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Abstract

Despite advances in digital storage of electrocardio-
grams (ECGs), paper print outs are still common place
in clinical practice. The digitization and interpretation of
paper ECGs is therefore of high utility. We describe the
creation of a modular pipeline to achieve both of these
tasks. The solution was created by the Easy Geese for the
Digitization and Classification of ECG Images: George B.
Moody PhysioNet Challenge 2024.

Methods: The pipeline accepts an image of a 12-lead
ECG in any common format. It first extracts the area of
interest using YOLO, and then segments pixels that consti-
tute the ECG signals using a ResUnet. The resulting mask
is rotated, and contiguous signal pixels are joined within
the area of interest. In the last part of digitization, the sig-
nals are scaled, separated by lead, and checked for errors.
Finally, the digitized 12-lead signals are input into an SE-
resnet classifier to provide clinical interpretation.

Results: Our ResUnet had a Dice score of 0.997. On the
test set, our digitization pipeline had an average signal-to-
noise ratio (SNR) of −5.272; our ECG classifier had a
macro F -measure of 0.082. This entry was not ranked in
the official phase but in the hackathon, where we ranked
2/2 and 1/1 on digitization and classification, respectively.

1 Introduction

Despite the prevalence of large digital ECG databases
for reseach, paper ECGs remain a stalwart of standard clin-
ical care. While there have been multiple attempts to dig-
itize images of paper ECGs, often these require user in-
put to determine convert the raw signal into a clinically
meaningful format. For instance, Fortune et al.’s approach
requires a user to identify each ECG lead manually [1],
while Santamonica’s solution requires the location of ref-
erence pulses and the lead for any rhythm strips [2].

The 2024 George B. Moody PhysioNet Challenge was
to digitize and classify ECGs directly from images, with-
out human intervention. The task and dataset are described
in detail in [3] and [4] and are provided via Physionet [5].

2 Methods

Training images for this challenge were generated from
signals from the PTB-XL database using the ECG-Image-
Kit generator [6, 7]. The generator provided images in a
format similar to a paper ECG. The generator was also
modified to provide an ECG image mask – ECG signals
with no grid, text, or other augmentation. Clinical labels
were available directly from PTB-XL. Labels were pre-
processed into a reduced set of 11 classes for the challenge.

We created additional training examples in two ways.
First, we printed these generated images on paper and
scanned them to recreate a digital copy. We created mul-
tiple digital copies with physical augmentations including
wrinkling and writing on the paper, and taking photos of
the paper from different angles. Second, we sourced addi-
tional copyright-free scans of paper ECG images from the
internet (https://www.ecgguru.com/). For a small
subset of these images, we also created ECG masks manu-
ally by masking the ECG signal in image editing software.

We developed a modular pipeline that takes in a raw im-
age and outputs a digitized 12-lead ECG signal and classi-
fication of the signal. An overview of the pipeline is shown
in Figure 1 and is described in more detail below.

2.1 Determine number of ECG rows (step
A.); Image Classification (step B.)

We used a fine-tuned Yolov7 [8] to predict the bound-
ing boxes of where individual ECG leads are present in
an image. We use the bounding boxes to crop the image
to the useful area and to determine the number of rows of
ECG signal, which is used in E. Pixel Joining. We also
classified the image as real or generated using a ResNet-
18 model [9]. This step produced a binary flag that was
used in the subsequent steps.

2.2 ECG segmentation (step C.)

The task of binarising the ECG image was treated as a
two class segmentation problem, and approached follow-
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Figure 1. ECG digitization and interpretation pipeline.

ing the ResUNet method proposed by Li et al. [10], with
the blocks at each stage formed of a 3 × 3 convolution,
batch normalization and LeakyReLU non-linearity. The
model was trained using a combination of dice and focal
loss.

The ResUNet was trained on 4000 256×256 px patches.
The model was also trained with augmentation designed to
simulate the range of variation likely in the test set: colour
jitters, blurring, random noise, rotations and scaling.

Given the very different characteristics of the real and
simulated ECG images, it was not possible to produce a
single model that performed well across both domains.
Therefore, separate domain-specific models were trained
for the real and simulated data respectively.

2.3 Rotation (step D.)

We considered the simplified scenario in which raw
ECG images could be rotated, but not subject to a more
general perspective transform. Our solution assumed that
the output mask of C. ECG segmentation was mostly ac-
curate. The optimum rotation of the mask was that which
minimized the number of columns containing ECG pixels.

2.4 Pixel Joining (step E.)

The historical approach to ECG digitization, as imple-
mented by [2] among others, assumes that an image con-
tains a contiguous selection of pixels that correspond to an
ECG signal, and that at least one ECG pixel is present per
column of the image. Dynamic programming is then em-
ployed to find a minimum cost path across the image. This
approach can fail when the image is noisy and when ECG
signals overlap when adjacent leads have large amplitudes.

We developed an alternative simple forward-search, de-
picted in Figure 2. It takes a binary Unet output mask
with labels background, ECG as input. We assume that we
know the coordinates of an initial ECG pixel in the left-
most column (a), and that we have a rough estimate of the
baseline (red line). From the initial pixel, all contiguous
ECG pixels in the column selected (b). We then consider
in the next column and select all ECG pixel with minimum
manhattan distance to the existing set of ECG pixels (c).
If more there is more than one candidate pixel, we select
the pixel closest to the baseline. If there are no candidate
pixels in the next column, then skip a column (d). This
process is repeated until the end of the image. Finally, the
pixel with maximum distance to the baseline is retained to
produce the ECG signal in pixel units (e).

