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2School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
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In three dimensions, dipole-dipole interactions which alter atomic level shifts and spontaneous
decay rates only persist over distances comparable to the wavelength of the emitted light. To provide
novel tools for quantum technology applications, like quantum sensing, many attempts have been
made to extend the range of these interactions. In this paper we show that such an extension can
be achieved with the help of partially transparent asymmetric mirror interfaces without involving
negative refractive index metamaterials. Suppose two atoms are placed on opposite sides of the
interface, each at the position of the mirror image of the other. In this case, their emitted light
interferes exactly as it would when the atoms are right next to each other. Hence their dipole-dipole
interaction assumes an additional maximum, even when the actual distance of the atoms is several
orders of magnitude larger than their transition wavelength.

I. INTRODUCTION

In 1982, Scully and Drühl [1] proposed a double-slit
experiment in which the slits are two two-level atoms.
As illustrated in Fig. 1(a), the atoms are kept at a con-
stant distance, are continuously driven by laser light and
emit photons at a constant rate. When their distance
is comparable to the wavelength of the emitted light, an
interference pattern forms on a far-away screen. Aver-
aged over many photons, this pattern very closely re-
sembles the interference pattern of classical double-slit
experiments. It only disappears when information about
the origin of each photon becomes available [2]. As in
classical two-slit interference experiments, the distance
between the intensity minima and maxima depends on
the distance between the atoms [3].

When this two-atom double-slit experiment was first
performed by Eichmann et al. in 1993 [2], it raised many
questions, like, how can spontaneously emitted photons
interfere [4]. A closer look at the experiment shows that
it is best not to think of the atoms as sources of spon-
taneously emitted photons but as continuously radiating
dipole antennae [5]. Both atoms constantly transfer en-
ergy into the surrounding free radiation field which only
manifests itself as “individual photons” upon detection
[6, 7]. When an individual photon is registered on a pho-
tographic plate, it contains in general energy from both

atoms. Depending on its direction of emission, radiation
either interferes constructively or destructively, thereby
resulting in a spatial dependence of the intensity of the
emitted light. Moreover, interference effects result in a
spatial dependence of first and second order photon cor-
relations [8–10]. By now, the interference of light from
distant atoms is relatively well understood and has al-
ready found applications in distributed quantum com-
puting [11–15] and in quantum sensing [16].

Different from the classical case, interference in the
two-atom double-slit experiment depends on the internal
state of the slits, since different entangled atomic states
radiate light in different preferred directions [17]. Sup-

pose two atoms are right next to each other and share
a single energy quantum. If the atoms in Fig. 1(a) are
in their maximally-entangled symmetric state, all of the
emitted light interferes constructively. The atomic cou-
pling to the free radiation field is collectively enhanced
and a photon is emitted at twice the usual rate. However,
if the atoms are in their anti-symmetric state, their efforts
to transfer their energy into the free radiation field can-
cel each other out. The spontaneous decay rate of the
antisymmetric state therefore tends to zero. At larger
distances between the atoms, similar alterations of spon-
taneous decay rates occur. These are synonymous with
Dicke sub- and superrandiance [18] and indicate the pres-
ence of atomic dipole-dipole interactions [19–21]. A pos-
sible approach to atomic ultralong-range interactions is
therefore the recreation of the interference effects of the
original two-atom double-slit experiment for large atomic
distances. Taking this into account, this paper derives a
mirror-mediated, targeted ultralong-range atomic dipole-
dipole interaction which can persist over distances that
are many orders of magnitude longer than the wavelength
of the emitted light.

Suppose two atoms, a and b, are separated by a two-
sided partially transparent mirror and the position of
each atom coincides with the position of the mirror im-
age of the atom on the opposite side, as illustrated in
Fig. 1(b). Comparing Figs. 1(a) and (b) and viewing
the atoms again as radiating dipole antennae, we see
that—for half of the emitted light—the two paths from
a source to a certain point on the far-away screen are al-
ways of the same length. The resulting interference pat-
tern is therefore the same as in the above described two-
atom double-slit experiment [1], apart from a reduction
in visibility. Since atomic dipole-dipole interactions are
the result of interference effects and the interference of
spontaneously emitted photons is the same in Figs. 1(a)
and (b), the above discussion suggests an additional max-
imum of the dipole-dipole interaction between two atoms
on opposite sides of a partially transparent mirror. As
we shall see below, the strength of this ultralong-range
interaction does not depend on the actual distance of the
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FIG. 1. (a) Schematic view of the two-atom double-slit experiment by Eichmann et al. [2]. If the distance of the atoms is
comparable to their transition wavelength λ0, the emitted light interferes either predominantly constructively or destructively.
Which one applies depends on the collective state of the atoms. The result is an interference pattern on a far-away screen
and a relatively short-range dipole-dipole interaction. As first pointed out by Dicke [18], the spontaneous decay rates of the
atoms change (sub- and superradiance) and level shifts occur. (b) Schematic view of two atoms on opposite sides of a partially
transparent asymmetric mirror which is smooth on one side but rough on the other. Such a mirror can be realised by placing
tiny metallic islands onto a glass surface, while leaving small gaps between them. Now the transmitted light coming from atom
a and the reflected light coming from atom b interfere exactly as in Fig. 1(a) and an analogous interference pattern emerges,
if a screen is placed on the left hand side of the setup. However, the distance of the atoms no longer needs to be comparable
to λ0 for mirror-mediated dipole-dipole interactions to emerge. All that is required is that the distance between atom a and
the mirror image of atom b is sufficiently small. (c) Unfortunately, constructive interference on the left hand side of the mirror
usually implies destructive interference on the right and vice versa, thereby erasing any net effects of atomic dipole-dipole
interactions. The spontaneous decay rates of collective atomic states therefore only changes, if the surface roughness of the
mirror is not the same on both sides. For simplicity we consider in the following a partially transparent asymmetric metasurface
which is smooth on one side but rough on the other such that there is effectively no interference between the reflected light
coming from atom a and transmitted light coming from atom b.

atoms but on the distance between atom a and the mirror
image of atom b.

