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The controlled waterway in the upper reaches of the Yangtze River has become a bottleneck for shipping due to its curved, narrow and turbulent

characteristics. Consequently, the competent authorities must establish controlled one-way waterways and signal stations to ensure traffic safety.

These signal stations are often located in remote and uninhabited mountainous areas, causing great difficulties in the living and working conditions

for staff. Therefore, the trend has emerged towards unmanned and remoted traffic command at signal stations. The vessels passing through it must

obey the signal revealed by the Intelligent Vessel Traffic Signaling System (IVTSS) to pass in one direction. The accuracy of signals is directly

related to traffic safety and efficiency. However, the unreliability of vessel sensing sensors in these areas and the latency of transmission and

computation of large amounts of sensing data may negatively impact IVTSS. Hence, more information from the physical world is needed to ensure

the stable operation of the IVTSS, and we proposed an edge computing-centric sensing and execution system based on IoT architecture to enhance

the reliability of IVTSS. We conducted experiments using plug-and-play methods, reducing command and recording error rates by 89.47% and

86.27%, respectively, achieving the goal of real-time perception control.

Keywords: IoT; Multi-sensor; Data fusion; Traffic safety command.

1. Introduction

1.1. Background

Yangtze River, the largest river in China, has been the world’s
busiest inland shipping waterway. However, some narrow,
curved, and turbulent sections in the upper Yangtze River still
hinder the development of the inland waterway shipping indus-
try [1]. As a result, the competent authorities must refer to these
sections as restricted one-way waterways, such as the controlled
waterway, to ensure safety. Vessels must follow the traffic signals
issued by the signal stations to pass through these waterways.
These signal stations are often located in remote and uninhab-
ited mountainous areas, causing great difficulties in the living
and working conditions for staff. In order to provide employees
with a better working environment and reduce work safety risks,
intelligent unmanned signaling stations have become a neces-
sary research.

Automatic Identification System (AIS)-based Intelligent
Vessel Traffic Signaling System (IVTSS) [2] has been devel-
oped to provide suggested traffic signals, further confirmed by
the manager who will issue the corresponding signals. IVTSS

has significantly improved the safety and efficiency of vessel
passage in the controlled waterway.

In experimental environment, ITVSS has successfully
achieved unmanned command under ideal conditions. However,
it has not yet addressed the data perception challenges faced by
systems based on AIS for unmanned command. Therefore, when
AIS information is abnormal, staff at the signal station need to
use binoculars, Very High Frequency (VHF) voice communica-
tion, and other means such as telephone communication to con-
duct waterway traffic management. Thus, this paper proposes
a model capable of supporting various tasks and an IoT archi-
tecture processing multimodal sensor data, which can provide
a richer and more reliable data source for the IVTSS system,
thereby enabling the practical implementation of Unmanned Re-
mote IVTSS (UR-IVTSS).

A single AIS signal is not always reliable in complex water-
ways in mountainous areas, and it often experiences drift, time
delay, and loss [3]. In order to ensure the stable command of
IVTSS and achieve more refined and intelligent services, a sin-
gle AIS signal has been unable to meet the demand, and the
IVTSS needs more information about the physical world. Thus,
the system needs more sensor data for deeper data mining and
analysis, such as radar and Closed-Circuit Television (CCTV)
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[4].
Wrong command or lack of command signal may lead to

high-risk behaviors of vessels or even maritime accidents. Real-
time, reliable and accurate perception of ship dynamics is funda-
mental for UR-IVTSS. Therefore, integrating radar and surface
visual recognition information [5] with the existing AIS data
can significantly improve the vessel perception capabilities of
the UR-IVTSS. Meanwhile, a stable communication network is
necessary to ensure a safe, efficient, and reliable passage in in-
ternal waterways.

Owing to the blooming development of wireless networks
and Artificial Intelligence (AI), Industry 4.0 technologies and
Cyber-Physical Systems (CPS) have been identified as one of
the current application trends for solving intelligent transporta-
tion problems in the inland river [6] [7]. Internet of Things (IoT)
has become one of the most effective ways to handle the above
engineering challenges [8].

1.2. Related Works

Several efforts have been made to improve the perception qual-
ity of vessels to overcome the poor performance of sensing re-
liability and data integrity. The identification, recovery, predic-
tion, and reconstruction of abnormal or error AIS data have been
widely investigated [9, 10]. However, data anomalies and loss
problems still need to be solved.

Guo et al. designed an interpolation method based on ves-
sel motion characteristics to reconstruct ship trajectories in order
to overcome noise or missing data in AIS signals [11]. Liang et
al. utilized Geohash and dynamic time warping algorithms to
restore degraded ship trajectories that were affected by random
noise and missing data [12]. El et al. employed Convolutional
Neural Networks (CNN) with multi-spectral images (Red Green
Blue (RGB) and Infra-Red (IR)) to enhance vessel perception
and classification, improving the model’s recognition accuracy
under low visibility conditions [13]. These methods can miti-
gate system instability caused by unreliable data to some ex-
tent. However, single data source approaches face a significant
challenge: when the quality of the data source deteriorates to
a certain level or becomes unavailable for an extended period,
there is no alternative information source to rely on, making it
difficult to achieve reliable traffic management. Therefore, us-
ing multimodal data from multiple sensors for waterway traffic
management is necessary.

