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Abstract: The relativistic Doppler effect comes from the fact that observers in different inertial

reference frames experience space and time differently, while the speed of light remains always

the same. Consequently, a wave packet of light exhibits different frequencies, wavelengths, and

amplitudes. In this paper, we present a local approach to the relativistic Doppler effect based

on relativity, spatial and time translational symmetries, and energy conservation. Afterward, we

investigate the implications of the relativistic Doppler effect for the quantum state transformations of

wave packets of light and show that a local photon is a local photon at the same point in the spacetime

diagram in all inertial frames.

Keywords: relativistic quantum information; quantum electrodynamics; quantum photonics

1. Introduction

When a moving car beeps its horn, the driver and a bystander on the pavement hear the sound

at different frequencies. The frequency shift resulting from the relative motion of the driver and the

bystander is known as the Doppler effect [1,2] and is well understood in classical physics. For example,

the frequency heard by the resting observer depends on the speed of the car relative to the pavement

and the original frequency of the signal. Due to its simplicity, the Doppler effect has already found a

wide range of applications, including the policing of speed limit violations by irresponsible drivers.

The relativistic Doppler effect [3–9] also accounts for differences in how observers experience space

and time. Observers in different inertial reference frames which move at a relative speed close to the

speed of light receive signals which differ not only in frequency and wavelength but also in amplitude.

According to Einstein’s principle of relativity [10–16], there is no privileged frame of reference.

The same physical laws apply in all reference frames if these move with respect to each other at

constant velocity. For example, wave packets of light with a well-defined direction of propagation

move at the speed of light, c, in any reference frame. Some authors might still debate whether this

assumption is true or not [17] but many experiments already verified the constancy of the speed of

light with high accuracy [18,19]. Moreover, any physical theory that involves space and time requires

a way of measuring both using clocks and meters. In the following, we assume that all clocks and

meters are calibrated such that light travels at the same speed in all reference frames. We then have a

fresh look at the relativistic Doppler effect [5] with only a minimum of assumptions.

Instead of considering frequency space, in this paper we study the relativistic Doppler effect [3,5–8]

in position space [20–23]. As we shall see below, this space can accommodate spatial and time

translational symmetries in a straightforward way. Although our results are consistent with the

existing literature [24–32], our approach paves the way for systematic studies of more complex

scenarios, like the Unruh effect [33,34] and quantum electrodynamics in reference frames with

time-varying accelerations without the need for approximations, such as the usual assumption of a flat

spacetime [35]. Moreover, the insights obtained here might have applications in relativistic quantum

information [36–41]. In the following, we review the relativistic Doppler effect before studying its

implications for the quantised electromagnetic (EM) field in different inertial reference frames.
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Suppose an observer—let us call her Alice (A)—is watching a wave packet of light with a

well-defined direction of propagation s and a well-defined polarisation λ traveling along the x axis.

Then the electric field amplitudes EA(xA, tA) seen by Alice at positions xA at times tA equal

EA(xA, tA) = EA(xA − sctA, 0) (1)

if the initial electric field amplitudes of the wave packet are given by EA(xA, 0). Here s = −1 and s = 1

correspond to wave packets propagating in the direction of decreasing and increasing xA respectively.

Hence, if the physical properties of a wave packet seen by Alice are known at one instant in time, they

are known at all times. The same applies to the electric field amplitudes EB(xB, tB) seen at (xB, tB) by a

second observer—who we call Bob (B)—and

EB(xB, tB) = EB(xB − sctB, 0) , (2)

in analogy to Equation (1). The electric field observables perceived by both Alice and Bob at any

position and time are only characterised by the value of the parameters αi = xi − scti with i = A, B. In

the remainder of this paper, we shall use a shorthand notation and replace Ei(xi, ti) by Ei(αi).

The principle of relativity also suggests that the electric and magnetic field transformations from

observer A to observer B and vice versa need to be formally the same. The only difference is that

the relative speed of their reference frames changes from vB to vA = −vB. This suggests a linear

dependence between electric field amplitudes EB(αB) and EA(αA) at the same point in the spacetime

diagram since this transformation is the only transformation which remains formally the same when

reversed. We therefore assume in the following that

EB(αB) = ξBA EA(αA) (3)

where the coordinates αA and αB specify the same spacetime trajectory and ξBA denotes a

transformation constant. Analogously, we also know that

EA(αA) = ξAB EB(αB). (4)

The principle of relativity also tells us that the transformation constants ξAB and ξBA relate to

each other such that

ξAB(s, vB) = ξBA(s,−vB) , (5)

since the direction of propagation s of the wave packet is the same in both reference frames, but the

relative speed of the frames changes sign. When combining Equations (3)–(5) we therefore find that

ξBA(s, vB) = 1/ξBA(s,−vB) . (6)

In the following, this is taken into account when we determine ξAB and ξBA.

