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ulica Profesora Stanis lawa  Lojasiewicza 11, PL-30-348 Kraków, Poland
2Instytut Fizyki Teoretycznej, Wydzia l Fizyki, Astronomii i Informatyki Stosowanej,
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ulica Profesora Stanis lawa  Lojasiewicza 11, PL-30-348 Kraków, Poland

(Dated: September 13, 2024)

Periodic driving of systems of particles can create crystalline structures in time. Such systems
can be used to study solid-state physics phenomena in the time domain. In addition, it is possible
to engineer the wave-number band structure of optical systems and to realize photonic time crystals
by periodic temporal modulation of the material properties of the electromagnetic wave propagation
medium. We introduce here a versatile averaged-permittivity approach which empowers emulating
various condensed matter phases in the time dimension in a traveling wave resonator. This is
achieved by utilizing temporal modulation of permittivity within a small segment of the resonator
and the spatial shape of the segment. The required frequency and depth of the modulation are
experimentally achievable, opening a pathway for research into the practical realisation of crystalline
structures in time utilising microwave and optical systems.

Electromagnetic waves can propagate in media where
the refractive index changes periodically in space or time
[1–3]. In the first case, we have photonic crystals in space,
which exhibit a band structure in the frequency domain.
In the second case, we deal with photonic time crystals,
where the wave number domain reveals a band structure.
In the optical regime, the experimental realization of pho-
tonic time crystals is a formidable challenge because the
required modulation depth of the refractive index must
be significant, and the frequency of its changes compara-
ble to optical frequencies [4].

In periodically driven atomic and solid-state systems,
as well as in nonlinear optical systems, it is possible to
realize discrete time crystals that spontaneously break
discrete translational symmetry in time and begin to
evolve with a period longer than that dictated by the
periodic perturbation [5–27]. New periodic evolution
forms spontaneously, creating new crystalline structures
in time. Periodically perturbed atomic systems are also
well-suited for realizing a wide range of phases known
from condensed matter physics, but observed in the
time dimension [28–30], such as Anderson and many-
body localization [31, 32], Mott and topological insula-
tors [33, 34], fractonic excitations [35], as well as higher-
dimensional topological systems [36, 37]. The flexibility
of controlling and modifying various solid-state physics
behaviors in time through periodic perturbation control
suggests practical applications. Analogous to electronics,

timetronics concerns the research and design of poten-
tially useful devices where crystalline structures in time
play a key role [38].

In this Letter, we pave the way for optical timetronics

by demonstrating that a simple traveling wave resonator
can exhibit a broad range of condensed matter phases
or combinations of different phases, observed in the time
domain. For example, phases like Anderson or topologi-
cal insulators can be realized, different behaviors can be
connected together, external fields can be realized and
can act during a certain phase or the entire experiment,
and the whole system can be completely reconfigured at
any moment during the experiment. All of this is possi-
ble through time periodic modulation of the permittivity
adapted to the shape of the small fragment of the res-
onator where the modulation is performed. That is, tem-
poral harmonics of the modulation match resonantly with
spatial harmonics of the resonator fragment and deter-
mine the effective behavior of the system. The described
time modulation is experimentally feasible and allows
for processing electromagnetic signals using phenomena
known in condensed matter physics, thus paving the way
for timetronics, i.e., applications where crystalline struc-
tures in time play a crucial role [38]. We present our idea
by providing a detailed prescription for designing an arbi-
trary one-dimensional band structure. We then present
two specific examples: the Su–Schrieffer–Heeger (SSH)
model [39, 40] and the Wannier-Stark ladder [41, 42].
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FIG. 1. (a) Resonator in the form of a closed ring with a
square cross-section. The circumference of the ring, in the
units used in the text, is 2π. In a small segment of the
resonator described by h(z), the permittivity is periodically
modulated in time with the frequency Ω = 2π/T . (b) Exam-
ple of the periodic modulation, f(t), of the permittivity (left)
in a small fragment of the resonator described by h(z) of the
Gaussian shape (right). This example is analyzed in the text.
(c) Dispersion relation (in the laboratory frame) for longitu-
dinal modes of the resonator with the length of the side of the
cross-section area of the resonator a = 0.54. Points indicate
the discrete spectrum of the ring-shaped resonator. (d) In the
frame moving with the frequency Ω which matches the free
spectral range of the resonator, the dispersion relation for the
longitudinal modes has a minimum at k0 = 40, and superpo-
sitions of waves with k ≈ k0 evolve extremely slowly.