Guo et al. proposed a method for asynchronously fusing
AIS ship information with corresponding visual targets to en-
hance vessel detection capabilities under different weather con-
ditions [14]. Habtemariam et al. proposed a joint probabilistic
data association framework that combines AIS and radar infor-
mation to achieve high-precision vessel target recognition [15].
Wu et al. employed three methodsradar tracking, AIS trajectory
tracking, and video image trackingto generate trajectories simul-
taneously, and then fused these trajectories to enhance vessel
detection [16]. These methods are quite similar to the approach
proposed in this paper, as they use different information sources
in a complementary manner to achieve high-precision vessel tar-
get detection under poor signal quality or adverse conditions.

However, most research in this area focuses primarily on achiev-
ing high-precision target detection, without further applying the
detected results.

The applications of maritime IoT based unmanned systems
are mainly concentrated in the fields of marine monitoring, en-
vironment, and aquaculture [17]. We hope that through this re-
search and practical application, we can extend unmanned intel-
ligent systems into the field of waterway traffic control, provid-
ing a feasible IoT framework for smart channel construction and
offering more intelligent and stable navigation services.

1.3. Contributions in This Works

The contributions of this paper can be summarized as follows.
1) A multi-sensor fusion vessel perception system, includ-

ing AISs, radars and cameras for controlled waterways, is pro-
posed. The proposed perception system is centered on edge com-
puting, and all the sensed data is aggregated at the edge center
by wired or wireless means. Meanwhile, edge computing pro-
vides localized and instantaneous computation for low-latency
and location-sensitive data, which can effectively guarantee the
quality of sensory data required by UR-IVTSS.

2) To avoid network link vulnerability, a dual-link redun-
dant controller based on 5G/LoRa is developed to provide reli-
able machine to machine control for traffic signal systems.

3) This study is the first work to apply the IoT that is based
on an edge computing-centric sensing and control system to pro-
mote the service quality of IVTSS, successfully achieving un-
manned remote applications of IVTSS.

4) With the deployment of the UR-IVTSS system, staff at
signal stations no longer need to be stationed in remote, moun-
tainous areas. By centralizing operations in urban areas, this ap-
proach not only improves the quality of life for staff and reduces
the risk of accidents, but also significantly lowers the workload.
In most cases, UR-IVTSS handles traffic command automati-
cally, with human intervention only required during anomalies.
Supervisory authorities can also allocate human resources more
efficiently and gain a clearer understanding of the traffic condi-
tions on each controlled waterway. This improvement provides
valuable data support for the future development of the Yangtze
River channel big data platform.

This paper uses mature data fusion and target detection
methods based on deep learning for verification, binds AIS data
with other sensor data, and finally sends the fused data to UR-
IVTSS in an enhanced AIS data format. Firstly, the polar data of
radar is converted into latitude and longitude data, and then the
AIS and radar are fused by SAE. Then, the ship’s current posi-
tion is determined more intuitively by matching the AIS infor-
mation of the vessel in CCTV with a series of electronic fences
divided in CCTV. Finally, the enhanced AIS data is sent to UR-
IVTSS for command.

2. Preliminaries

2.1. Traffic Management in Controlled Waterways

As shown in Fig. 1 part I, the infrastructure that serves the traf-
fic management of the controlled waterway mainly includes sta-
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tions, traffic flag/signal systems, and boundary markings. A con-
trolled waterway includes at least one signal station and four
signs, namely the upper whistle marking, the upper boundary
marking, the lower boundary marking, and the lower whistle
marks from upstream to downstream. In some controlled wa-
terways with more complex terrain, only one signal station may
not be able to observe vessels outside the whistle markings, and
vessels may also be unable to observe the traffic signals. 2 to
3 signal stations must be set up for such controlled waterways.
One of the signal stations is the command station, and the rest
are defined as forewarning stations to inform the command sta-
tion of the vessel’s situation. The traffic flag/signal system (as
shown in Fig. 1 part II) is set up at the signal station and is
controlled by UR-IVTSS so that the vessels can see the traffic
signals before entering the controlled waterway. The traffic sig-
nal system can present four commands: during the day, signal
flags present closed, fault, upstream and downstream signals. At
night, the above four signals are indicated by a combination of
red and green lights.