Next we notice that the spatial and time translational symmetries of the EM field tell us that the

above relations must hold for all spacetime coordinates. Hence the transformation factors ξBA and ξAB

can only depend on the direction of propagation s of the wave packet and on the relative speed vB

of Bob’s reference frame with respect to Alice’s reference frame and not on where and when electric

and magnetic field amplitudes are measured. The above arguments thus reduce the question, how

do local electric and magnetic field observables transform from one inertial frame to another, to the

simpler question, namely, how do the field observables transform at a single point in the spacetime

diagram? Unfortunately, the above equations are not enough to determine the transformation factor

ξBA in Equation (3). An additional assumption is needed.
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Our final assumption in the derivation of the relativistic Doppler effect is based on energy

conservation. To implement this we consider a “box” that moves at the speed of light along the x axis

in the reference frame of observer B. By integrating over the volume inside the “box” at a fixed time

we can calculate the amount of energy it contains. As the “box” propagates at the speed of light, any

light initially caught inside or outside of that “box” will remain here for all time, and the total energy

that it encloses will be conserved. Nevertheless, as Alice and Bob experience space and time differently,

the “box” observed by Bob will appear deformed to Alice and the energy of the field will be measured

differently. For example, parts of the wave packet that occur simultaneously in the frame of observer A

appear at different times tB in the reference frame of observer B. Taking this into account, we can finally

identify the dependence of ξAB and ξBA on s and on vB. When applying Fourier transforms to local

electric field amplitudes, we obtain the usual momentum changes of the relativistic Doppler effect.

As mentioned already above, the main purpose of this paper is to obtain a simple quantum

picture of the relativistic Doppler effect. In the following we use a local photon approach and proceed

as described in Refs. [20–22] to quantise the EM field in different inertial reference frames. Given the

principle of relativity, neither observer A nor observer B should be able to perform measurements

on photonic wave packets which tell them about their relative speed. Taking this into account, we

find that the local photon annihilation operators of Alice and Bob are the same when they refer to the

same location in the spacetime diagram. However, the transformation of the annihilation operators of

monochromatic photons is more complex. As we will see below, both observers Alice and Bob need to

assign different quantum states |ψA(tA)⟩ and |ψB(tB)⟩ to wave packets of light, even when describing

the same wave packet.

This paper is structured as follows. Section 2 reviews the relativistic Doppler effect in classical

physics. We first study how the coordinates αA and αB of two inertial observers A and B relate to

each other when they correspond to the same point in the spacetime diagram. Afterwards, we derive

the electric field transformation rates ξAB and ξBA in Equations (1) and (2) by imposing the above

described conditions. Section 3 reviews a local description of the quantised EM field [21,22] for light

propagation in one dimension. Section 4 combines this description with the results of Section 2 to

obtain a quantum picture of the relativistic Doppler effect and to identify the relationship between the

quantum states |ψA(tA)⟩ and |ψB(tB)⟩ of a wave packet of light seen by observers A and B in different

inertial frames. Finally, we summarise our findings in Section 5.

2. The Relativistic Doppler Effect

The motion of an observer affects both the time and distance separating two events in spacetime,

as well as their electric and magnetic field observables. The change in duration and separation

between events can be expressed as a transformation between the natural coordinates of the two

observers involved; one taken as a reference observer. In this section, we provide a derivation of the

coordinate transformations between an observer at rest and an observer moving with constant velocity.

Afterwards, we use these coordinate transformations to determine the transformation constant ξBA in

Equation (3).

2.1. Coordinate Transformations

In this paper we consider two observers, Alice and Bob, in a flat 1+1 dimensional spacetime

(Minkowski space). In the following, we assume our first observer, Alice, who will provide a point

of reference, to be at rest. Our second observer, Bob, is travelling at a constant velocity vB relative to

Alice along the xA axis, as illustrated in Figure 1. The position and time at which an event takes place

from Alice’s point of view are denoted xA and tA respectively. Analogously, from Bob’s point of view,

events take place at a position xB at a time tB. For simplicity, we assume that both observers, who are

stationary with respect to their own position coordinates, are located at the origin of these coordinates.

This means that we choose Alice’s position to be xA = 0 for all times tA, while Bob’s position equals
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xB = 0 for all tB. Moreover, we assume in the following that Alice’s and Bob’s spacetime diagrams

overlap at the origin. Hence Bob meets Alice only once at the initial time tA = tB = 0.

Figure 1. Schematic view of two observers, Alice (a) and Bob (b), in different inertial reference frames

which move with respect to each other at constant speed. For simplicity, we assume here that both

observers are based at the origin of their respective coordinate system and share the same position at

an initial time tA = tB = 0. Suppose Alice emits a short light pulse from her position to Bob at a time

when her clock reads t
(1)
A , which Bob receives when his clock reads t

(2)
B . By comparing these two times,

the ratio of their spacetime coordinates, i.e., αB/αA, can be determined.