Unfortunately, for symmetric mirrors, constructive in-
terference of light on one-side implies destructive inter-
ference on the other [22]. Hence, as we shall see below,
when interference effects due to the reflection of light on
one side increase atomic interactions, reflection on the
other side reduces them such that there is effectively no
interaction. Remote dipole-dipole interactions therefore
require the presence of an asymmetric mirror. To achieve
this, we assume in the following that the mirror surface
has a different surface roughness on both sides, as illus-
trated in Figs. 1(b) and (c). More concretely, we assume
that the mirror surface is smooth on one side but un-
even on the other. This can be realised, for example,
by placing a thin layer of tiny metallic droplets onto a
glass surface with some space between them. Although
the atomic interactions which we predict here are weaker
than the standard dipole-dipole interactions of nearby
atoms, they are expected to find applications, for exam-
ple, in non-invasive quantum sensing.

Atomic dipole-dipole interactions have already been
studied in different environments but so far, they have al-
ways been relatively short-range [23, 24]. Theoretical and
experimental studies usually consider atom-mirror inter-
actions [25–28], interactions between atoms on the same
side of an interface [29–31], atoms separated by nega-
tive index metamaterials and other thin films [32–40] and
atoms near one-dimensional nanofibers and wave guides
[41–44]. In this paper, we emphasise that, if a physical
system can be modelled by classical physics, then the
expectation values of the corresponding quantum model

must evolve in exactly the same way. Otherwise, it would
be possible to contradict quantum physics with classical
experiments. Below we show that this observation can be
used to simplify the derivation of quantum optical master
equations, thereby enabling the modelling of the exper-
imental setup shown in Fig. 1. All we need to know is,
how classical optics models light propagation in the ab-
sence of the atoms but in the presence of the asymmetric
mirror interface [45, 46].

II. RESULTS

A. Local atom-field interactions

In free space, the complex electric field observable E(r)
at position r can be written as a superposition of local
contributions Esλ(r) of travelling waves with polarisa-
tions λ = 1, 2 and directions of propagation s,

E(r) =
∑

λ=1,2

∫

S

dsEsλ(r) . (1)

Here S denotes the set of all three-dimensional unit vec-
tors and Esλ(r) creates local photons with wave vec-
tors k = ks, normalised polarisation vectors esλ with
es1 · es2 = esλ · s = 0, and bosonic creation operators

a†
kλ. Using this notation, Esλ(r) can be written as [48]

Esλ(r) = −i

∫ ∞

0

dk k2
(

ℏck

16π3ε

)1/2

e−ik·r a†
kλ esλ . (2)
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Suppose |0F⟩ and UF(t, 0) denote the vacuum state and
the time evolution operator of the free field Hamiltonian
HF, respectively. Then

UF(t, 0)Esλ(r) |0F⟩ = Esλ(r + sct) |0F⟩ , (3)

since a local field excitation with a well defined direction
of propagation s simply travels at the speed of light c in
a straight line away from its source [45, 46]. If created
at an initial time t = 0 at position r, it will be found at
position r + sct at some later time t.
Next we assume that a partially transparent asymmet-

ric metasurface is placed in the x = 0 plane, as illustrated
in Fig. 1(b). Suppose this mirror is obtained by plac-
ing a thin metallic film with tiny holes which are much
smaller than the wavelength of the emitted light onto
a glass surface. In this case, the local field excitations
which meet the gaps are transmitted and evolve exactly
as they would in free space (i.e. as in Eq. (3)). However,
light which does not meet a hole, is reflected and evolves
such that

UF(t, 0)Esλ(rb) |0F⟩ = E s̃λ(r̃b + s̃ct) |0F⟩ , (4)

if is has been created at the position rb of atom b at
t = 0 and if the mirror surface is smooth on the left. The
tilde indicates that a minus sign has been added to the
x component of the respective vector, thereby ensuring
for example that electric field vectors are always orthog-
onal to their direction of propagation. Similarly, if the
metasurface is rough on the right, Eq. (3) changes into

UF(t, 0)Esλ(ra) |0F⟩ = ES(s)λ(Ra(s, t)) |0F⟩ (5)

for reflected light originating from atom a at position ra

at t = 0. Here S(s) and Ra(s, t) denote the direction
of propagation and the position of the respective (s, λ)
field excitation at time t. The exact values of these two
variables does not need to be known, since we assume
in the following that the surface roughness stops trans-
mitted and reflected light from interfering efficiently on
the right hand side of the mirror interface. The only as-
sumption we make in the Methods section for simplicity
is that the S(s) vectors cover the right hand side of the
x = 0 plane relatively evenly.
In the following, we denote the electron charge and the

complex dipole moment of atom i by e and D
(i)
12 , respec-

tively. Then, within the dipole and the rotating wave
approximation, the interaction Hamiltonian between the
atoms and the surrounding free radiation field can be
written as [19–21]