As an illustration of our idea, let us consider a closed
resonator in the form of a ring with a square cross-section
[Fig. 1(a)]. For simplicity, we re-scale the magnetic field
vector, H →

√
ε0/µ0 H, and use L/2π and L/2πc as

the units of length and time, respectively, where L is the
circumference of the ring, c is the speed of light, and
µ0 and ε0 are the vacuum permeability and permittivity
[43]. Most importantly, we assume that the relative per-
mittivity of a material ε is constant everywhere in the
resonator except for a small segment where ε changes
periodically in time according to

ε(z, t) = εr + h(z)f(t) with f(t+ T ) = f(t), (1)

for example, as in Fig. 1(b). Here z denotes the position
along the resonator and h(z) and f(t) are functions which
vary in space and time respectively and describe the small
segment of the resonator. In numerical calculations we
set εr = 4.
Next, we assume that the TE11 mode of the electro-

magnetic field has been injected into the resonator [43].
In this case, the electric field does not have a longitudinal
component and we only need to consider the dependence
of the transverse electric field amplitude E(z, t) on time
and space. Since ε(z, t) is a periodic function of time, we
can apply the Floquet theorem [28, 44] and seek solutions

of Maxwell equations in the form E(z, t) = Ẽ(z, t)eiωt

with Ẽ(z, t + T ) = Ẽ(z, t). Here ω denotes the quasi-

frequency of the electromagnetic field. The general so-
lution of Maxwell equations can be obtained as a super-
position of solutions Ẽ(z, t)eiωt. When solving Maxwell
equations, it is convenient not to fully eliminate the mag-
netic field and to reduce them instead to a generalized
eigenvalue problem

[
−i∂tε− iε∂t

i
2k⊥

∂2
z − ik⊥

2ik⊥ −i∂t

] [
Ẽ

H̃

]
= ω

[
ε 0
0 1

] [
Ẽ

H̃

]

(2)
with eigenvalue ω [43]. In this equation, H(z, t) =

H̃(z, t)eiωt, with H̃(z, t+ T ) = H̃(z, t), is the amplitude
of the longitudinal component of the magnetic field and
k⊥ = π/a with a being the normalized length of each side
of the cross-sectional area of the resonator [Fig. 1(a)].

If there is no modulation in time of the permittiv-
ity (i.e., if f(t) = 0), the solutions of Maxwell equa-
tions are characterized by a nonlinear dispersion relation
ω =

√
2k2⊥ + k2 where the wave number k of the longitu-

dinal modes takes integer values because we are consider-
ing the resonator in the form of a closed ring with periodic
boundary conditions (Fig. 1). Let us assume that the
permittivity is periodically modulated in time with the
frequency Ω = 2π/T and that the resonance condition
with the frequency of a wave packet circulation around
the resonator is satisfied, i.e., Ω matches the free spec-
tral range of the resonator. In other words there exists a
wave number k0 for which the group velocity (calculated
in the absence of the modulation) ∂ω/∂k|k=k0

= Ω where
the new units have been applied. For the sufficiently long
resonator, the frequency Ω of the permittivity modula-
tion is within the experimentally achievable range, e.g.,
for L = 1 cm, Ω = 15 GHz.

To simplify the description of the resonant behavior of
the system, we will switch to a reference frame evolv-
ing with the modulation frequency z′ = z − Ωt us-
ing the transformation U = eΩt∂z [43]. In the moving
frame, the dispersion relation has a quadratic behavior
with the minimum at the resonant wave number k0, i.e.
ω ≈ ω(k0) + ∂2ω/∂k2|k=k0

(k − k0)
2/2, see Fig. 1(d). In

the present work we assume that the group velocity dis-
persion results from the geometry of the resonator but in
general there can also be a contribution from the mate-
rial properties of the resonator. In the moving frame, the
evolution of a superposition of waves with wave numbers
k ≈ k0 proceeds very slowly, and we can average Maxwell
equations over time. This is essentially the rotating
wave approximation, leading to time-independent effec-
tive Maxwell equations in the moving frame [28, 43, 45]:

[
iΩ∂z ε̄+ iΩε̄∂z

i
2k⊥

∂2
z − ik⊥

2ik⊥ iΩ∂z

] [
Ẽ

H̃

]
= ω

[
ε̄ 0
0 1

] [
Ẽ

H̃

]
.