As mentioned already in the Introduction, in a stationary reference frame, Maxwell’s equations

tell us that light propagates along the xA axis at the speed of light c. Therefore, if Alice sends a localised

pulse of light to Bob, she will observe that its position xA at any time tA satisfies the relation

αA = const. (7)

with αA = xA − sctA. Physically, αA is the position of the light pulse at tA = 0. The speed of light

measured relative to the rest frame of an inertial observer is always constant and independent of the

motion of the source. Hence, from Bob’s point of view, the position xB of the light pulse at any time tB

satisfies the relation

αB = const. (8)

with αB = xB − sctB. Here αB may not be equal to αA, but the direction of propagation s of the light

pulse must be the same in both reference frames. As both Equations (7) and (8) must be satisfied

simultaneously for a single light pulse, it can be shown that

αB

αA
= κ . (9)

The relating constant κ may depend on s and provides a connection between the coordinates

adopted by Alice and the ones adopted by Bob. The difference in the way position and time are

perceived by Alice and Bob has a crucial influence on the way electric and magnetic fields are measured.

The aim of this subsection, therefore, is to determine the factor κ in Equation (9).

Suppose Alice sends a short light pulse from her own position at x
(1)
A = 0 at a time t

(1)
A to Bob,

as illustrated in Figure 1. From Bob’s point of view, the light is emitted from a position x
(1)
B < 0 at a

time t
(1)
B and arrives at Bob’s position x

(2)
B = 0 when his watch reads a time t

(2)
B . As Alice’s and Bob’s

positions are always zero in their respective reference frames, Equation (9) tells us that

t
(2)
B = κ t

(1)
A . (10)

This relation takes into account both the time it takes the light to propagate from Alice to Bob and

any difference in the rate at which their clocks are running. To determine the relation between t
(2)
B and
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t
(1)
B and between t

(2)
A and t

(1)
A , respectively, we consider the spacetime diagrams for the experiment from

both Alice’s and Bob’s points of view. As illustrated in Figure 2, according to Alice’s measurements,

Bob receives the light pulse at a position x
(2)
A > 0 at a time t

(2)
A with t

(2)
A = t

(1)
A + x

(2)
A /c. As Bob

travels at a constant speed vB with respect to Alice, the position of Bob when the signal is received is

x
(2)
A = vBt

(2)
A . Putting these two relations together, we find that

t
(1)
A = (1 − β) t

(2)
A (11)

with β = vB/c. Moreover, from Bob’s point of view, Alice travels to the left with a velocity vA = −vB.

Hence t
(1)
B = t

(2)
B − vBt

(1)
B /c, which leads to

t
(2)
B = (1 + β) t

(1)
B . (12)

Equations (11) and (12) specify the relationship between the times at which the light is emitted

and received from the points of view of both observers.

Figure 2. The spacetime diagram for the propagation of a short light pulse transmitted from Alice to

Bob from Alice’s (left) and from Bob’s (right) points of view. Alice’s world line is coloured red and

Bob’s is coloured blue. The light pulse (shown in yellow) is transmitted by Alice from point (1) and

received by Bob at point (2).

In Bob’s reference frame, the time elapsed between two events may not be the same as the time

elapsed between the same events in Alice’s frame [11–14]. In general, a moving clock will tick at a

different rate than a stationary clock, and we must consider this. According to Alice, the position at

which the signal is received varies with time, whereas for Bob it does not. If a moving clock ticks more

slowly than a stationary one by a rate of γ, then it follows that [15,16]

t
(2)
A = γt

(2)
B . (13)

As the position of the emitter is stationary with respect to Alice but moving at a constant velocity

with respect to Bob, it must also be that

t
(1)
B = γt

(1)
A . (14)
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By combining Equations (13) and (14) with Equations (11) and (12) it can be shown that

γ =
1√

1 − β2
. (15)

Since γ is always larger than 1, clocks run slower in a moving frame.

By putting together Equations (12) and (14) the factor κ can be determined. We find that for light

propagating to the right κ = γ(1 + β) where γ is defined in Equation (15). By carrying out a similar

set of calculations for left-propagating light that is transmitted by Alice at some time tA < 0 we can

determine the complete relation

αB = γ(1 + sβ) αA . (16)

The two equations (one for each value of s) given in Equation (16) relate the trajectory of a light

pulse in Bob’s reference frame to a light pulse in Alice’s reference frame. What is more, by solving

these equations we can derive the point-like coordinate transformations for xB and tB. The equations

xB = γ(xA − βctA) ,

ctB = γ(ctA − βxA) (17)

establish a connection between spacetime coordinates (xA, tA) and (xB, tB) which refer to the same

point in the spacetime diagram.

2.2. Field Amplitude Transformations

Since Alice and Bob perceive space and time differently (cf. Equation (17)), wave packets of light

appear to have different shapes in each reference frame. What is more, the electric and magnetic field

amplitudes of wave packets differ for Alice and Bob even at points which correspond to the same

location in the spacetime diagram. This means that the same wave packet carries a different amount

of energy from the point of view of Alice than it does from the point of view of Bob. Despite these

changes, we know that light carries a conserved and invariant energy flux v. Here v is a vector which

points along the trajectory of light in the spacetime diagram and whose amplitude quantifies the total

amount of energy that is moving in this direction. Since the speed of light is the same in all reference

frames, a component of this energy flux will always intersect the xA and xB position axes. It is these

components that correspond to the energy of the EM field as measured by Alice and Bob and relate

closely to their field amplitudes. Hence in this subsection, we use energy flux conservation to identify

the field amplitude transformations between inertial frames, i.e., the factor ξBA in Equation (3).