HAF = e
∑

i=a,b

D
(i)
12σ

−
i · E(ri) + H.c. (6)

with σ−
i denoting the atomic lowering operator. In Meth-

ods, we analyse the dynamics generated by this Hamilto-
nian using second order perturbation theory. As we shall
see below, as long as we know how the atomic operators

σ−
i and the local electric field observable Esλ(ri) evolve

in the absence of atom-field interactions, the dynamics of
the two atoms in Fig. 1 can be analysed in a relatively
straightforward way.

B. Dynamics of atomic states

Quantum optical master equations describe the dy-
namics of atomic density matrices ρA(t) on a coarse
grained time scale ∆t which is much larger than their
inverse transition frequency 1/ω0 but also much smaller
than their atomic lifetime 1/Γfree [6, 7]. To obtain them,
we assume that the free radiation field is initially in its
vacuum state |0F⟩, evolve atoms and field for a time ∆t
with their Hamiltonian H in Eq. (11) and follow this
dynamics with a measurement as to whether or not a
photon has been emitted. Proceeding as described in
Methods, one can then show that the time derivative of
the atomic density matrix ρA equals

ρ̇A = − i

ℏ

(
HcondρA − ρAH

†
cond

)
+ L(ρA) (7)

to a very good approximation. The reset operator L(ρA)
and the non-Hermitian Hamiltonian Hcond in this equa-
tion can be used to analyse the dynamics of the two atoms
in a time interval (0,∆t) under the condition of a photon
emission and no emission, respectively.

C. Dicke sub- and superradiance

Taking into account that some of the light that has
been emitted by each atom travels to the opposite side of
the mirror interface where it interferes with the reflected
light originating from the atom on the opposite side, one
can show that the operators L(ρA) and Hcond in Eq. (7)
can be written as

L(ρA) =
∑

i,j=a,b

Re
(
Γ
(ij)
mir

)
σ−
i ρAσ

+
j ,

Hcond = HA − iℏ

2

∑

i,j=a,b

Γ
(ij)
mir σ

+
j σ

−
i . (8)

The constants Γ
(ij)
mir in these equations depend on the

properties of the atoms and on the average reflection and
transmission rates ti and ri of the mirror interface. In
the following, we assume that these do not depend on
the angle of incidence and the frequency of the incom-
ing light. Such a dependence would alter the strength of
the predicted interactions but we expect that our results
remain valid, at least qualitatively.
Here we are especially interested in the case where the

distance between atom a the mirror image of atom b,
i.e. the difference between ra = (xa, ya, za) and r̃b =
(−xb, yb, zb), is very small. For simplicity, let us assume
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(b)(a)

FIG. 2. The imaginary part (a) and the real part (b) of Γ
(ab)
mir in Eq. (9) as a function of the distance ξ between atom a and

the mirror image of atom b for different orientations of the atomic dipole moment vectors D
(a)
12 and D

(b)
12 for tarb = 0.5. For

simplicity, we assume here that D
(a)
12 = D

(b)
12 = D12 and that D12 is a real vector. The imaginary part is responsible for atomic

level shifts of collective atomic states. Moreover, the real part of Γ
(ab)
mir represents changes to the spontaneous decay rates in the

presence of a mirror-mediated atomic dipole-dipole interaction.

that ya = yb and za = zb. In this case, the relative effec-
tive distance ∥ra−r̃b∥ is simply given by ξ = k0(xa+xb).
Using this notation and considering real mirror transmis-
sion and reflection rates for simplicity, one can show that

Γ
(ab)
mir =

3

8
tarbΓfree

[
D̂

(a)

12 · D̂(b)

12

(
1

iξ
+

1

ξ2
− 1

iξ3

)

−
(
D̂

(a)

12 · x̂
)(

D̂
(b)

12 · x̂
)( 1

iξ
+

3

ξ2
− 3

iξ3

)]
eiξ

− 3

16
tarbΓfree

[
D̂

(a)

12 · D̂(b)

12

(
1

iξ
− 2

iξ3

)

+
(
D̂

(a)

12 · x̂
)(

D̂
(b)

12 · x̂
)( 1

iξ
+

6

iξ3

)]
, (9)

while Γ
(aa)
mir = Γ

(bb)
mir = Γfree and Γ

(ba)
mir = Γ

(ab)∗
mir . Here Γfree

denotes the single-atom free space decay rate and D̂
(i)

12

and x̂ are unit vectors which point in the direction of

the (real) dipole moment vector D
(i)
12 and of the positive

x axis, respectively. Fig. 2 shows the imaginary and the

real part of Γ
(ab)
mir for different atomic dipole moments and

for different distances ξ of the order of the wavelength of
the emitted light. In the absence of a mirror interface,

the reflection rate rb = 0 and Γ
(ab)
mir tends to zero, as one

would expect. Formally, Eq. (7) is exactly the same as
the master equations of two atoms experiencing Dicke
sub- and superradiance [19–21]. The only difference is
the overall factor 3

8 tarb in Eq. (9). In addition, there are
some additional imaginary terms in the third and fourth
line of this equation.