Direction of flow

Whistle marking Upper boundary Lower boundary Whistle marking

Downward vessel A

Upward vessel B

Turnaround  area Controlled waterway Waiting area

Signal station
(forewarning)

Signal station
(command)

Signal station
(forewarming)

Servo
Motor

Servo
Motor

I. Schematic of signals 
and marking

II. Schematic of traffic
signal system

Upstream
 Signal

Failure
Signal

Closed
Signal

Downstream
Signal

Signal
Light

Fig. 1. Schematic of signals and markings in controlled waterway

The basic traffic rules for passage on inland waterways can
be summarized as: 1) Vessels should be given passage priority
based on the order they arrive at a lock or other narrow pas-
sage point. 2) Downward vessels should avoid turning around in
narrow waterways during heavy traffic situations. U-turns mean
delays and increased risk of collision and reefing, especially in
some narrow waterways where U-turn conditions are unavail-
able.

2.2. Sensors

Although AIS, radar and cameras have been widely employed
to monitor maritime situations, applying these three techniques
to detect and identify vessels on inland waterways automati-
cally can be highly sophisticated. AIS has several advantages

over radar, such as providing more information and more accu-
rate dynamic data. It is also considered a primary and low-cost
tool for capturing real-time information on the movements of
inland river vessels. However, the primary drawback of AIS is
the passivity of data collection. Although extensive research has
been conducted to address AIS data anomalies, they are still in-
evitable [18].

For example, there are three main categories of AIS anoma-
lies commonly found in the Shenbeizui controlled waterway: 1)
excessively long AIS data transmission interval (shown in Fig.
2(a)), 2) abnormal longitude and latitude coordinates (shown in
Fig. 2 (b)), and 3) data loss (shown in Fig. 2(c)). In Fig. 2, the
dots represent the location information contained in the received
AIS data, and the purple lines connect the AIS points at two ad-
jacent time points.

(a)Excessively long AIS

data interval

(b)Abnormal longitude and

latitude coordinates

(c)Data loss

Fig. 2. Cases of abnormal AIS data

Radar, characterized by a wide scanning range, was the first
equipment employed to monitor vessels, but it cannot distin-
guish between different types of vessels. Radar is an active sen-
sor that detects target signals within the scanning area and de-
tects vessels with AIS equipment switched off. Due to the blind
zones caused by surrounding obstructions, such as buildings and
trees, the use of radar for monitoring the vessels on inland wa-
terways in mountainous areas is quite limited.

Since the CCTV can provide direct visual images with de-
tails of vessels, it has been extensively used to monitor traffic
in inland waterways, coastal waters and rivers [19]. CCTV have
become an attractive option to support and supplement radar and
AIS. If the CCTV, AIS and radar are employed together to ex-
ploit their respective advantages fully, the detection speed and
identification accuracy of vessels can be dramatically improved.
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3. Proposed Edge-centric IoT Architecture

In this section, the designed Iot framework is showed at first.
This framework is capable of processing multi-modal data at the
edge and then transmitting it to the cloud and human-computer
interaction terminals, reducing the bandwidth required for data
transmission and cloud computing resources in the command
system. After that, we introduce the data flow of data sensing
and control one by one. Finally, we extract all the sensor data
required by considering the characteristics of various waterway
traffic control scenarios. Combined with the cloud-edge-device
IoT framework proposed in this paper and through data pro-
cessing techniques, this approach enables intelligent remote un-
manned command.

3.1. Architecture

In this paper, an edge-centric computing perception and control
system based on IoT is established to improve the service quality
of UR-IVTSS. There are similarities between the traditional IoT
and the proposed IoT, such as the interconnection between in-
telligent devices and standard architecture components and ser-
vices. Nevertheless, some key characteristics of the controlled
waterways can only be handled through an edge-centric IoT ap-
proach. The functions of each layer (system) of the edge-centric
IoT architecture are illustrated in Fig. 3.

 

Edge computing equipment

Sensor Control

Vessel

Radar AIS Video Signal ReceiverController

Traffic Light Traffic Flag

LAN 4G/5G LoRA/ZigBeeWireless bridge

Computer Stick IPCEmbedded Device

Controlled Waterway

Data

Data

Data

 

Edge

Computing 

layer

Heterogeneous 

network
layer

Command Signal

Command Signal

Cloud

IVTSS

 Control and
Sensing

layer

 Application 

Service 

layer

layer

Fig. 3. Overall architecture of edge-centric IoT serving UR-IVTSS

It can be seen from this figure that the proposed edge-
centric IoT architecture consists of five layers: sensing and con-
trol layer, heterogeneous network layer, edge computing layer,
service layer and application layer. Particularly, the sensing and

control layer and edge computing layer are only for the con-
trolled waterways. Each subsystem of the proposed system is
described in detail as follows.

3.2. Sensing and Control

The sensing subsystem architecture comprises different sensors
for measuring the characteristics of different targets. These sen-
sors include vessel dynamic sensors (AIS, radar, and camera),
waterway elements sensors (water depth, flow speed, and flow
direction), environmental sensors (wind speed, wind direction,
visibility, and light intensity), and device health sensors (current
and voltage).