Suppose that a short light pulse propagating through spacetime is confined to a “box” that

propagates along the x-axis at the speed of light in the same direction as the wave packet. The light

pulse remains confined to this “box” in all reference frames. Suppose that the edge of the “box” is

parallel to the xB axis in Bob’s reference frame and that it has the length ∆xB as illustrated in Figure 3(a).

Figure 3(b) shows the same “box” from the point of view of Alice. Here the “box” also travels at the

speed of light, but is deformed. Most importantly, any light initially in the “box” cannot exit and

any light outside cannot enter. Hence the energy flux v within the “box” must be the same in both

reference frames.

To take advantage of the invariance of v, we notice that the EM field energy seen by Alice and by

Bob respectively can be written as

H
(i)
energy = v · t̂i (18)
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Figure 3. Both figures show the same thin “box” (or volume) in the spacetime diagram of Bob (a) and

of Alice (b). In Bob’s reference frame, the edge of the “box” is parallel to the xB axis and its length is

given by ∆xB. From Alice’s point of view, the “box” appears deformed to ensure that any spacetime

point in Bob’s volume is also in Alice’s volume. The figures moreover show the propagation of light

through both spacetime volumes. The light carries a conserved and invariant energy flux v. Due to the

relativistic deformation of the volume in Alice’s case, the total energy flux crossing the xB edge of the

volume is different from the energy flux crossing the xA edge. Consequently, Alice and Bob measure

different energies at fixed times even when observing the same wave packet of light.

with i = A, B. In the above equation, t̂A and t̂B are unit vectors oriented in the future directions of

Alice and Bob, as illustrated in Figure 3. Using the coordinate transformations in Equation (17), it can

be shown that

t̂B = γt̂A − γβx̂A . (19)

The vector t̂B is normalized under the Lorentzian inner product. Taking into account that, for a

given direction of propagation,

v · x̂A = sH
(A)
energy (20)

where x̂A is a unit vector oriented in the direction of increasing xA and using Equation (19), we find that

H
(B)
energy = γ (1 − sβ) H

(A)
energy (21)

where H
(A)
energy is the energy of the light with energy flux v measured by Alice.

In Alice’s and Bob’s reference frames, the total energy of the EM field is obtained after integrating

the energy density h
(i)
energy(xi) over the entire xi axes with i = A, B respectively. These energy densities

are given by [42]

h
(i)
energy(αi) =

Aε

2

[
Ei(αi)

2 + c2 Bi(αi)
2
]

(22)

where A denotes the area that the light occupies in the y − z plane and ε denotes the free space

permittivity. As we already know, however, we cannot yet compare the field densities in the two

reference frames. To proceed we first take advantage of the fact that the s-propagating electric and

magnetic fields are constant along the xi − scti light cones. Consequently, the total energy at times
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tA = tB = 0 can be expressed as an integral over the αi = xi − scti rather than the xi axes. Hence, the

total energy of the fields experienced by Alice and Bob equals

H
(i)
energy =

∫ ∞

−∞
dαi h

(i)
energy(αi) (23)

at any time due to energy conservation. Now the coordinate transformation in Equation (16) can

be used to transform the integration measures. Referring also to Equation (21), we determine the

following transformation for the energy densities:

h
(B)
energy(αB) = [γ(1 + sβ)]−2 h

(A)
energy(αA) . (24)

Here the coordinates xB and tB are related to xA and tA by the coordinate transformation in

Equation (17). If we now reconsider Equation (3), we can show that

ξBA(s, vB) =
1

γ(1 + sβ)
= γ(1 − sβ) (25)

where β = vB/c. This expression for the transformation constant ξBA satisfies Equation (6).

2.3. Frequency and Wavelength Transformations

Normally the Doppler effect is associated with frequency and wavelength shifts of monochromatic

waves seen by two different inertial observers [43]. For completeness, we therefore now also have

a look at the electric field amplitude transformations in momentum space. Since the electric field

amplitudes Ẽi(ki, ti) and Ei(xi, ti) in momentum and in position space relate to each other via a Fourier

transform, we have [22]

Ei(xi, ti) =
1√
2π

∫ ∞

−∞
dki eiskixi Ẽi(ki, ti)

=
1√
2π

∫ ∞

−∞
dki eiski(xi−scti) Ẽi(ki, 0) (26)

for i = A, B. Here ckA and ckB are the frequencies of a monochromatic wave observed by Alice and

Bob respectively. Whilst the previous subsection deals only with changes in the magnitude of the local

energy, we now show that the above discussion of the relativistic Doppler effect automatically implies

an accompanying change in the frequency and wavelength of monochromatic waves. This is not

surprising, since the frequency of a monochromatic wave seen by Alice and by Bob is the number of

complete wavelengths that pass their position per unit time. Frequency and wavelength are therefore

strongly connected with the clock or meter being used as a measuring device [44].

Next we employ the above Fourier transform and the coordinate transformation in Equation (16).