III. DISCUSSION

Having a closer look at the conditional Hamiltonian
Hcond in Eq. (8), we see that it contains a Hermitian and
a non-Hermitian contribution. The Hermitian contribu-
tion contains the atom Hamiltonian HA and terms pro-

portional to the imaginary part of Γ
(ab)
mir . These describe

the free dynamics of the atoms as well as interaction-
induced level shifts. As one can see when comparing
Eq. (9) with the equations in Refs. [18–21], the level shifts
in the first two lines of Eq. (9) are essentially the same as
the level shifts in the presence of free-space dipole-dipole
interactions between two atoms at positions ra and r̃b.
The only difference is the above mentioned overall fac-
tor, which occurs since not all emitted light contributes
to the generation of the interaction. In addition there are
some additional level shifts in the last two lines of Eq. (9).
However, as illustrated in Fig. 2(a), these do not signifi-
cantly alter the general dependence of the level shifts on
the relative effective distance ξ of the two atoms. This is
why we can refer to the interaction which we derive here
as a dipole-dipole interaction.
The remaining terms in Eq. (8) describe the damping

of population in excited atomic states. Diagonalising the
conditional Hamiltonian Hcond, we find that the sponta-
neous decay rate of the double-excited atomic state |22⟩
equals 2Γfree, as usual. However, collective atomic states
which share only one excitation now have the sponta-
neous decay rates

Γ± = Γfree ± Re
(
Γ
(ab)
mir

)
. (10)

As we can see from Eq. (9) and Fig. 2(b), up to an over-
all factor, the differences between Γ± and Γfree are what
they would be in the presence of a free-space dipole-
dipole interaction between two atoms at positions ra and
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r̃b [18–21]. As shown in Section IVB, the atomic states
with well-defined spontaneous decay rates are the same as
for dipole-interacting atoms, namely the double-excited
state |22⟩ and the single-excited symmetric and antisym-
metric states |±⟩.
Changes to spontaneous decay rates can be detected,

for example, with the help of fluorescence lifetime mea-
surements. Moreover, when the atoms are driven by a
common laser field, we expect their higher order pho-
ton correlation functions [8–10] to change and an inter-
ference pattern to emerge, if the spontaneously emitted
photons are collected on a far-away screen, as illustrated
in Fig. 1(b). As described in Methods, the only assump-
tions regarding the distance of the two atoms made in
the derivation of the above equations are:

1. The actual distance between the atoms and be-
tween an atom and the mirror interface should be
relatively large. This applies when k0|xa−xb| ≫ 1.

2. The actual distance between the two atoms in
Figs. 1(b) and (c) should not be so large that the
time it takes light to travel from one atom to the
other becomes comparable to the lifetime of excited
atomic states.

The first condition allows us to ignore direct atom-atom
and atom-mirror interactions which are relatively short-
range. The second condition simplifies the modelling of
light propagation in the presence of the mirror interface
and is not very restrictive. For example, light can travel
a 1mm distance in less than 3.4 · 10−12 s which is much
shorter than the typical lifetime 1/Γfree of excited atomic
states. However, when analysing atomic interactions over
very large distances, retardation effects need to be taken
into account and the dynamics of the two atoms can no
longer be described by a simple Markovian master equa-
tion, like the one in Eq. (7).
The main difference between the above-described

mirror-mediated dipole-dipole interactions and the usual
dipole-dipole interactions between two atoms in free
space is that the former can be felt over much longer
distances. As we have shown above, mirror-mediated re-
mote dipole-dipole interaction can persist over distances
which are several orders of magnitude longer than the
wavelength of the emitted light. They assume a maxi-
mum when the relative distance ξ between the position
ra of atom a and the position r̃b of the mirror image of
atom b is of the order of one. This can be the case even
when the actual distance ∥ra − rb∥ of the atoms is sev-
eral orders of magnitude larger than the wavelength of
the emitted light. The interaction which we predict here
is therefore ultralong-range and targeted.
Another requirement for the atomic interactions which

we predict in this paper is the presence of an asymmet-

ric mirror interface. As illustrated in Fig. 1, this can be
achieved with different surface roughness on both sides
of the reflecting layer. If both sides of the mirror surface

were smooth, the interaction constant Γ
(ab)
mir in Eq. (9)

would be proportional to ratb + tarb. Unfortunately,
we know from classical optics (from Stoke’s law which
guarantees energy conservation) that this factor equals
zero for standard partially transparent mirror interfaces
[47]. For mirrors which are equally smooth on both sides,
the interaction which we predict here therefore simply
disappears. However, for the mirror interface shown in
Figs. 1(b) and (c), constructive interference on one side
of the mirror interface no longer implies the same amount
of destructive interference on the other and the resulting
interaction scales instead as tarb.
In conclusion, in this paper we derived the quantum

optical master equations of two atoms on opposite sides
of a partially transparent asymmetric mirror interface by
evolving the atoms and the free radiation field for a short
time interval ∆t using a Dyson series expansion. Our
approach allows us to deduce the time derivative of the
atomic density matrix ρA from the classical dynamics of
light in the absence of any atom-field interactions. We
then showed that the two atoms can experience an ef-
fective dipole-dipole interaction when atom a is placed
close to the position of the mirror image of atom b and
vice versa. The main result of this paper is the predic-
tion of a targeted, remote, mirror-mediated ultralong-
range dipole-dipole interaction which is likely to find a
wide range of applications in the design of novel photonic
devices for quantum technology applications, especially
quantum sensing.