2.5 Lead reconstruction (steps F-I.)

F. Rhythm Lead detection and identification The
rhythm lead is a single ECG lead that is recorded for a
full ten seconds, and typically spans a whole ECG record-
ing. Given the challenge assumption of a standard 3x4 grid
layout of short ECG segments, any additional rows were
assumed to be rhythm leads. We assumed that lead name
of each rhythm strip was fully deterministic, depending on
the total number of rhythm leads: lead II if one rhythm
strip, leads II, V5 if two, and leads V1, II, V5 if three.

F. Layout detection Real ECG images can vary in both
lead order and lead layout on an image. We used correla-
tions between leads to detect the alternative Cabrera format
for lead order. Given the limitations of the generator, this
was only applied to real images.

G. Reference Pulse Detection The reference pulse is a
square wave denoting 1 mV in amplitude and 0.2 seconds
in duration. While it is commonly to the left of ECG, it can
also appear to the right, or may not be present. Detection
1. informs ECG signal baseline and scaling parameters,
and 2. ensures it is not mistaken for part of the ECG.

We detect the location of a reference pulse by searching
for square waves of equal width in the same position in at
least three lines of the digitized signal.

I. Signal Quality Assessment Challenges in reconstruc-
tion occurred when E. Pixel Joining failed to correctly
identify the start or end of a signal, or returned the same
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Figure 2. Pixel joining algorithm to extract ECG signal from u-net output mask. (a) Initially, any ECG pixel is selected
in the left-most column. (b) All adjoining ECG pixels in the column are added. (c) ECG pixels in the next column are
considered; pixel with minimum distance to previous column is added. (d) Where no candidate pixels exist, column is
skipped. (e) One pixel per column is selected to generate the ECG signal.

set of overlapping pixels for a single signal. To mitigate
the impact of errant reconstructions on overall SNR, we
returned NaNs for a single lead that both 1. overlapped
with another and 2. departed from its baseline for a pro-
longed period. Furthermore, if rows of the reconstructed
signal had different temporal (length) scaling factors, we
assumed pixel joining had not been completed success-
fully, and the entire reconstruction output was set to NaN.

2.6 Vectorization (step J.)

The final digitization stage was to convert the ECG in
pixel units into real units of mV and seconds. To do this,
we first remove the reference pulse. We then scale the sig-
nal, using the provided duration of the ECG signal, and the
fact that 0.2 s of length corresponds to 5 mV in amplitude
(height). Finally, in instances where a reference pulse is
available, we set the bottom of the reference pulse to be
the baseline of 0 mV. Otherwise, we use the median value
(in pixels) of a row of ECG to be 0 mV.

2.7 ECG Interpretation (step K.)

We interpreted the resulting 12-lead signal using a mod-
ified version of Zhao et al’s SE Resnet [11,12]. This model
output a set of probabilities corresponding to 11 labels.

We retrained the model using data with missingness cor-
responding to a standard 12-lead recording (i.e. with 2.5 s
for most leads, instead of the original 10 s). We trained
the model three times under different starting weights, and
ensembled the models using the mean probabilities. To
account for partially successful digitization, we trained an
additional model with missing leads. A flag from I. was
used to switch between the two models at inference time.

To convert output probabilities to labels, we selected the
label with the highest probability to be the primary class.
Secondary classes were then selected if their probability
exceeded a heuristic threshold of 0.3, determined by maxi-
mizing F -measure on a held-out subset of the training set.

Task Score Rank
Digitization SNR: -5.272 N/A
Classification F -measure: 0.082 N/A

Table 1. Signal-to-noise (SNR) ratio and macro F -
measure of our team’s model on the hidden data for the
digitization and classification tasks, respectively.

3 Results

The U-net performed well on generated signals, with a
Dice score of 0.997. An example input image with shadow,
corresponding output mask with pixel joining, and the re-
constructed signal are shown in Figure 3. From visual in-
spection, we concluded that the U-net performed worse on
real images, likely due to the very limited training data.

Our scores are given in Table 1. Our team was not
ranked during the official phase, but was successfully eval-
uated in the hackathon.

4 Discussion

We developed an analysis pipeline that automatically in-
terprets 12-lead ECG from an image. Our approach as-
sumed that digitization was necessary to retrieve then clas-
sify the informative signal.

One significant weakness of our approach was that er-
rors in individual modules could compound. We were
particularly reliant on the performance of the ECG seg-
mentation step; minor errors here led to large changes in
SNR. Our use of a different segmentation model for real
and generated images meant that, for the test set of primar-
ily real images, our pipeline reverted to the less accurate
‘real’ model, leading to poor overall performance on both
tasks. Another shortcoming of our approach – and the im-
age generator – was that it did not consider perspective
transforms of an image, nor local non-linear deformation
from paper creases. In future work, we intend to unify the
segmentation models. We will also investigate imputation
of unreconstructed data using cross-lead information.
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Figure 3. Example output of the digitization process (steps A-J). (a) shows the input image including noise and shadow,
with detected areas of interest. (b) shows the unet output ECG mask (step C), and the output of D. Pixel Joining in colour.
(c) shows the output signal in comparison to the PTB-XL original signal. Unplotted portions of the signal are not shown.
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