When combining Equations (3) and (25), we see that

EB(αB) = γ(1 − sβ) EA(αA) . (27)

Substituting Equation (28) into this relation yields

1√
2π

∫ ∞

−∞
dkB eiskBαB ẼB(kB, 0) (28)

=
1√
2π

γ(1 − sβ)
∫ ∞

−∞
dkA eiskAαA ẼA(kA, 0) .

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2024                   doi:10.20944/preprints202401.0429.v1

https://doi.org/10.20944/preprints202401.0429.v1


9 of 17

By taking the inverse transformation with respect to the coordinate αB, it can now be shown that

ẼB(kB, 0) =
1

2π
γ(1 − sβ)

∫ ∞

−∞
dαB

∫ ∞

−∞
dkA

×eis(kAαA−kBαB) ẼA(kA, 0) . (29)

After substituting Equation (16) into this equation, the αB integration can be solved which yields

a delta function in γ(1 − sβ)kA − kB. One therefore finds that

ẼB(kB, 0) = ẼA(γ(1 + sβ)kB, 0) . (30)

This equality specifies the relationship between the Fourier components ẼA(kA, 0) and ẼB(kB, 0)

of the electric field amplitudes measured by Alice and by Bob. If, for instance, ẼA(kA, 0) is non-zero

for a single frequency kAc only, then Bob observes a monochromatic wave with frequency

ckB =
ckA

γ(1 + sβ)
= γ(1 − sβ) ckA . (31)

This shift in frequency is consistent with previous derivations of the relativistic Doppler shift for light

propagating in the s direction.

3. The Quantised EM Field in the Stationary Frame

For a long time, it has been believed that photons do not have a wave function and that light

cannot be localised [45–47]. However, quantum physics should apply to all particles and photons

should not be an exception. When a single-photon detector clicks, it measures the position of the

arriving photon at that instant in time [48,49]. The origin of the problem was that many authors like to

identify the wave function of the photon with its electric field amplitudes, but electric field amplitudes

at different positions do not commute. The eigenstates of the electric field observable are therefore not

local, although they can be made to appear local by altering the scalar product that is used to calculate

the overlap of quantum state vectors [20,50].

An alternative way of establishing the wave function of a single photon is to separate its field

from its carriers [21–23]. The carriers of the quantised EM field in momentum space are non-local

monochromatic waves. However, their Fourier transforms, so-called blips (which stands for bosons

localised in position) provide a complete orthonormal set of basis states for the quantised EM field in

position space. Like a point mass is a carrier for a gravitational field, blips are carriers of non-local

electric and magnetic field amplitudes. Using the blip annihilation operators, it is for example possible

to design locally-acting mirror Hamiltonians [21] and to gain more insight into the Casimir effect [51].

In this section we express the free, quantised, and 1-dimensional electric and magnetic field observables

in terms of blips. As we shall see below, the EM field observables usually depend on contributions

from blips at all points along the position axis. By applying a constraint to the blip dynamics, a

relativistically form-invariant representation is derived. Later these expressions are used to derive a

transformation between blips in Alice’s and Bob’s reference frames.

3.1. Local Photons

Let us first have a closer look at the modeling of the quantised EM field in Alice’s resting reference

frame. Here blips are characterised by their position xA ∈ (−∞, ∞) at a given time tA ∈ (−∞, ∞) as

well as their direction of propagation s and their polarisation λ. For boosts and translations along the

xA and tA axes, s and λ are invariant. The parameter s = ±1 denotes propagation in the direction of

increasing and decreasing xA respectively. We shall assume that λ = H,V are two linear polarisations

orthogonal to the xA axis [21,22]. The creation operator a†
sλ(xA) adds to the system a single blip located

at a position xA at a time tA = 0 with direction of propagation s and polarisation λ. In the above †
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denotes complex conjugation and distinguishes a†
sλ(xA) from the corresponding annihilation operator

asλ(xA) which removes the same blip from the system.

For consistency with Maxwell’s equations, all blips must propagate at the speed of light.

This constraint imposes the following condition on the blip operators: at some other time tA, the

time-evolved operator UA(tA, 0) a†
sλ(xA)U†

A(tA, 0) must be equivalent to the blip creation operator at

a position xA − sctA. Hence

UA(tA, 0) a†
sλ(xA)U†

A(tA, 0) = a†
sλ(xA − sctA) (32)

where UA(tA, 0) is the time evolution operator of the quantised EM field in Alice’s reference frame.

As a consequence of this constraint, blips characterised by a single value of αA = xA − sctA are

identical. From this point onwards we shall therefore denote blip creation and annihilation operators

in Alice’s frame a†
sλ(αA) and asλ(αA) respectively. Blips that are characterised by non-identical values

of αA, s or λ are distinguishable from one another, and therefore pairwise orthogonal. Hence, we can

determine that

[
asλ(αA), a†

s′λ′(α′A)
]
= δss′ δλλ′ δ(αA − α′A) . (33)

All creation operators commute with one another, as do the annihilation operators.