IV. METHODS

A. The derivation of quantum optical master

equations

Our starting point for the derivation of the master
equations in Eq. (7) is the relevant system Hamiltonian
H which can be written as

H = HA +HF +HAF . (11)

Here HA and HF denote the free energy of the atoms
and of the electromagnetic field, i.e. in the absence of
the mirror interface. An expression for the interaction
Hamiltonian HAF between the atoms and the local exci-
tations of the surrounding free radiation field within the
usual dipole approximation can be found in Eq. (6) [19–
21]. As we shall see below, in addition, we only need to
know how the atomic dipole moments and electric field
observables evolve in the Heisenberg picture in the ab-

sence of atom-field interactions.
Suppose ρA(0) is the initial density matrix of the two

atoms in the Schrödinger picture, while the surrounding
free radiation field is initially in its vacuum state. We
then evolve the atom-field density matrix |0F⟩ρA(0)⟨0F|
for a time ∆t with the time evolution operator U(∆t, 0) of
the above Hamiltonian H. Subsequently performing an
absorbing measurement on the surrounding free radiation
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field leads to the atomic density matrix

ρA(∆t) = TrF
[
U(∆t, 0)|0F⟩ρA(0)⟨0F|U†(∆t, 0)

]
. (12)

Here the trace over the field degrees of freedom is
taken to ensure that a measurement on the surround-
ing electromagnetic field does not change the prop-
erties of the atoms, if its outcome is ignored. As
requested by locality, the density matrices ρA(∆t)
and U(∆t, 0)|0F⟩ρA(0)⟨0F|U†(∆t, 0) must have the same
atomic expectation values. Next, we introduce the time
derivative

ρ̇A =
1

∆t
(ρA(∆t)− ρA(0)) (13)

which describes the dynamics of the atomic density ρA
on the coarse grained time scale ∆t under the condition
that the free radiation field is essentially always kept in
its vacuum state [6, 7].

Since the time evolution operator U(∆t, 0) in Eq. (12)
cannot be calculated easily analytically, we write the to-
tal Hamiltonian H of the experimental setup in Fig. 1(c)
in the following as the sum of the free Hamiltonian
H0 = HA + HF and the interaction HAF. As long as
∆t is neither too long nor too short, as described in Re-
sults, we can analyse the dynamics of the system using a
Dyson series expansion which implies that

U(∆t, 0) = U0(∆t, 0)−
i

ℏ

∫ ∆t

0

dt U0(∆t, t)HAF U0(t, 0)−
1

ℏ2

∫ ∆t

0

dt

∫ t

0

dt′ U0(∆t, t)HAF U0(t, t
′)HAF U0(t

′, 0)

(14)

to a very good approximation. Combining Eqs. (12) and (14), while only taking terms in zeroth order in ∆t into
account, leads to

ρA(∆t) =
1

ℏ2

∫ ∆t

0

dt

∫ ∆t

0

dt′ TrF

[
U0(∆t, t)HAF U0(t, 0) |0F⟩ρA(0)⟨0F|U †

0 (t
′, 0)HAF U

†
0 (∆t, t

′)
]

− 1

ℏ2

∆t∫

0

dt

t∫

0

dt′ ⟨0F|U0(∆t, t)HAF U0(t, t
′)HAF U0(t

′, 0)|0F⟩ρA(0) + c.c.

+⟨0F|U0(∆t, 0)|0F⟩ρA(0)⟨0F|U†
0 (∆t, 0)|0F⟩ (15)

which applies in first order in ∆t. To obtain the above equation, we took into account that HAF either creates or
annihilates a photon, while H0 preserves the number of excitations in the free radiation field. Carefully comparing
this equation with Eqs. (7) and (13), we see that

L(ρA) =
1

ℏ2∆t

∫ ∆t

0

dt

∫ ∆t

0

dt′ TrF

[
U0(∆t, t)HAF U0(t, 0) |0F⟩ρA⟨0F|U†

0 (t
′, 0)HAF U

†
0 (∆t, t

′)
]
,

Hcond = HA − i

ℏ∆t

∆t∫

0

dt

t∫

0

dt′ ⟨0F|U0(∆t, t)HAF U0(t, t
′)HAF U0(t

′, 0)|0F⟩ . (16)

To further simplify the above expressions, we notice that H0 is the sum of two commuting Hamiltonians, namely
HA and HF. Hence, U0(t, 0) = UA(t, 0) ⊗ UF(t, 0), where UA(t, 0) and UF(t, 0) denote the time evolution operators
associated with HA and HF, respectively. In addition, we introduce the short hand notation

D
(i)(t) = U †

A(t, 0)D
(i)
12σ

−
i UA(t, 0) (17)

and notice that the vacuum state is invariant under UF. Hence, using Eqs. (6) and (16), one can show that