(3)
For clarity, we omitted the primes indicating that all vari-
ables and quantities refer to the moving frame. Moreover,
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the time-averaged permittivity ε̄(z) in the above equation
can be written as

ε̄(z) = εr+
1

T

∫ T

0

dt h(z+Ωt)f(t) = εr+
∑

m

hmf−meimz,

(4)
after introducing the Fourier expansions h(z) =∑

m hmeimz and f(t) =
∑

l fle
ilΩt.

In the moving frame, the effective Maxwell equations
(3) describe electromagnetic waves in a resonator with
a time-averaged permittivity ε̄(z) which varies in space
along the resonator. In the laboratory frame, the segment
of the resonator in which the permittivity is modulated in
time is described by a localized function h(z) and, there-
fore, has many non-zero Fourier coefficients hm. The
Fourier expansion coefficients of f(t) can be chosen to
realize any average permittivity ε̄(z) in the effective de-
scription in the moving frame since ε̄(z) can always be
expanded such that ε̄(z) = εr+

∑
m εmeimz. All we need

to do to obtain the given ε̄(z) in (4) is to choose f(t) such
that its Fourier coefficients satisfy f−m = εm/hm. For
example, we can realize ε̄(z) ∝ cos(sz) with integer s ≫ 1
and observe a band structure in the quasi-frequency, ω,
domain. We can realize a topological insulator or intro-
duce disorder in a crystalline structure and realize a An-
derson insulator. We can also combine crystalline struc-
tures with different properties, e.g., in different regions
of z, the average permittivity ε̄(z) can reveal topologi-
cally different structures. Static electric field like poten-
tial, barriers or wells or more complex behavior can be
realized in ε̄(z). Note that a stationary solution of (3)
will appear as a propagating solution when we return to
the laboratory frame. Thus, any condensed matter like
behavior which we realize and observe versus z in the
moving frame will be observed in the time domain if, in
the laboratory frame, we place a detector at a certain
position z0 in the resonator and investigate its clicking
in time. This paves the way for optical timetronics, i.e.,
similar to electronics, we can design time-varying opti-
cal systems where electromagnetic signals are processed
employing phenomena known in solid-state physics [38].

As a first example, we consider a system that can reveal
topologically protected edge states in the time domain
[28, 30, 47–50]. Suppose k⊥ = 5.74, h(z) = e−z2/2σ2

with σ = π/41 and f(t) = (λ1/hs/2) cos(sΩt/2) +
(λ2/hs) cos(sΩt) with s being even, with Ω = 0.49 and
with hs/2 and hs denoting the Fourier coefficients of h(z),
see Fig. 1(b). In the moving frame, the resulting average
permittivity takes the form of a crystalline structure in
space with a two-point basis,

ε̄(z) = εr + λ1 cos(sz/2) + λ2 cos(sz). (5)

The quasi-frequency spectra obtained for s = 12 with
the help of the effective approach (3) and by solving the
Maxwell equations (2) exactly are presented in Fig. 2(a).
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FIG. 2. (a) Quasi-frequency spectra corresponding to the
exact and effective Maxwell equations. In the effective equa-
tions, the averaged permittivity is described by (5), where
s = 12 and λ2 = 2π × 10−3. (b) The same as in (a), but
in the presence of additional time modulation of the permit-
tivity, which leads to a Gaussian barrier in (5) with a width
of

√
2π/41 and λb = −4.3 × 10−2 located at z = 0. For

λ1 < 0, the formation of degenerate levels in the gap of the
quasi-frequency bands can be observed. (c) Variations of the
electric field at position z0 = π in the laboratory frame cor-
responding to two quasi-frequency levels located in the gap
between two bands in (b) for λ1/λ2 = −4. The field is local-
ized around the moment in time when a Gaussian barrier in
ε̄(z0 − Ωt) appears at the position z0 [46]. (d) Similar to (c)
but for a state from one of the bands. Such bulk states are
delocalized along the entire period T . In all panels, both the
exact results and the results of the effective Maxwell equa-
tions are presented.

