which decomposes a single blip into a quantum superposi-
tion of monochromatic excitations for all kA ∈ (−∞,∞).
As all possible values of kA contribute to a localised ex-
citation, the wavelength and the momentum of a single
blip are completely undetermined. Nevertheless, as the
free EM field observables must propagate at the speed c
without any dispersion (like the corresponding solutions
of Maxwell’s equations), blip excitations must propagate
in this way also. As a result, the dynamics of single blips
can be determined [27].

IV. A QUANTUM PICTURE OF THE
RELATIVISTIC DOPPLER EFFECT

Next we have a closer look at how Bob experiences the
quantised EM field in his moving reference frame. After-
wards, we determine the relationship between Alice’s and
Bob’s field observables using the classical field amplitude
transformations derived in Section II B. By taking into
account that both Alice and Bob can express their field
observables as a superposition of blips along both the
χA = xA − sctA and χB = xB − sctB axes respectively, a
local transformation is determined between blips in Bob’s
and Alice’s reference frames.

A. The Doppler effect in position space

In the following, we denote the annihilation and cre-
ation operators for a blip at a position xB at an initial

time tB = 0 in Bob’s reference frame bsλ(xB) and b†sλ(xB)
respectively with s and λ indicating again the direction
of propagation and polarisation of the blip. According to
Bob, blips travel at the speed of light c along the xB axis
and

UB(tB, 0) b
†
sλ(xB)U

†
B(tB, 0) = b†sλ(xB − sctB) , (40)

in analogy to Eq. (33). Here UB(tB, 0) denotes the time
evolution operator of the EM field in Bob’s reference
frame. As in Section III, constraining the blip annihi-
lation operators in this way allows us to introduce an-
nihilation operators bsλ(χB) for blips at xB and tB with
χB = xB − sctB. Moreover[

bsλ(χB), b
†
s′λ′(χ

′
B)
]
= δss′ δλλ′ δ(χB − χ′

B) (41)

FIG. 4. The diagram shows the contribution of right-
propagating blips to Alice’s and Bob’s field observables at
the origin. Blips distributed along the xA axis (solid red) and
along the xB axis (solid blue) contribute equally to Alice’s
and Bob’s field observables respectively. As blips at one point
in spacetime can be identified with blips at all points along
their world-lines (marked in yellow), blips distributed along
the χB = xB − ctB axis (hollows in red and blue) provide an
equivalent contribution to Alice’s and Bob’s field observables
as blips along the xA axis and xB axis on the same world-line.

in analogy to Eq. (34). The blip operators in Bob’s refer-
ence frame satisfy an identical set of commutation rela-
tions to Alice’s operators, as one would expect from the
principle of relativity.
Entirely analogous to the generalisation of Alice’s field

observables, any non-local contributions of blips to Bob’s
field observables can be expressed in terms of their sep-
aration from Bob along the χB axis. Hence, we define
Bob’s field observables as

EB(χB) =
∑
s=±1

∫ ∞

−∞
dχ′

B cR(χB − χ′
B) bsH(χ

′
B)

+H.c. ,

BB(χB) =
∑
s=±1

∫ ∞

−∞
dχ′

B sR(χB − χ′
B) bsH(χ

′
B)

+H.c. (42)

with χB = xB − sctB. Here (xB, tB) are the spacetime
coordinates of the point where the field measurement is
made. The distributionR(χB−χ′

B) in the equation above
is the same as in Eq. (36) but with χA and χ′

A replaced
with χB and χ′

B respectively.
Although the same regularisation function is used by

both Alice and Bob, as Alice measures the separation of
blips along the χA axis and Bob along the χB axis, the
contribution of blips to their field observables is differ-
ent. This is illustrated in Fig. 4. In the diagram, Alice’s
blips (solid red) are distributed at regular intervals along
the xA axis. Bob’s blips (solid blue) are distributed at
identical intervals along the xB axis. Since R(x − x′)
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is used for both observers, the two outermost red blips
have the same contribution to Alice’s field observables
as the two outermost blue blips do to Bob’s field ob-
servables. By identifying the blips with their counter-
parts along the xB − ctB, however, we can see that the
blips defined by Bob appear closer to Alice than her own.
As a result, the regularisation function used by Bob ap-
pears squeezed from Alice’s point of view. Conversely, for
light propagating to the left the regularisation function
appears stretched. As mentioned already above, events
that occur simultaneously in Alice’s reference frame are
not simultaneous in Bob’s reference frame and vice versa.