L(ρA) =
e2

ℏ2∆t

∑

i,j=a,b

∫ ∆t

0

dt

∫ ∆t

0

dt′ TrF

[
D

(i)(t) · UF(∆t, t)E(ri) |0F⟩ρA⟨0F|D(j)(t′)† · E(rj)† U†
F(∆t, t

′)
]
,

Hcond = HA − ie2

ℏ∆t

∑

i,j=a,b

∆t∫

0

dt

t∫

0

dt′ D(j)(t)† · ⟨0F|E(rj)† U†
F(t

′, 0)D(i)(t′) · UF(t, 0)E(ri) |0F⟩ (18)

in zeroth order in ∆t. Here L(ρA) contains all the contributions of the atom-field density matrix which correspond to
the presence of a photon at ∆t in the free radiation field. It therefore equals the (unnormalised) density matrix of the
atoms conditional on the creation of a photon in (0,∆t). Analogously, the non-Hermitian Hamiltonian Hcond only
contains contributions in which excitation has been created in (0,∆t) but is later re-absorbed by the atoms. Hence it
describes atomic dynamics in the absence of an emission [6, 7].
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1. The free-space dynamics of atoms and field

Suppose ℏω0 is the energy gap between the ground and the excited state of atom i, i.e. between the states |1⟩i and
|2⟩i. In addition, we introduce the atomic raising and the lowering operators σ+

i = |2⟩ii⟨1| and σ−
i = |1⟩ii⟨2| and

write the atom Hamiltonian HA as

HA =
∑

i=a,b

ℏω0 σ
+
i σ

−
i . (19)

Hence the time-dependent dipole moment operator D(i)(t) in Eq. (17) equals

D
(i)(t) = e−iω0t D

(i)
12 σ

−
i . (20)

From Eq. (18) we see that the only other expression needed for the derivation of the quantum optical master equations
in Eq. (7) is the state UF(t, 0)Esλ(r) |0F⟩ of the free radiation field. This state is obtained when creating a local field
excitation with direction of propagation s and polarisation λ at time t = 0 at position r and subsequently evolving
the resulting state for some time t. Since ∆t is much larger than the time it takes light to travel from the atoms to the
mirror surface, light emitted at t = 0 in the direction of the mirror has either already been reflected or transmitted
after almost all times t ∈ (0,∆t). Neglecting very small times t for which light has not yet reached the mirror interface
and using Eqs. (3) and (4), we therefore find that

UF(t, 0)Esλ(ra) |0F⟩ = Θ(−sx)
[
ra(s)ES(s)λ(Ra(s, t)) + ta(s)Esλ(ra + sct)

]
|0F⟩+Θ(sx)Esλ(ra + sct) |0F⟩ ,

UF(t, 0)Esλ(rb) |0F⟩ = Θ(sx) [rb(s)E s̃λ(r̃b + s̃ct) + tb(s)Esλ(rb + sct)] |0F⟩+Θ(−sx)Esλ(rb + sct) |0F⟩ (21)

for direction vectors s = (sx, sy, sz). Here the Heavyside function Θ(sx) equals 0 for sx < 0 and 1 otherwise. Moreover,
the real reflection rates ri(s) for light travelling from atom i in the s direction either equal 0 or 1, depending on whether
light arrives at a metallic island or at a gap in the mirror interface (cf. Fig. 1). The corresponding transmission rates
ti(s) are given by ti(s) = 1 − ri(s), since light with a well defined direction of propagation and source cannot be
reflected and transmitted by the mirror surface. Later on, we will take into account that the effective reflection and
transmission rates of the mirror are given by

ri =
1

2π

∫

Si

ds ri(s) and ti = 1− ri , (22)

where Sa = {s ∈ S : sx < 0} and Sb = {s ∈ S : sx > 0}. As previously mentioned in the Results section, S(s)
and Ra(s, t) denote the direction of propagation and the position of a local electric field excitation at time t after its
creation by atom a at t = 0 and after its subsequent reflection on the rough side of the mirror interface.

2. The conditional Hamiltonian Hcond

Substituting Eq. (20) into Eq. (18), we can show that the conditional Hamiltonian Hcond can indeed be written as

in Eq. (8), if we define the constants Γ
(ij)
mir such that

Γ
(ij)
mir =

1

∆t

∫ ∆t

0

dt

∫ t

0

dt′
e2c

8ℏπ3ε
eiω0(t−t′) γ

(ij)
mir (t, t

′) (23)

with γ
(ij)
mir (t, t

′) given by

γ
(ij)
mir (t, t

′) =
16π3ε

ℏc
D

(j)
12 · ⟨0F|E(rj)† U†

F(t
′, 0)D

(i)
12 · UF(t, 0)E(ri)|0F⟩ . (24)

Using Eqs. (1), (2) and (21) and performing one of the k integrations, we therefore find that

γ
(aa)
mir (t, t′) =

∑

λ=1,2

∫
dk k e−ick(t−t′)

[
(ta(s)Θ(−sx) + Θ(sx))

(
D

(a)
12 · esλ

)2
+ ra(s)Θ(−sx)

(
D

(a)
12 · eS(s)λ

)2]

γ
(bb)
mir (t, t

′) =
∑

λ=1,2

∫
dk k e−ick(t−t′)

[
(Θ(−sx) + tb(s)Θ(sx))

(
D

(b)
12 · esλ

)2
+ rb(s)Θ(sx)