Both solutions match each other very well. For exam-
ple, for λ1 = 0, we observe a single band in the quasi-
frequency domain consisting of s = 12 levels. When λ1

starts to differ from zero, the crystalline structure in ε̄(z)
has a two-point basis and the initially single band splits
into two. When we focus on these two bands, the band
structure of the system is equivalent to the well-known
SSH model which reveals topologically protected edge
states in the presence of edges and in the topologically
nontrivial regime [39, 40]. The crystalline structure in
(5) is a periodic structure in a resonator without any
edge. However, by a proper additional time modulation
of the permittivity we can introduce a localized barrier
in the crystalline structure and thus an edge in the sys-
tem. Indeed, by introducing an additional modulation
to our chosen f(t) in the form of λb e

−t2Ω2/2σ2

we cre-
ate a barrier in ε̄(z) represented by a Gaussian function
with a width of

√
2π/41. In this case, we observe the ap-

pearance of two levels in the quasi-frequency spectrum
located in the gap if λ1 < 0 [Fig. 2(b)]. In the moving
frame, the electromagnetic fields corresponding to these
levels are localized on either side of the barrier, i.e. they
are topologically protected edge states [40]. In the labo-
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FIG. 3. (a) Quasi-frequency spectrum as a function of the
strength, λ, of the artificial static electric field generated in
(5) by the additional time modulation of the permittivity (see
text) for s = 6, λ1 = 0 and λ2 = 4 × 10−3. (b) In the pres-
ence of the artificial static electric field, five solutions of the
Maxwell equations exhibit Stark localization which in the lab-
oratory frame we observe in the time domain. Namely, the
electromagnetic fields at a fixed position in the laboratory
frame (here z0 = π) are localized at different moments in
time. These moments correspond to different local minima of
ε̄(z0−Ωt). There is one more solution (green curve) localized
around the discontinuity in ε̄(z0 − Ωt) corresponding to the
third quasi-frequency level in (a). The presented states cor-
respond to λ/λ2 = 0.125.

ratory frame, if we place a detector at a certain position
z0 in the resonator, we can observe these edge states in
the time domain [28, 30, 47–49]. This means, temporal
changes of the probability of the detector clicking reveal
the appearance of an edge state in time when the edge
in ε̄(z0−Ωt) reaches the detector position. In Figs. 2(c)-
2(d), we present how the electric field changes in time
at the detector position for both the edge states and the
so-called bulk states. The latter are delocalized in time
across the entire period T = 2π/Ω. Note that the mod-
ulation depth of the permittivity needed to realize the
described phenomena is very small, i.e. maximally of the
order 10−2.

As a second example, we consider the introduction of
an artificial static electric field in the crystalline struc-
ture described by (5) and predict the observation of the
Wannier-Stark localization in the optical system [41, 42].
Knowing the Fourier expansion of the linear potential in
a resonator, λ(z − π) = iλ

∑
m ̸=0 e

imz/m, we can intro-
duce additional Fourier coefficients in f(t), i.e. f−m =
iλ/(mhm), which lead to a tilted crystalline structure
and thus the presence of an artificial static electric field
in our system. Note that in a ring-shaped resonator, the
linear potential has a discontinuity at z = 0 (or equiv-
alently z = 2π). However, away from z = 0, the in-
fluence of the boundary conditions is negligible, and we
can observe states that lose the character of extended
Bloch waves and localize in different cells of the tilted
crystalline structure ε̄(z). In the case of s = 6, which is
presented in Fig. 3, we see five such states with equally
spaced quasi-frequencies. There is one more state local-
ized around the discontinuity whose quasi-frequency falls

between the second and third equally spaced eigenvalues
[Fig. 3(a)]. In the laboratory frame, with a detector at
a certain position z0 in the resonator, we can observe
the electromagnetic field localized at different moments
in time [Fig. 3(b)].

In summary, we demonstrate that the properties of
electromagnetic waves propagating in a resonator with a
time-modulated refractive index can exhibit a range of
behaviors known from research of crystalline structures
in space, but observed in the time domain. Furthermore,
different time crystalline structures can be combined by
choosing the appropriate time modulation. Importantly,
the realization of these structures in the optical regime
does not require either deep modulation of the refrac-
tive index or modulation frequencies comparable to opti-
cal frequencies, as is the case in already known photonic
time crystals. Thus, we obtain a tool that allows for pro-
cessing of electromagnetic signals where time crystalline
structures play a key role and can have practical appli-
cations. This paves the way for optical timetronics. As
an example, in this Letter we considered a resonator in
the shape of a one-dimensional ring due to the simplicity
of their theoretical description. In our analysis, we have
quantitatively examined the necessary conditions to re-
alize the Su–Schrieffer–Heeger and Wannier-Stark ladder
models, but our findings extend well beyond these par-
ticular cases. Notably, the introduction of a non-linear
medium, where the permittivity varies with the electric
field strength, enables us to introduce interactions. This
capability opens up new opportunities to explore and
study a wide range of condensed matter phases and phe-
nomena.