Most sensors are connected to a low-power embedded pro-
cessor to capture and decode raw data. The sensor data is trans-
mitted by wired and wireless based on the Message Queuing
Telecommunications Transport (MQTT) protocol.

MQTT is a message subscribe/publish protocol based on
the ISO/IEC PRF 20922 standard. It works on the TCP/IP pro-
tocol. MQTT is designed for remote devices in low hardware
performance and poor network conditions, and is widely used in
the Internet of Things due to its lightweight, simplicity, open-
ness, and ease of implementation [20]. In this study, there are
self-developed embedded software and host computer software
that will select different programming languages due to the vary-
ing performance and requirements. The communication between
different software relies on standard communication protocols.
To use analogous means to simply illustrate this, the information
that needs to be passed between different devices is the goods
that need to be transported; 4G/5G, ZigBee or LoRA transport
networks are equivalent to a road; MQTT is equivalent to a truck
transporting the goods.

Each controlled waterway is equipped with an edge com-
puting device, a signal flag system and three traffic flights, two
of which are set at upper whistle and boundary markings respec-
tively to command downward vessels, and one of which is set
at lower boundary marking to command upward vessels. More-
over, each traffic light is equipped with a remote control unit.
In the signal control subsystem, the control commands from the
UR-IVTSS are transmitted to the traffic lights and signal flag
systems using the 5G-based UR-IVTSS-to-light loop and the re-
dundant loop using the edge computing device as the LoRa base
station, respectively. The schematic of 5G+LoRa dual-link re-
dundant signal control is depicted in Fig. 4.

3.3. Edge Computing

We propose an edge-computing architecture with sensors and
actuators placed near the controlled waterways. The edge com-
puting device should have the following functions: 1) it can
process real-time dynamic sensor data (position, direction and
speed) of the vessel and fusion data obtained by using artificial
intelligence (AI) techniques to fuse various sensor data; 2) it can
control the traffic signal lights and flag according to the com-
mands of UR-IVTSS. (as shown in Fig. 5).
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Command system

Controller A

Controller B Switch Employing controller B

Employing controller A

LoRA/ZigBee

4G/5G

Fig. 4. Schematic of dual-link redundant signal control of traffic signal system
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Fig. 5. Edge computing devices are deployed near controlled water-

way

The model chosen for validation in this paper considers
more on the infrastructure for deploying projects in production
environments. In practical applications, the IPC configuration
commonly used by signal stations is a medium performance
CPU (Intel Core I5/I7 or AMD Ryzen R5/R7) and an entry-level
GPU.

3.3.1. Radar Coordinate System Conversion

The radar data is converted into longitude and latitude data to
fuse with AIS data for trajectory fusion. Many researchers have
favored Bessel’s geodetic algorithm in surveying and mapping.
Its principle is to project the geodesic line of an ellipsoid onto a
sphere, forming a large circle. The azimuth angle, arc, and size
of any point on the geodesic sphere are equal to the correspond-
ing reduced latitude on the ellipsoid.

Shi et al. [21] discovered that the introduction of the Spher-
ical Sine Theorem to calculate the geodetic key azimuth can
achieve higher accuracy. In this method, if the longitude ϕ1, lat-
itude α1 and geodetic azimuth δ of one point is known, the lon-
gitude ϕ2, latitude α2 and geodetic azimuth λ of another point
can be calculated accordingly. Compared with the original algo-
rithm, the improvement of Shi’s method can eliminate the corre-
lation between the accuracy of Bessel’s geodetic algorithm and
the distance length. Meanwhile, iterative calculation is not re-
quired using this method.

The known X − Y rectangular coordinate data of radar can
be converted into the longitude and latitude coordinates required
in this paper. Suppose the radar coordinates (B1, L1), the current
radar azimuth A1, and the Geodetic distance S are known. Then,
the target coordinates (B2, L2) can be obtained through the fol-
lowing radar coordinate transformation formula.

First, the reduced latitude u1 and the intermediate variable

σ1 can be calculated as















cosu1 =
cosB1√

1−e2 sin2ϕ1

cotσ1 =
cosu1cosA1

sinu1

(1)

where measure e2 = 6.69342 · 10−3 [22].
Then, the spherical distance can be calculated as:

{

g = S − (B +Ccos2σ1)sin2σ1

σ0 = g/A
(2)

where A, B,C are the fixed coefficients can be expressed as
A = 6356863.0189 + (10708.97 − 13.531cos2A0)cos2A0, B =
(5354.485 − 9.020cos2A0)cos2A0, C = (2.255cos2A0)cos2A0 +

0.006, and the A0 is defined as sinA0 = cosu1sinA1. The in-
tersection of the extension lines of A1 and A2 at the equator is
the vertex, and the angle formed by the connection between this
vertex and the pole and the extension lines of A1 and A2 is A0.