3.2. Field Observables in Position Representation

As shown in Refs. [21,22], an analogous description applies to vertically and to horizontally

polarised photons. As in Section 2 and for simplicity, we therefore restrict ourselves in the following

to only one polarisation λ. Let us say λ = H. In this case, we do not need to consider the direction

of Alice’s electric and magnetic field vectors. In the following, EA(αA) and BA(αA) represent the

observables of the electric and magnetic field amplitudes respectively at position xA = αA at the

initial time tA = 0 and everywhere along the αA trajectory. In the position representation, the field

observables are expressed as an Hermitian, linear superposition of the blip creation and annihilation

operators over Alice’s entire position axis and

EA(αA) = ∑
s=±1

∫ ∞

−∞
dα′A cR(αA − α′A) asH(α

′
A) + H.c. , (34)

BA(αA) = ∑
s=±1

∫ ∞

−∞
dα′A sR(αA − α′A) asH(α

′
A) + H.c.

In the expressions above, the contribution of each blip to Alice’s field observables are weighted

by a non-local distribution R(αA − α′A), which we shall refer to as the regularisation function. By

taking into account that a single monochromatic photon has the positive energy h̄c|kA|, the function

R(αA − α′A) can be determined explicitly and can be shown to be equal to [20,22,23]

R(αA − α′A) = −
√

h̄

4πεcA
· 1

|αA − α′A|3/2
. (35)

As R(αA − α′A) is non-zero for all values of αA ̸= α′A, we view each blip as carrying non-local

electric and magnetic fields. The energy observable in Alice’s frame is defined analogously to the

classical energy. In particular, by substituting the real field observables into the energy density in

Equation (22), Alice’s energy observable becomes

H
(A)
energy =

Aε

2

∫ ∞

−∞
dαA

[
EA(αA)

2 + c2 BA(αA)
2
]

. (36)
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As is usual in the Schrödinger picture, this observable describes the energy of the EM field seen

by Alice at a fixed time tA, e.g., tA = 0, and is conserved.

3.3. Non-Local Contributions to a Relativistic Observer

For Alice, who is at rest, the above non-locality of the electric and magnetic field observables—even

when generated by a local source—can be viewed as the simultaneous contribution of blips from all

points along her position axis, as discussed in Ref. [22]. For a moving observer like Bob, however,

events that take place along the xA axis at a fixed time tA are no longer simultaneous and do not

occur at a single time tB. For this reason, the superposition of blips over the position axis is not a

relativistically reliable means of defining the field observables. Fortunately, the above representation

of the field observables which characterises them by their world-line coordinate αA and not by a single

position xA avoids this problem. Above we defined the field observables at a point (xA, tA) as non-local

superpositions of blips along the xA − sctA axis. This change in representation is illustrated in Figure 4

for a field propagating to the right. In this diagram the field observable at the origin can be determined

as a non-local superposition of blips along the xA axis at a fixed tA (marked in red). Alternatively

they can be identically determined as a superposition of blips dispersed along the xA − ctA axis. The

advantage of this representation is that points along Alice’s light cones are also points along the light

cones for any other observer, including those who, like Bob, are not at rest in Alice’s reference frame.

Consequently, the same blips that contribute to Alice’s field observables also contribute to Bob’s field

observables. In the next section we will show that this description of the field allows a comparison

between blips in Bob’s frame and those in Alice’s frame.

Figure 4. The diagram shows the contribution of right-propagating blips to the field observables

measured by Alice at the origin. From one point of view, blips distributed along the xA axis (solid red)

contribute non-locally to the field observable. As blips at one point in spacetime can be identified with

blips at all points along their world-lines (marked in yellow), blips distributed along xA − ctA axis

(hollow red) provide an equivalent contribution to the field observables as blips along the xA axis on

the same world-line.

4. A Quantum Picture of the Relativistic Doppler Effect

Next we have a closer look at how Bob experiences the quantised EM field in his moving reference

frame. Afterwards, we determine a relation between Alice’s and Bob’s field observables by using the

classical field amplitude transformations derived in Section 2.2. By first taking into account that Bob

can also express his field observables as a superposition of blips along the αB = xB − sctB axis, a local

transformation is determined between blips in Bob’s and those in Alice’s reference frame.
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4.1. The Doppler Effect in Position Space

In the following, we denote the annihilation and creation operators for a blip at a position xB at

an initial time tB = 0 in Bob’s frame bsλ(xB) and b†
sλ(xB) respectively with s and λ indicating again its

direction of propagation and its polarisation. According to Bob, blips travel at the speed c along the

relevant boundary of the light cone and

UB(tB, 0) b†
sλ(xB)U†

B(tB, 0) = b†
sλ(xB − sctB) , (37)

in analogy to Equation (32). Here UB(tB, 0) denotes the time evolution operator of the EM field in

Bob’s reference frame. As in the previous subsection, constraining the blips in this way allows us to

introduce annihilation operators bsλ(αB) for blips at xB and tB where αB = xB − sctB and with

[
bsλ(αB), b†

s′λ′(α′B)
]
= δss′ δλλ′ δ(αB − α′B) (38)

in analogy to Equation (33). The blip operators in Bob’s reference frame satisfy an identical set of

commutation relations to Alice’s operators, as one would expect from the principle of relativity.