(
D

(b)
12 · es̃λ

)2]
(25)
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with dk = ds dk k2. Next we introduce polar coordinates k ∈ (0,∞), ϕ ∈ (0, 2π) and ϑ ∈ (0, π) such that

s =




cosϑ
cosϕ sinϑ
sinϕ sinϑ


 , es1 =




0
sinϕ

− cosϕ


 , es2 =




sinϑ
− cosϕ cosϑ
− sinϕ cosϑ


 , (26)

while ds = dϑ dϕ sinϑ. After replacing the reflections and transmission rates ri(s) and ti(s) by their average values
ri and ti in Eq. (22), which is well justified when the metallic islands which form the mirror interface are much smaller
then the wavelength of the emitted light, Eq. (25) contains the integral

∫ ∞

0

dk k3 e−ickτ = − iπ

c4
δ(3)(τ) (27)

with δ(3)(τ) denoting the third derivative of δ(τ) with respect to τ . Hence we can now show that

1

∆t

∫ ∆t

0

dt

∫ t

0

dt′ eiω0(t−t′)

∫ ∞

0

dk k3 e−ick(t−t′) =
iπ

c3∆t

∫ ∆t

0

dt

∫ t

0

dτ eiω0τ δ(3)(τ) =
πω3

0

c4
. (28)

Combining the above equations and assuming that the direction vectors S(s) cover the half-space on the right hand
side of the mirror interface evenly, we then find that

Γ
(ii)
mir =

e2ω3
0

8π2ℏεc3

∑

λ=1,2

∫
ds
[
ri Θ(∓sx)

(
D

(i)
12 · es̃λ

)2
+ (ti Θ(∓sx) + Θ(±sx))

(
D

(i)
12 · esλ

)2]
, (29)

respectively. Which signs apply depends on whether i equals a or b. Moreover, introducing the notation D
(i)
12 =

∥D12∥ (d(i)1 , d
(i)
2 , d

(i)
3 )T with |d(i)1 |2 + |d(i)2 |2 + |d(i)3 |2 = 1, one can now show that the above Γ

(ii)
mir both equal the

free-space decay rate of an atom with dipole moment D
(i)
12 = D12,

Γ
(aa)
mir = Γ

(bb)
mir = Γfree with Γfree =

e2ω3
0 ∥D12∥2
3πℏεc3

(30)

since ri + ti = 1. As we shall see below, this result does not mean that photons are emitted at their free-space rate
Γfree, if initially only one of the two atoms is excited.

The two remaining constants Γ
(ab)
mir and Γ

(ba)
mir in Eq. (8) can be derived analogously. Since we are only interested

in the case where the distance of each atom from the mirror interface and the distance between atom a and atom b
are much larger than the wavelength of the emitted light, we can safely ignore terms describing direct interactions
between both atoms and between an atom and its own mirror image. These are known to be relatively short-range.
However, terms describing interactions between an atom and the mirror image of the atom on the opposite side must
be kept, when ra and r̃b are relatively close. Using Eqs. (1) and (24) we therefore find that

γ
(ab)
mir (t, t

′) =
16π3ε

ℏc

∑

λ=1,2

∫
dsΘ(sx)

[
ta(s̃)rb(s)D

(b)
12 · ⟨0F|E s̃λ(r̃b + s̃ct′)† D

(a)
12 · E s̃λ(ra + s̃ct)|0F⟩

+

∫
ds′ Θ(−s′x) ra(s′)tb(s)D

(b)
12 · ⟨0F|Esλ(rb + sct′)† D

(a)
12 · ES(s′)λ(Ra(s

′, t))|0F⟩
]

(31)

and γ
(ba)
mir (t, t

′) = γ
(ab)
mir (t, t

′)∗ to a very good approximation. If the scattering operator S scrambles the wave vectors
of light originating from atom a more or less randomly upon reflection, the second term in this equation becomes
negligible. However, the first term in the above equation does not average away and is in general non-zero. For
simplicity, let us assume that ra and rb have the same y and z coordinates. In this case

eik·(ra−r̃b) = eik cosϑ(xa+xb) . (32)

Replacing ta(s̃) and rb(s) by their average values in Eq. (22), proceeding as described in the previous subsection and
using again Eq. (28), leads us to

Γ
(ab)
mir =

3tarbΓfree

8π

∑

λ=1,2

∫ π

π/2

dϑ e−iξ cosϑ sinϑ

∫ 2π

0

dϕ
(
D̂

(a)

12 · esλ
)(

D̂
(b)

12 · esλ
)
. (33)
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(a) (b)

FIG. 3. (a) Time dependence of the photon emission rate I(t) in Eq. (43) for different initial populations p of the excited

atomic state in the presence of mirror-mediated dipole-dipole interactions. Here Re
(

Γ
(ab)
mir

)

= 0.05Γfree. (b) The rate I(t) differs
from the emission rate I0(t) of the atoms in the absence of interactions for the same p. As one would expect in the case of a
broadening of spontaneous decay rates, the loss of atomic excitation happens faster at relatively short times and slower at later
times.