Since only medium and long distances are considered in
Bessel’s geodetic algorithm, the radar installation height can be
negligible. This paper assumes that the geodetic distance be-
tween the radar and the target is S , and the vertical distance
between the radar and the river surface is h. The accuracy im-
provement method proposed in this study can be rewritten to

{

S ′ =
√

S 2 − h2

g = S ′ − (B +Ccos2σ1)sin2σ1
(3)

When the radar scanning range is [0, 4, 000]m, the accuracy
can be increased by [0.0782, 1.5687]m after employing (3). This
correction value increases as the vessel approaches the radar.
High-precision positioning is beneficial for UR-IVTSS to deter-
mine whether the vessel has violated regulations or entered the
dock.

Then, the spherical length can be calculated as

{

σ = σ0 − (B + 5C · cos2(σ0 + σ1))
sin2(σ0+σ1)

A

σ0 =
g

A
ρ0 (4)

where ρ0 = 57.295779513 is a measurement, the formula deriva-
tion of e and ρ0 can be referred to [22].

Next, an intermediate variable u2 need to be calculated

sinu2 = sinu1cosσ + cosu1cosA1sinσ (5)

The latitude of the target coordinates can be expressed as

B2 = arctan[
sinu2√

1 − e2
√

1 − sin2u2

] (6)
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Adopting the method proposed by Shi et al. to get the fol-
lowing equation

A2 =











arccos( sinu1

sinσ1
) (sinA2 ≤ 0)

2π − arccos( sinu1

sinσ1
) (sinA2 < 0)

(7)

Improve by (7), the Bessel’s geodetic algorithm can be sim-
plified by not considering the coordinate quadrant.

Finally, the longitude of the target coordinates can be writ-
ten as

L2 = L1 + {ασ + β[sin2(σ0 + σ1) − sin2σ1]}sinA0 (8)

where α, β are as follows
{

α = [33523299 − (28189 − 70cos2A0)cos2A0] · 10−10

β = 14094.3 − 46.8cos2A0 · 10−10 (9)

The above-mentioned (B2, L2) are the latitude and longi-
tude coordinates of the target captured by the radar.

3.3.2. AIS Data Processing

AIS, as the most widely used data source in the field of water
transportation [23], is also the most crucial data source for in-
land waterway traffic control. In this paper, we have performed
a certain level of preprocessing on AIS data. A deep learning
model is used to address issues such as AIS data loss, anomalies
in vessel speed, and irregularities in the latitude and longitude
data. Additionally, the original AIS signals from non-stationary,
irregular sequence signals is converted into non-stationary, ir-
regular time series signals to facilitate model training [18].

The preprocessing steps for AIS data during the training
process can be described as follows:

Step 1: Assuming we have a complete AIS trajectory, de-
noted as N = n1, n2,..., nn, and the Deep Temporal Cluster-
ing (DTC) block [24] is applied to process this trajectory. The
principle of the DTC block involves using convolutional trans-
formations to extract semantic features from the data, introduc-
ing non-linear changes through an activation function, and fi-
nally mapping and outputting the data via a linear layer. These
blocks are stackable, but in this paper, we utilize a single-layer
DTC block constructed with 1D convolution, a Rectified Linear
Unit (ReLU) activation function, and a single linear layer. Given
the complexity of the transformation process, we represent the
transformation performed by the DTC block as DTC(). The pre-
liminary transformation using the DTC block can be described
as

N′ = DTC(N) (10)

Step 2: The output of this model consists of multiple ad-
jacent sliding window datasets. Each dataset is connected to the
final dataset to compute the Kullback-Leibler (KL) divergence.
The purpose of calculating the KL divergence is to conveniently
understand changes in navigation states and identify boundaries
of state transitions. To express this mathematically

Cboundary = KL(N′) (11)

where Cboundary is a sequence. Each element in the sequence con-
tains information about the AIS data belonging to that category,
computed based on the KL divergence.

Step 3: This step includes using cubic spline interpolation
within the same category of AIS data and organizing the inter-
polated values back into the format used for the original AIS
data.

During the inference process, we apply a traditional
threshold-based method to filter the AIS data based on ves-
sel speed and position. No additional data processing was per-
formed; the filtered data was directly fed into the fusion model
for application.

3.3.3. Trajectory Fusion of AIS Data and Radar Data

Through a comprehensive method comparison, it is considered
that the Stacking Auto-Encoder (SAE) approach can be adopted
for data fusion in this study [25]. The algorithm steps are sum-
marized as follows. The working principle of the model is shown
in Fig. 6.

Fig. 6. Principle of SAE

As illustrated in Fig. 6, the advantage of SAE is that its fu-
sion process can ignore differences in data timestamps and out-
put data with the same timestamps through corresponding auto-
matic encoder networks and linear layers.

Step 1:The input data can be expressed as

v = {ACog, AS og, ALon, ALat, ALen, AWid, ATyp,

RCog,RS og,RLon,RLat,

Wv,Ww,W f ,Wwl,Wwth,Wl,Wss}
(12)

where the input data A∗ and R∗ are AIS and radar data, the input
data W∗ are waterways information.