Entirely analogous to the generalisation of Alice’s field observables, any non-local contributions

of blips to Bob’s field observables can be expressed in terms of their separation from Bob along the αB

axis. Hence, we define Bob’s field observables

EB(αB) = ∑
s=±1

∫ ∞

−∞
dα′B cR(αB − α′B) bsH(α

′
B) + H.c. (39)

BB(αB) = ∑
s=±1

∫ ∞

−∞
dα′B sR(αB − α′B) bsH(α

′
B) + H.c.

with αB = xB − sctB. Here xB and tB are the spacetime coordinates of the point where the field

amplitude measurement is made. The distribution R(αB − α′B) in the above equation is the same as in

Equation (35) but with αA and α′A replaced by αB and α′B respectively.

Although the same regularisation function is used by both Alice and Bob, as Alice measures the

separation of blips along the αA axis and Bob along the αB axis, the contribution of blips to their field

observables is different. This is illustrated in Figure 5. In the diagram, Alice’s blips (solid red) are

distributed at regular intervals along the xA axis. Bob’s blips (solid blue) are distributed at identical

intervals along the xB axis. Since R(x − x′) is used for both observers, the two outermost red blips

have the same contribution to Alice’s field observables as the two outermost blue blips do to Bob’s

field observables. By identifying the blips with their counterparts along the xB − ctB as in Figure 5,

however, we can see that the blips defined by Bob appear closer to Alice than her own. As a result,

the regularisation function used by Bob appears squeezed from Alice’s point of view. Conversely,

for light propagating to the left the regularisation function appears stretched. As mentioned already

above, events that occur simultaneously in Alice’s reference frame are not simultaneous in Bob’s and

vice versa.

Now that the operators asλ(αA) and bsλ(αB) have been defined by constructing field observables

for the two observers (cf. Equations (34) and (39)), a relationship between these operators can be found

by imposing the field relation in Equation (3). In order to compare the electric field observables EA(αA)

and EB(αB), we now express EB(αB) in terms of Alice’s coordinates αA. Combining Equations (3), (16)

and (34), we see that

EB(αB) = ∑
s=±1

ξBA

∫ ∞

−∞
dα′A cR(αA − α′A) asH(α

′
A) (40)

+H.c.
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with αB = γ(1 + sβ) αA. Substituting α′B = γ(1 + sβ) α′A into this equation, using Equation (25) and

taking into account the explicit form of the regularisation function in Equation (35) we find that

EB(αB) = ∑
s=±1

|γ(1 − sβ)|1/2
∫ ∞

−∞
dα′B cR(αB − α′B) (41)

× asH(γ(1 − sβ)α′B) + H.c.

Figure 5. The diagram shows the contribution of right-propagating blips to Alice’s and Bob’s field

observables at the origin. Blips distributed along the xA axis (solid red) and along the xB axis (solid

blue) contribute equally to Alice’s and Bob’s field observables respectively. As blips at one point in

spacetime can be identified with blips at all points along their world-lines (marked in yellow), blips

distributed for example along the αB = xB − ctB axis (hollows in red and blue) provide an equivalent

contribution to Alice’s and Bob’s field observables as blips along the xA axis and xB axis on the same

world-line.

By comparing this equation with Equation (39), we see that both expressions are only the same if

bsλ(αB) = [γ(1 − sβ)]1/2 asλ(γ(1 − sβ)αB) (42)

= [γ(1 − sβ)]1/2 asλ(αA)

where the coordinates αA and αB define the same light-like trajectory in Alice’s and Bob’s coordinate

systems respectively.

The above transformation shows that a single blip in Alice’s reference frame is observed by

Bob as a single blip at exactly the same position in the spacetime diagram. The additional factor

[γ(1 − sβ)]1/2 in Equation (42) is the result of Alice and Bob using different coordinates to describe the

same point. One can easily check that the annihilation operators on both sides of Equation (42) obey

bosonic commutation relations. Hence, the annihilation operators bsλ(αB) and asλ(αA) are identical

and completely interchangeable. Consequently, the relativistic Doppler effect is simply an immediate

consequence of the fact that Alice and Bob experience time and space differently. A single local photon

in Alice’s reference frame also appears a single local photon in Bob’s. For example, if both perform

a linear optics experiment, like the Hong-Ou Mandel effect [52,53] in which two identical photons

approach a beam splitter from opposite sides, both see both photons leaving the setup through the
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same output port. The dynamics of the quantised EM field is essentially the same in all inertial

reference frames, as stated by Einstein’s principle of relativity [10].