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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[36] K. Giergiel, A. Kuroś, A. Kosior, and K. Sacha, Insepa-
rable time-crystal geometries on the möbius strip, Phys.
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SUPPLEMENTAL MATERIAL: TOWARDS

TIMETRONICS WITH PHOTONIC SYSTEMS

We begin with the original form of the Maxwell equa-
tions, which govern the behavior of the electric E and
magnetic H fields in a medium:

∇×E = −µ0

∂H

∂t
, ∇×H = ε0

∂[ε(r, t)E]

∂t
. (6)

Here, µ0 represents the vacuum permeability, and ε0 is
the vacuum permittivity and ε(r, t) is the relative per-
mittivity of a medium. To facilitate the analysis, we per-
form a re-scaling of the magnetic field, H → H

√
µ0/ε0.

Moreover, for the ring-shaped resonator we consider in
the main text, it is convenient to use L/2π and L/2πc
as the units of length and time, respectively, where L
is the circumference of the ring and c = 1/

√
ε0µ0. This

choice of units is particularly convenient for systems with
a periodic geometry, as it naturally aligns with the sym-
metry of the problem. By scaling length by the factor
L/2π, we effectively normalize the spatial dimension to
the geometry of the ring, turning the circumference into
2π. Similarly, scaling time by L/2πc normalizes temporal
dynamics to the time it takes for light to travel around
the ring. Under this transformation, we obtain

∇×E = −∂H

∂t
, ∇×H =

∂[ε(r, t)E]

∂t
. (7)

In a ring-shaped resonator with a square cross-section,
as depicted in Fig. 1(a) in the main text, we analyze a
scenario where the relative permittivity, ε(r, t) is equaled
to a constant value εr except within a localized segment
in the resonator. In this segment, the permittivity is
subject to periodic modulation over time. Specifically,
the permittivity is modeled as

ε(r, t) = ε(z, t) = εr + h(z)f(t), (8)

where z represents the position along the resonator cir-
cumference. The function h(z) is spatially localized, ef-
fectively defining the region within the resonator where
the permittivity varies in time. On the other hand,
f(t) is a periodic function with a period T , such that
f(t+T ) = f(t), describing the time-dependent variation
in the permittivity within the localized region, as illus-
trated in Fig. 1(b) in the main text.
We focus on the TE11 mode in the resonator. The

appropriate ansatz which satisfies the metallic boundary
conditions at x = 0 or a and y = 0 or a, where a is
the length of each side of the cross-sectional area of the
resonator [Fig. 1(a)], is given by

E = [cos(k⊥x) sin(k⊥y)ex − sin(k⊥x) cos(k⊥y)ey]
×E(z, t)

H = [sin(k⊥x) cos(k⊥y)ex + cos(k⊥x) sin(k⊥y)ey]
×Ht(z, t) +H(z, t) cos(k⊥x) cos(k⊥y)ez, (9)

where E(z, t) and Ht(z, t) represent the transverse com-
ponents of the electric and magnetic fields, respectively,
H(z, t) is the longitudinal component of the magnetic
field and k⊥ = π/a. It is worth noting that while a
square cross-section is chosen here to simplify calcula-
tions, the main results will remain valid for a rectangular
cross-sectional shape which is more common in photonic
integrated circuits. Furthermore, for dielectric resonators
the sinusoidal wave ansatz will change, but again the pri-
mary conclusions of the study will not be impacted.
The equation ∇ · H = 0 allows us to express Ht(z, t)

in terms of the longitudinal component,

Ht(z, t) = − 1

2k⊥

dH(z, t)

dz
. (10)

Considering that ε(z, t) is periodic in time such that
ε(z, t) = ε(z, t + T ), the Floquet theorem [28, 44] im-
plies that general solutions for the transverse electric and
longitudinal magnetic fields can be expressed as superpo-
sition of E(z, t) = Ẽ(z, t)eiωt and H(z, t) = H̃(z, t)eiωt

where Ẽ(z, t+T ) = Ẽ(z, t) and H̃(z, t+T ) = H̃(z, t) and
the phase factors are determined by the quasi-frequencies
ω, i.e. eigenvalues of the generalized eigenvalue problem,