Step 2: Establishing the SAE model. The SAE is composed
of an encoding part and a decoding part. Suppose that the input
is x, the encoder output is y, and the decoder output is x′, and
then the SAE can be expressed as

{

y = f (x) = Ae(w1x + b1)
x′ = g(y) = Ad(wxy + b2)

(13)

where f (x) represents encoding process, and g(y) is decoding
process. w1,w2 are the weighted parameter matrixes, b1, b2 are
bias terms, and Ae, Ad are the activation functions for encoding
part and decoding part respectively.
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Fig. 7. Proposed target detection process

Step 3: Since the alignment of data timestamps is required
in this study, we replace the softmax layer with a linear regres-
sion layer as the backward stage of SAE.

3.3.4. Video information processing

This paper proposes an image-based pre-training module for vis-
ibility recognition. Through this model, it aims to eliminate the
negative impact of heavy fog on video quality, achieving more
ideal recognition and tracking results (shown in Fig. 7).

In the video detection process, according to the visibility
identification model proposed in our previous research, the input
images are first labeled with visibility level labels [26]. Subse-
quently, images with low and high visibility are input into tar-
get detection models with and without the Dark Channel Prior
(DCP) [27], respectively. This principle can be summarized as

Jdark(x) = miny∈Ω(x)(minc∈r,g,bJc(y)), Jdark → 0 (14)

where Jdark represents the dark channel. The images can be op-
timized for target detection through fog removal. The complete
image processing workflow can be expressed as

y(x) =

{

f (x), g(x) ≥ N

f (Jdark(x)), else
(15)

where g(·) is the process of visibility recognition, N represents
the preset visibility threshold, f (·) stands for the target detection
process, and y(·) represents the result.

In this paper, the target detection model is only represen-
tative of the later-stage detector that other target detectors can
replace. To ensure the validity of our experiments, we selected
representative models based on CNN (faster RCNN [28]), dark-
Net (YOLOv5s [29], YOLOX [30]), Transformer (DDQ-DETR
[31]), some difficult-to-categorize methods (TOOD [32]) and
peer comparison (Lightweight Ship Detection Model (LSDM)
[33]) to conduct the experiments in this paper. The focus of this
paper is to utilize the camera to estimate the visibility of the
current section of the river, and accordingly select a dehazing
method based on the current visibility. The aim is to improve the
edge detection architecture of the target detection model. Sup-
pose the IPC computing power can support a larger model. In
that case, replacing it with more advanced target detection mod-
els will undoubtedly be better.

4. Experiments

In this section, to further demonstrate the proposed system’s su-
periority and engineering application potential, a case study is
carried out based on a real application scenario of the Shenbeizui
controlled waterway. First, an edge computing-centric sensing
and control system is established. Then, the performance of the
IoT-based UR-IVTSS is compared with that of the original AIS-
based UR-IVTSS.

4.1. Deployment of Sensors and Actuators

Shenbeizui controlled waterway, a typical waterway in the upper
Yangtze River, is jointly commanded by the Shenbeizui signal
station and the Yangdengfang signal station, which are the com-
mand station and the forecasting station respectively (shown in
Fig. 8). In the original AIS-based UR-IVTSS scheme, both sig-
nal stations are equipped with AIS, signal control systems, and
VHF radios, while UR-IVTSS is only installed at the Shenbeizui
signal station.

Downward Vessel Waiting Area

Upward Vessel Waiting Area

Controlled Waterway

Signal Station

Limit Mark Boundary

 Signal Station

Upper

Whistle Boundary

Lower

Whistle Boundary

Upper Boundary

Lower Boundary

Forewarning Station

Notice Area

(a)Regional division of con-

trolled waterway

Office Building

Mituo Town

YanDengFang 

Forewarning 
Station

LaoYingYan 

Signal 

XinLuKou 

Forewarning 
Station

Station

ShenBeiZui 

Signal Station

(b)Locations of signal sta-

tions and the new office

Fig. 8. Example of controlled waterway

Since the office building is higher than the Shenbeizui sig-
nal station, the AIS and VHF radios originally deployed at the
signal station have been moved to the top of the office building
to get a better view. Moreover, a radar (shown in Fig. 9(a)), an
edge computing device and a LoRa-based station are installed at
the office building as well.
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Additionally, three traffic lights are installed at the upper
whistle, upper, and lower boundary. Furthermore, there are four
cameras deployed along the controlled waterway. Specifically,
one camera deployed at the upper whistle boundary is used to
monitor the upstream of the upper whistle boundary (shown in
Fig. 1(b)), two cameras deployed on the top of the office build-
ing are used to monitor the waterway within the upper and lower
boundaries, and another camera deployed at the lower whistle
boundary is used to monitor the downstream of the lower whistle
boundary. In particular, all staff and UR-IVTSS were relocated
to a command center far from the waterway.