The hat symbols indicate that the vectors D
(i)
12 have been normalised, the polarisation vectors esλ can be found in

Eq. (26), and ξ = k0(xa + xb) with k0 = ω0/c is a relative effective distance. Performing the ϕ integration and
substituting u = − cosϑ yields

Γ
(ab)
mir =

3tarbΓfree

16

∫ 1

0

du eiξu
[
2d

(a)
1 d

(b)
1

(
1− u2

)
+
(
d
(a)
2 d

(b)
2 + d

(a)
3 d

(b)
3

) (
1 + u2

)]
. (34)

Performing the final integration, the above constant simplifies to

Γ
(ab)
mir =

3tarbΓfree

16

[
3∑

i=2

d
(a)
i d

(b)
i

(
2eiξ

(
1

iξ
+

1

ξ2
− 1

iξ3

)
− 1

iξ
+

2

iξ3

)
− 2d

(a)
1 d

(b)
1

(
2eiξ

(
1

ξ2
− 1

iξ3

)
+

1

iξ
+

2

iξ3

)]
(35)

which coincides with Eq. (9) in the main text. Analogously, one can show that Γ
(ba)
mir = Γ

(ab)∗
mir . If the y and the z

coordinates of the position of atom a and atom b are not the same, additional terms have to be taken into account in
the above derivation. However, our physical intuition tells us that the remote interaction between atom a and atom
b depends also in this case only on the relative effective distance ξ and not on the actual distance of the atoms.

3. The reset operator L(ρA)

For completeness, we now also calculate the state L(ρA) of the atoms in case of an emission. Substituting Eq. (20)
into Eq. (18) and introducing the variables τ = ∆t− t and τ ′ = ∆t− t′ yields

L(ρA) =
∑

i,j=a,b

Γ̃
(ij)
mir σ

−
i ρAσ

+
j (36)

with Γ̃
(ij)
mir given by

Γ̃
(ij)
mir =

e2

ℏ2∆t

∫ ∆t

0

dτ

∫ ∆t

0

dτ ′ eiω0(τ−τ ′)
D

(j)
12 · ⟨0F|E(rj)U†

F(τ
′, 0) D

(i)
12 · UF(τ, 0)E(ri)

† |0F⟩ . (37)

These constants have many similarities with the constants Γ
(ij)
mir in Eqs. (23). The only differences are a missing factor

2 and a different upper limit on the second time integral. Proceeding as in the previous subsection, we find that
evaluating Eq. (37) now leads to time integrals of the form

∫ ∆t

0

dτ

∫ ∆t

0

dτ ′ eiω(τ−τ ′) = 2Re

(∫ ∆t

0

dτ

∫ τ

0

dτ ′ eiω(τ−τ ′)

)
(38)
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with ω = ω0 − ck. Hence all the constants Γ̃
(ij)
mir are real

and Γ̃
(ij)
mir = Re

(
Γ
(ij)
mir

)
which yields the reset operator

L(ρA) in Eq. (8).

B. Spontaneous decay of excited atomic states

To determine the spontaneous decay rates of two atoms
on opposite sides of a partially transparent mirror inter-
face, we denote their ground states by |1⟩ and their ex-
cited states |2⟩ and absorb all the Hermitian terms of
the conditional Hamiltonian Hcond in Eq. (8) into the
free atomic Hamiltonian HA. This is possible since these
terms describe atomic level shifts. Doing so, the condi-
tional Hamiltonian Hcond can be written as

Hcond = HA − iℏ

2

[
Γ+ L

†
+L+ + Γ− L

†
−L−

]
(39)

where the Γ± are the spontaneous decay rates of the two
atoms in Eq. (10) and where the L± with

L± = (σ−
a ± σ−

b )/
√
2 (40)

are atomic lowering operators. Hence the time evolution
operator Ucond(t, 0) = exp (−iHcondt/ℏ) which describes
the dynamics of atom a and atom b under the condition
of no photon emission in (0, t) equals, in the interaction
picture with respect to H0 = HA and t = 0,

Ucond(t, 0) = |+⟩⟨+| e−Γ+t/2 + |−⟩⟨−| e−Γ−t/2

+|11⟩⟨11|+ |22⟩⟨22| e−Γfreet . (41)

Here the states |±⟩ = (|12⟩ ± |21⟩/
√
2 are the symmet-

ric and the antisymmetric maximally entangled collective
state of the atoms.

Suppose an incoherent excitation process prepares each
atom with probability p in its excited state, thereby
creating a statistical mixture of the atomic states |11⟩,
|12⟩, |21⟩ and |22⟩. In this case, the probability P0(t) =
∥Ucond(t, 0) |ψI⟩∥2 for no photon emission in (0, t) is the

sum of three exponentials and equals [6, 7]

P0(t) = (1− p)2 + (1− p)p
(
e−Γ+t + e−Γ−t

)

+p2 e−2Γfreet . (42)

For p ≪ 1, the probability of finding both atoms in the
excited state becomes negligible and the probability den-
sity I(t) for a photon emission at t coincides with the
probability density w1(t) = −d/dt P0(t) for the emission
of a first photon at t. Hence,

I(t) = 2p
[
Γfree cosh

(
Re
(
Γ
(ab)
mir

)
t
)

−Re
(
Γ
(ab)
mir

)
sinh

(
Re
(
Γ
(ab)
mir

)
t
)]

e−Γfreet (43)

to a very good approximation. This equation holds
up to first order in p. As illustrated in Fig. 3, this
emission rate is qualitatively different from the emission
rate I0(t) of the atoms in the absence of dipole-dipole
interactions. It is therefore possible to use fluorescence
lifetime measurements to detect the above described
changes of spontaneous decay rates and to obtain a
signature of the remote mirror-mediated dipole-dipole
interactions which we predict in this paper.
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