[
−i∂tε− iε∂t

i
2k⊥

∂2
z − ik⊥

2ik⊥ −i∂t

] [
Ẽ

H̃

]
= ω

[
ε 0
0 1

] [
Ẽ

H̃

]
,

(11)
derived from the Maxwell equations (7), ∇ · H = 0
and ∇ · (ε(z, t)E) = 0. The permittivity ε(z, t) is pe-
riodic in time and in the ring-shaped resonator, with
the circumference of 2π in the units we use, it also ful-
fills ε(z + 2π, t) = ε(z, t). Thus, Ẽ(z, t) and H̃(z, t)
fulfill periodic boundary conditions both in time and
space and to solve the generalized eigenvalue problem
(11), we can expand Ẽ(z, t) and H̃(z, t) in the basis
(2πT )−1/2

∑
n,m eimzeinΩt where Ω = 2π/T . The result-

ing matrix-form eigenvalue problem can be solved with
standard routines.
In the main text we consider resonant driving of the

system, i.e. the frequency Ω of the periodic modulation
of the permittivity ε(z, t) matches the free spectral range
of the resonator. In other words we focus on electromag-
netic waves with wave numbers close to k0 for which the
group velocity (calculated in the absence of the modu-
lation) ∂ω/∂k|k=k0

= Ω in the units we use. In such a
case, we can simplify the description by deriving an effec-
tive counterpart of the Maxwell equations (11). First, let
us switch to a reference frame moving with the resonant
group velocity, z′ = z − Ωt, using the unitary transfor-
mation U = eΩt∂z . Multiplying the rows of Eq. (11) by
U and inserting the identity operator 1 = U†U leads, e.g.
in the case of the second row, to

2ik⊥UẼ(z, t)− iU∂t[U
†UH̃(z, t)] = ωUH̃(z, t). (12)
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In the moving frame, we define the fields Ẽ′(z, t) =

UẼ(z, t) and H̃ ′(z, t) = UH̃(z, t) and finally obtain the
following eigenvalue equation,

[
−iU∂t(εU

†)− iUεU †∂t
i

2k⊥

∂2
z − ik⊥

2ik⊥ −iU∂tU
† − i∂t

] [
Ẽ

H̃

]
(13)

= ω

[
UεU† 0
0 1

] [
Ẽ

H̃

]
,

where we have dropped the primes over the fields to sim-
plify the notation.

If we consider the system with no modulation in time,
ε(z, t) = εr, solutions of Eq. (13) can be chosen in the

form of Ẽ(z, t) = E0e
ikz and H̃(z, t) = H0e

ikz with con-
stant E0 and H0 and the corresponding eigenvalue,

ω(k) =

√
1

εr
(k2 + 2k2⊥)− Ωk. (14)

The fields have to fulfill the periodic boundary condi-
tions in the ring-shaped resonator, hence, the dispersion
relation (14) actually consists of points corresponding to
integer values of the wave number k.

The dispersion relation (14) possesses a minimum at

k0 =

√
2εrΩk⊥√
1− εrΩ2

, (15)

see Fig. 1 in the main text. Around this minimum,

ω(k) ≈ ω(k0) +
εrΩ

3k3⊥
k30

(k − k0)
2, (16)

and the group velocity is very small. Consequently
a wave-packet being superposition of waves with the
wave numbers k ≈ k0 propagates very slowly. Thus,
when the modulation of the permittivity is on and it is
weak, to describe the system we may average the exact
Maxwell equations (13) over time (rotating wave approx-
imation) and obtain effective time-independent Maxwell
equations,

[
iΩ∂z ε̄+ iΩε̄∂z

i
2k⊥

∂2
z − ik⊥

2ik⊥ iΩ∂z

] [
Ẽ

H̃

]
= ω

[
ε̄ 0
0 1

] [
Ẽ

H̃

]
,

(17)
where the averaged permittivity

ε̄(z) = εr +
1

T

∫ T

0

dt h(z +Ωt)f(t). (18)

The comparison between the results obtained from the
effective time-independent equations (17) and the exact
Maxwell equations (13) for two distinct cases of the per-
mittivity function ε(z, t) is illustrated in Figs. 2-3 in the
main text. These figures clearly demonstrate that the
effective approach captures the essential physics of the
system while significantly reducing computational com-
plexity and facilitating deeper intuitive insights.


	Towards Timetronics with Photonic Systems
	Abstract
	References
	Supplemental Material: Towards Timetronics with Photonic Systems