(a)Radar (b)CCTV

Fig. 9. Installation sites of radar and camera

4.2. Multi-sensors Data Fusion

The data fusion of AIS and radar has been extensively applied in
navigation, mainly for target detection and tracking [34]. In this
study, the Quantum 2 Solid-state Radar produced by Raymarine
company has a scanning radius of 4km, covering the Yangtze
River waterway mileage line from 878km to 871km centered
on the radar installation site. Based on two algorithms [15] im-
proved by this paper, radar echo signals are analyzed and con-
verted into position, distance, speed, heading and other data by
edge computing device for fusion with AIS data.

Fusing the latitude and longitude coordinate data scanned
by radar with AIS data can improve the density of AIS data. As
illustrated in Fig. 10, to exhibit the superiority of the trajectory
fusion, we carried out a case study based on a downward vessel
sailing from the upper whistle boundary to the upper boundary.
This case study has 14 pieces of AIS data and 130 pieces of radar
data.

(a)Data Fusion Experiment

Radar data

AIS data

Fusion data

Command signal

Vessel【Pinghao8(Fusion)】

arrived

Suggested command: 

DownwardAccept Reject

(b)Actual machine results of trajectory fusion

Fig. 10. Effect of AIS and radar data fusion

Fig. 10(a) illustrates the data fusion effect in an experimen-
tal environment, while Fig. 10(b) demonstrates the data fusion
effect in an actual machine system. In Fig. 10(b), the upper left
image shows the effect of traffic command using fused signals,
the upper right image represents the result of trajectory fusion,
and the lower image displays the data fusion results during real-
time tracking. Please note that in the upper left image of Fig.
10(b), the system is in an unmanned automatic command mode,
hence the red digital countdown displayed. When the countdown
reaches zero and there is no manual intervention, the system will
automatically send the recommended command signal.

It is worth mentioning that the proposed fusion model also
has certain drawbacks. For instance, if a set of input data used
for fusion cannot meet the output requirements, the model will
wait until the output requirements are met, resulting in data lag.

Meanwhile, this fusion model also can process data with-
out timestamps. The superiorities of the AIS and radar data fu-
sion can be summarized as: 1) it can provide a more reliable
data source for the UR-IVTSS algorithm module; 2) the AIS
and radar data fusion can significantly increase the receiving fre-
quency of data, resulting in a smoother display on the electronic
inland waterway chart.

More than 20, 000 pieces of data on passing vessels and
waterways were collected by manual photography and CCTV,
and 3, 100 was selected for model training and testing. The ex-
periments conducted in this study were all based on the rec-
ommended hyper-parameters and pre-trained model (utilizing
ResNet50 [35] as the backbone, LSDM use DarkNet53 [36]) by
the authors of the original paper, and without the adjustment of
hyperparameters. The comparison results of target detection pa-
rameters are summarized in TABLE 1, all models exhibit signif-
icant growth in the "mAP 50" metric. YOLO v5s appears to out-
perform other models due to the targeted hyperparameter tuning
conducted specifically for it during previous submission rounds.
In the "mAP 50:90" metric, the TOOD model experiences a
decline. Upon a detailed examination of the test outputs on a
per-sample basis, we discovered that this decline is attributed to
the TOOD model’s higher tendency to misclassify the riverbank
area as ships compared to other models.

The video detection effects of the models in ours study with
and without DCP are shown in Fig. 11.

As depicted in Fig. 11, when the camera detects vessels en-
tering or leaving the controlled waterway, fusing with AIS data
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Fig. 11. Target detection effects

will enhance the video data. Subsequently, the enhanced video
data will be transmitted to UR-IVTSS.

Table 1. Comparative Effectiveness of Target Detection Models

Original image
Image preprocessing

with ours methond

mAP 50 mAP 50:95 mAP 50 mAP 50:95

LSDM [33] 0.872 0.594 0.883 0.624

YOLO v5s [29] 0.982 0.756 0.990 0.765

DDQ-DETR [31] 0.939 0.744 0.973 0.756

Faster RCNN [28] 0.930 0.710 0.933 0.730

TOOD [32] 0.927 0.735 0.937 0.725

YOLOX [30] 0.945 0.660 0.959 0.708

4.3. Results

In this study, we conducted a simulation analysis using UR-
IVTSS based on all AIS, radar, and monitoring camera data col-
lected from December 2021 to February 2022. The final simula-
tion results are shown in Table 2.

As shown in TABLE 2, there were 70 misjudgments of UR-
IVTSS caused by AIS data anomalies during the UR-IVTSS trial
run, including 19 and 51 misjudgments resulting from command
errors and record errors, respectively. When using our method
for simulation, except for two command misjudgments, almost
all judgment errors can be eliminated by multi-sensors data fu-
sion.