4.2. The Doppler Effect in the Momentum Representation

For completeness and since the relativistic Doppler effect is usually studied in momentum

space [9], we finally have a closer look at the implications of the above equations on the momentum

representation of the quantised EM field. In this representation, the electric and magnetic field

observables are expressed in a basis of bosonic excitations with a definite frequency, polarisation and

direction of propagation. These excitations are an alternative representation and are introduced by

Fourier transforming the blip annihilation operators that have been used so far [21,22]. In Alice’s and

Bob’s reference frames, we define

ãsλ(kA) =
1√
2π

∫ ∞

−∞
dαA e−iskAαA asλ(αA) , (43)

b̃sλ(kB) =
1√
2π

∫ ∞

−∞
dαB e−iskBαB bsλ(αB) .

These operators satisfy the bosonic commutation relations

[
ãsλ(kA), ã†

s′λ′(k′A)
]

= δss′ δλλ′ δ(kA − k′A) , (44)
[
b̃sλ(kB), b̃†

s′λ′(k′B)
]

= δss′ δλλ′ δ(kB − k′B)

where kA and kB are wave numbers seen by Alice and Bob with respect to tA and tB respectively.

In the position representation, the blip operators asλ(αA) and bsλ(αB) defined in Alice’s and

Bob’s frames respectively satisfy the transformation (42) which is consistent with the classical field

transformations for the field observables. Substituting Equation (42) into (43), we can now determine

an analogous relationship between the momentum space annihilation operators. Taking into account

that αB = γ(1 + sβ) αA (cf. Equation (16)), we find that

b̃sλ(kB) =
1√
2π

[γ(1 + sβ)]1/2
∫ ∞

−∞
dαA (45)

×e−isγ(1+sβ) kBαA asλ(αA) .

Substituting for asλ(αA) the inverse of Equation (43) yields

b̃sλ(kB) =
1

2π
[γ(1 + sβ)]1/2

∫ ∞

−∞
dαA

∫ ∞

−∞
dkA (46)

×eis(kA−γ(1+sβ)kB)αA ãsλ(kA) .

After performing first the αA and then the kA integrations, we therefore see that

b̃sλ(kB) = [γ(1 + sβ)]1/2 ãsλ(γ(1 + sβ)kB) (47)

= [γ(1 + sβ)]1/2 ãsλ(kA)

with kA = γ(1 + sβ) kB. Hence a single monochromatic photon of frequency ckB observed by Bob

corresponds to a single monochromatic photon of frequency ckA = γ(1 + sβ) ckB observed by Alice.

This transformation is in complete agreement with the classical Doppler shift derived in Section 2.3

and found in the literature. Whilst this transformation is very simple, a change in the frequency of

the excitation is not the same in all reference frames. Whilst working in the position representation,

however, a local photon is viewed as a local photon by all inertial observers at the same point in
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the spacetime diagram. The only difference is that different observers use different coordinates to

characterise this point.

5. Conclusions

This paper offers an alternative perspective on the relativistic Doppler effect which is usually

referred to only in momentum space and discussed in terms of frequency, wavelength and amplitude

changes of wave packets of light when measured in different inertial reference frames. In this paper, we

study the relativistic Doppler effect in position space using the spacetime coordinates αA = xA − sctA

and αB = xB − sctB of two inertial observers: Alice in the stationary frame and Bob in the frame moving

with constant velocity vB with respect to Alice. This alternative approach allows us to accommodate

time and spatial translational symmetries in a relatively straightforward way. In addition, we identify

an invariant energy flux and take advantage of the principle of relativity.

For example, symmetry arguments and the principle of relativity are used to show that local

electric field amplitudes seen by Alice and Bob only differ by a constant factor which we denote ξAB

and ξBA respectively. Energy flux conservation can be used to calculate these factors as a function of

the propagation direction s and the velocity of Bob’s reference frame vB with respect to Alice’s frame.

For simplicity, we assume here that both observers are stationary in their respective coordinate systems

and place them at the origin. When transforming our local description of the relativistic Doppler effect

into momentum space, we recover the usual predictions which shows that our approach is consistent

with the findings of other Authors.

In Sections 3 and 4, we concentrate on the local description of the quantized EM field for light

propagation in one dimension of Minkowski spacetime to obtain a quantum picture of the relativistic

Doppler effect. Our aim here is to identify the relationship between the quantum states of a wave

packet of light seen by Alice and Bob in different inertial frames. Our main result is the straightforward

relationship between the annihilation operators asλ(αA) and bsλ(αB) used by Alice and Bob for the

description of local excitations—so-called blips—of the quantised EM field. When considering the same

point in the spacetime diagram, i.e., when αA and αB depend on each other as stated in Equation (16),

both observers measure the same number of field excitations and the operators asλ(αA) and bsλ(αB).

The relativistic Doppler effect is simply the result of Alice and Bob using different spacetime coordinates

and experiencing space and time differently, while the speed of light is the same in all inertial reference

frames [4]. For example, electric field amplitudes which are simultaneous in Alice’s reference frame

appear at different times tB in Bob’s reference frame and vice versa.

The results of this paper might have applications in different areas of physics, including

quantum communication [36] and relativistic quantum information [37–41]. In the current study,

the concentration was on a well-expected result as a transformation between the stationary frame and

moving with constant velocity frame in a classical and relativistic representation in order to explore it

for blips as well. In the future, our approach can be used to study more complicated situations and

systems like an accelerating frame.
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