Now that the operators asλ(χA) and bsλ(χB) have been
defined by constructing field observables for the two ob-
servers (cf. Eqs. (35) and (42)), a relationship between
these operators can be found by imposing the field re-
lation in Eq. (3). In order to compare the electric field
observables EA(χA) and EB(χB), we now express EB(χB)
in terms of Alice’s coordinates χA. Combining Eqs. (3)
and (35), we see that

EB(χB) =
∑
s=±1

ξBA

∫ ∞

−∞
dχ′

A cR(χA − χ′
A) asH(χ

′
A)

+H.c. (43)

with χB = γ(1 + sβ)χA. By substituting χ′
B = γ(1 +

sβ)χ′
A into Eq.(43) and using both Eq. (23) and the ex-

plicit form of the regularisation function (36), we find
that

EB(χB) =
∑
s=±1

|γ(1− sβ)|1/2
∫ ∞

−∞
dχ′

B cR(χB − χ′
B)

× asH(γ(1− sβ)χ′
B) + H.c. (44)

By comparing this equation with Eq. (42) we see that
both expressions are only the same if

bsλ(χB) = [γ(1− sβ)]
1/2

asλ(γ(1− sβ)χB) (45)

where the coordinates χA and χB define the same light-
like trajectory in Alice’s and Bob’s coordinate systems
respectively. One can easily check that the annihilation
operators on both sides of the above transformation obey
bosonic commutation relations. Hence the annihilation
operators asλ(χA) and bsλ(χB) can be used interchange-
ably and a single blip in Alice’s reference frame is ob-
served by Bob as a single blip at exactly the same posi-
tion in the spacetime diagram.

Moreover, the above result allows us to demonstrate
that the total number of photons remains the same in
both reference frames. In particular, using Eqs. (17) and
(45), one can check that∑

s=±1

∑
λ=H,V

∫ ∞

−∞
dxB b†sλ(xB)bsλ(xB)

=
∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dxA a†sλ(xA)asλ(xA) . (46)

In the local quantum picture of the Doppler shift which
we present here, there is therefore no change to the par-
ticle nature of the EM field: a fixed number of local pho-
tons in Alice’s reference frame also appears as an identical
number of local photons in Bob’s reference frame. Hence,
if both observers perform a linear optics experiment, for
example, a Hong-Ou Mandel experiment [68, 69] in which
two identical photons approach a beam splitter from op-
posite sides, Alice and Bob both see both photons leaving
the setup through the same output port. The dynamics
of the quantised EM field is essentially the same in all in-
ertial reference frames, as stated by Einstein’s principle
of relativity [10]. The change in the amplitude of the blip

operators by a factor of [γ(1− sβ)]
1/2

in Eq. (45) is the
direct result of Alice and Bob using different coordinates
to describe the same spacetime point. The relativistic
Doppler effect is simply an immediate consequence of this
fact.

B. The Doppler effect in the momentum
representation

For completeness, and since the relativistic Doppler ef-
fect is usually studied in momentum space [9], we finally
have a closer look at the implications of the above equa-
tions on the momentum representation of the quantised
EM field. In this representation, the electric and mag-
netic field observables are expressed in a basis of bosonic
excitations with a definite frequency, polarisation and di-
rection of propagation. Analogous to Alice’s ãsλ(kA) op-
erators defined in Eq. (37), we now introduce a set of

annihilation operators b̃sλ(kB) with

b̃sλ(kB) =
1√
2π

∫ ∞

−∞
dχB e−iskBχB bsλ(χB) (47)

in Bob’s reference frame. Like the ãsλ(kA) operators, the

b̃sλ(kB) operators satisfy bosonic commutation relations:[
b̃sλ(kB), b̃

†
s′λ′(k

′
B)
]
= δss′ δλλ′ δ(kB − k′B) . (48)

Here kBc is the frequency measured by Bob with respect
to the time tB.
In the position representation, the blip operators

asλ(χA) and bsλ(χB) defined in Alice’s and Bob’s ref-
erence frames respectively satisfy the transformation in
Eq. (45). In the following, we derive an analogous re-
lationship between the corresponding momentum space
annihilation operators. Substituting Eq. (45) into the
right hand side of Eq. (47) and again taking into account
that χB = γ(1 + sβ)χA (cf. Eq. (17)), we find that

b̃sλ(kB) =
1√
2π

[γ(1 + sβ)]
1/2

∫ ∞

−∞
dχA

×e−isγ(1+sβ)kBχA asλ(χA) . (49)
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Then, using Eq. (39), we obtain

b̃sλ(kB) =
1

2π
[γ(1 + sβ)]

1/2
∫ ∞

−∞
dχA

∫ ∞

−∞
dkA

×eis[kA−γ(1+sβ)kB]χA ãsλ(kA) . (50)

After performing the χA integration, which yields a Dirac
delta function in kA − γ(1 + sβ)kB, and then the kA
integration, we see that

b̃sλ(kB) = [γ(1 + sβ)]
1/2

ãsλ(γ(1 + sβ)kB) . (51)

As for Eq. (45), the annihilation operators on both sides
of this equation obey bosonic commutation relations.
The above result therefore demonstrates that the b̃sλ(kB)
and ãsλ(kA) can be used interchangeably so long as Al-
ice’s and Bob’s wave numbers are such that

kA = γ(1 + sβ) kB . (52)

A single monochromatic photon with wave number kB
observed by Bob therefore appears as a single monochro-
matic photon to Alice, but its wave number is altered
as described by the above relation. The correspond-
ing frequency transformation is in complete agreement
with the classical Doppler shift derived in Section IIC
(cf. Eq. (32)).