It needs to be clarified that these two command misjudg-
ments resulted from the abnormal behavior of the vessel. One
abnormal behavior is that a downward vessel stays overnight in
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Table 2. Simulation results

Error type Command misjudgment
Notification/entry/departure

time recording error
Command signal loss

Real system (AIS base)

-error number
19 51 1

Real system

-error ratio
2.1889% 2.3600% 0.1152%

System with Radar

-error number
8 22 0

System with Radar

-error ratio
0.9217% 1.0180% 0%

System with CCTV

-error number
10 26 0

System with CCTV

-error ratio
1.1521% 1.2031% 0%

Our method

-error number
2 7 0

Our method

-error ratio
0.2304% 0.3239% 0%

the waiting area without entering the controlled waterway, but
UR-IVTSS still sends a downward command. Another abnormal
behavior is that an upward vessel crosses the lower boundary
while waiting for the downward vessel to pass through the con-
trolled waterway, and UR-IVTSS judges that the upward vessel
violates the regulations without sending an upward command to
the upward vessel.

Furthermore, the command-sending mode based on dual-
link redundant communication can solve the issue that com-
mands cannot be sent due to the fluctuation of the network.
As shown in Table 2, the multi-sensor perception system com-
posed of radar, AIS, and camera can effectively reduce command
misjudgments and time recording errors caused by data source
anomalies.

In summary, the edge-centric IoT architecture proposed in
this paper is capable of accommodating multiple artificial in-
telligence models for different tasks. By utilizing data obtained
during the trial runs for replay and simulation, it addresses most
of the issues encountered in the traffic control process on the up-
per reaches of the Yangtze River, such as erroneous commands,
incorrect recording of entry/departure times, and unresponsive
command instructions.

5. Discussion

During the trial operation phase of the project, we also dis-
covered some additional conclusions. We found that radar and
CCTV are almost complementary data sources. This is because,
under high load conditions, upward vessels move very slowly.
The radar scanning accuracy used in this paper is low under the
condition of the limited budget, which often leads to the fact
that the radar misjudges the upward vessel as a stone or a float-
ing object in the river. During the trial operation of the system,
we also tested a kind of high-precision radar, which are quite ex-
pensive. These radar effectively addressed the issue of radar mis-
identification of slow-moving vessels. However, its high cost
is nearly equivalent to the entire budget for the complete sys-

tem. Additionally, these radars cannot resolve the scanning blind
spots caused by obstructions such as mountains and trees.

Slow-moving vessels are exposed to the CCTV field of
view for a longer duration. Consequently, this results in big-
ger opportunities for the model to detect and identify the vessel,
thereby increasing the probability of accurate vessel recognition.
Indeed, the installation method of CCTV cameras also has a sig-
nificant impact. Currently, to achieve a wider field of view, cam-
eras are often angled towards the river. Ideally, cameras should
be positioned perpendicular to the river. Angling the cameras to-
wards the river can make vessels appear smaller in the field of
view, which may somewhat reduce the models recognition per-
formance.

Regarding the command mistakes caused by certain ves-
sel abnormal behaviors, after consulting with five staff mem-
bers who have over three years of experience in controlling river
traffic, and tracking the trial operation for over three months,
we have summarized some potential handling methods and fu-
ture research directions. Generally, vessels are aware that their
abnormal operations can pose traffic risks. Therefore, in most
cases, vessels use VHF radio to communicate with signal sta-
tions when performing risky maneuvers. If the UR-IVTSS sys-
tem were equipped with speech recognition capabilities, it could
quickly and accurately identify imminent abnormal operations
from voice information. This might provide a faster and more
reliable method for detecting vessel anomalies compared to us-
ing AIS, radar, and CCTV data.

6. Conclusion

Online monitoring in maritime supervision and water traffic
management is crucial for providing real-time, accurate, and re-
liable data on channel conditions and vessel motion status for
the Traffic Management Center. Furthermore, online monitor-
ing can contribute to improving the service quality of the intelli-
gent transportation system. This paper presents a vessel motion
perception and unmanned traffic signal control system based on
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edge-centric IoT. The proposed framework innovatively intro-
duces an edge computing-centric perception and control system
architecture, multi-sensors data fusion technology, and the dual-
link redundant controller. Many dynamic, geographically dis-
tributed, and heterogeneous field data are processed at the edge
of the data origin.

A case study based on a real application scenario of
the Shenbeizui controlled waterway is conducted to compare
the performance of IoT-based UR-IVTSS and AIS-based UR-
IVTSS. The results demonstrate that the UR-IVTSS based on
the proposed IoT architecture reduces the command misjudg-
ment rate and recording error rate by 89% and 86.27%, respec-
tively. The proposed system architecture provides a sufficient
real-time and reliability guarantee for the UR-IVTSS’s sensing
and control requirements. This technology can be well applied to
all controlled waterways in the upper Yangtze River to achieve
unattended signal stations and intelligent traffic control. In the
future, we intend to apply mobile Internet and Big Data analy-
sis technologies to further improve the functionality and perfor-
mance of UR-IVTSS.

7. Appendix

The code without waterway information and all models adopted
in this paper can be accessed through the following link:
https://gitee.com/LiZeChen-Git/isc-inland-waterway-multi-sensor
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