In addition to a frequency transformation, there is also
a change in the amplitude of monochromatic excitations.
This amplitude change occurs as the transformation be-
tween excitations with a shift between sharp frequencies
cannot be unitary, as shown in Ref. [70] for gravitation-
ally redshifted photons. It was also shown in this ref-
erence, however, that a unitary transformation can be
constructed for realistic photon operators when a suit-
able transformation for the frequency distribution of the
photon is introduced [70, 71]. Whilst the transformation
given in Eq. (51) is very simple, it shows clearly that
excitations do not have the same momenta in all refer-
ence frames. In particular, if Alice detects an excitation
in the kA mode only, this mode will be empty according
to Bob. Bob, however, will detect an equal number of
excitations in his kB = γ(1 − sβ)kA mode. This result
is very different to that in the position representation
where a local photon is viewed as a local photon at the
same position in the spacetime diagram by all inertial
observers. The only difference is that different observers
use different coordinates to characterise this point.

V. CONCLUSIONS

This paper offers an alternative perspective on the
relativistic Doppler effect, which is usually referred to
only in momentum space and discussed in terms of fre-
quency, wavelength and amplitude changes of wave pack-
ets of light when measured in different inertial reference
frames. In this paper, we study the relativistic Doppler
effect in position space using the spacetime coordinates

χA = xA − sctA and χB = xB − sctB of two inertial ob-
servers: Alice in the stationary frame and Bob in a frame
moving with constant velocity vB with respect to Al-
ice. This alternative approach allows us to accommodate
spatial and time translational symmetries in a relatively
straightforward way. In addition, we take advantage of
energy conservation and the principle of relativity.

For example, symmetry arguments and the principle
of relativity are used to show that local electric field am-
plitudes seen by Alice and Bob only differ by a constant
factor which we denote ξAB and ξBA respectively. En-
ergy conservation can be used to calculate these factors
as a function of the propagation direction s and the ve-
locity of Bob’s reference frame vB with respect to Alice’s
frame. For simplicity, we assume here that both observers
are stationary in their respective coordinate systems and
place them at the origin. When transforming our local
description of the relativistic Doppler effect into momen-
tum space, we recover the usual predictions which shows
that our approach is consistent with the findings of other
Authors.

Sections III and IV concentrate on the local description
of the quantized EM field for light propagation in the 1+1
dimensional Minkowski spacetime to obtain a quantum
picture of the relativistic Doppler effect. Our aim here is
to identify the relationship between the quantum states
of a wave packet of light seen by Alice and Bob. Our main
result is the straightforward relationship between the an-
nihilation operators asλ(χA) and bsλ(χB) used by Alice
and Bob for the description of local excitations—so-called
blips—of the quantised EM field. When considering the
same point in the spacetime diagram, i.e. when χA and
χB depend on each other as stated in Eq. (17), both ob-
servers measure the same number of field excitations.

Although the classical electric and magnetic fields un-
dergo a change in amplitude (cf. Eq. (3)), the photon
intensity remains the same, which is an important result
of quantum physics. In the photoelectric effect, for ex-
ample, it is the photon number and not the field intensity
that determines the number of emitted electrons. More-
over, we conclude that the relativistic Doppler effect is
not a quantum effect but simply the result of Alice and
Bob using different spacetime coordinates and experienc-
ing space and time differently, while the speed of light is
the same in all inertial reference frames [4]. Furthermore,
as was shown in Section IVB, although the total num-
ber of excitations is conserved, in the momentum rep-
resentation Alice and Bob observe different numbers of
excitations in each k mode.

The results of this paper might have applications in
different areas of physics, including quantum communi-
cation [43, 45] and relativistic quantum information [46–
51]. Our results might also have some implications for
ongoing discussions into the basic assumptions of rela-
tivity theory, since it implies that the local description of
the quantised EM field is equivalent in both Alice’s and
Bob’s reference frames. A different set of assumptions
would lead to an alternative relationship between blips
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in these two reference frames. Our results on the trans-
verse Doppler effect may aid experimental verifications of
the reality of length contraction and time dilation. In the
current study, the concentration was on a well-expected
result caused by the transformation between the station-
ary frame and a moving frame in a classical and relativis-
tic representation in order to explore it for blips as well.
In the future, our approach can be used to study more
complicated situations and systems like an accelerating

reference frame.
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