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Pre-trained artificial intelligence-
aided analysis of nanoparticles 
using the segment anything model
Gabriel A. A. Monteiro1,4, Bruno A. A. Monteiro2,4, Jefersson A. dos Santos2,3

 & 

Alexander Wittemann1

Complex structures can be understood as compositions of smaller, more basic elements. The 
characterization of these structures requires an analysis of their constituents and their spatial 
configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and 
even nanoparticles. In the latter field, the most challenging examples are those of subdivided particles 
and particle-based materials, due to the close proximity of their constituents. The characterization of 
such nanostructured materials is typically conducted through the utilization of micrographs. Despite 
the importance of micrograph analysis, the extraction of quantitative data is often constrained. The 
presented effort demonstrates the morphological characterization of subdivided particles utilizing a 
pre-trained artificial intelligence model. The results are validated using three types of nanoparticles: 
nanospheres, dumbbells, and trimers. The automated segmentation of whole particles, as well as 
their individual subdivisions, is investigated using the Segment Anything Model, which is based on a 
pre-trained neural network. The subdivisions of the particles are organized into sets, which presents a 
novel approach in this field. These sets collate data derived from a large ensemble of specific particle 
domains indicating to which particle each subdomain belongs. The arrangement of subdivisions 
into sets to characterize complex nanoparticles expands the information gathered from microscopy 
analysis. The presented method, which employs a pre-trained deep learning model, outperforms 
traditional techniques by circumventing systemic errors and human bias. It can effectively automate 
the analysis of particles, thereby providing more accurate and efficient results.

Keywords Microscopy, Image processing, Nanoparticles, Artificial intelligence, Segment anything model, 

Particle morphology

Nanoparticles and their morphological characterization
The study of colloidal particles concerns the analysis of mixtures comprising discontinuous domains, which are 
randomly distributed in a continuous phase1. This essentially means that a large amount (sometimes over 1015 
elements per mL) of very small particles (usually in the range of nm to µm) is present2. These colloidal particles 
can be used in a wide array of applications encompassing coatings3, adhesives4, lubricants and biolubricants5, 
catalysts6 and catalyst membranes7, rheology modifiers8, pharmaceutical4, and food products9. In the academic 
context, model colloids are crucial for the understanding of important physical and physico-chemical phenomena 
like sedimentation10 and crystallization11. This encompasses the study of nucleation and growth processes12,13. 
The understanding gathered from studies using model colloids can then be employed in the development of 
colloidal molecules14,15, colloidal crystals11, and self-assembled superstructures12,13. Since particle morphology 
plays a decisive role in the behavior of colloidal systems, it is essential to conduct a comprehensive morphological 
characterization of any given sample12. This analysis is commonly done using micrographs, either obtained 
from optical microscopy16, scanning electron microscopy (SEM), transmission electron microscopy (TEM)17,18, 
or atomic force microscopy (AFM)18. Regardless of how the images are obtained, it is customary to measure 
a minimum of 500 particles in order to obtain statistically relevant results19. This process is inherently time-
consuming and prone to human bias and systemic errors if conducted manually, thereby underscoring the 
necessity for the development of reliable automated measuring techniques.
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Such techniques allow for the expansion of the information gathered from images, with applicability across 
a series of very distinct fields. These include the analysis of tumor tissue20, substructures in cells21, tracking of 
cellular activity22, defects in the structure of materials23, metal alloys24, particles, particle-based materials25–29, 
and particle tracking30. For particle aggregates, however, the available characterization methods still lack the 
capability to analyze the aggregates themselves and the particles that compose them simultaneously. This means 
that while the morphological characterization of a particle within a particle aggregate may be obtained, it cannot 
be obtained from the aggregate itself27,28. The converse is also evidenced in the literature, where the superstructure 
is analyzed from micrographs, but the particles within are not12. Characterizing the aggregates using the particles 
contained in them would allow for a deeper understanding of the morphology of the aggregate, particularly in 
terms of internal subdivisions they possess. The same is also valid for complex multi-lobed particles. In the latter 
case, a comprehensive morphological analysis necessitates not only the differentiation between particles but also 
between the segments within each particle.

Given that morphology is a defining factor in colloidal particles’ behavior, their correct morphological 
characterization is essential. Successful workflows for characterizing particles from micrographs use either 
Bayesian segmentation27 or neural networks (NN)28. The former is more widely employed for colloidal 
particles26,31. Irrespective of the strategy used to extract morphological data from the images, this information 
must allow for determining parameters such as particle size and particle size distribution. The segmentation 
based on traditional methodologies may produce inaccurate segmentation labels and fails to identify regions 
comprising more than one element. Such issues may be addressed through the utilization of more contemporary 
approaches, such as machine learning29 and deep learning methodologies32.

Algorithmic approaches in image analysis
Computer vision is a field of artificial intelligence (AI) concerned with the extraction of information from visual 
inputs, such as digital images or videos. Among the applications of computer vision, the semantic segmentation 
of images is worthy of particular mention, as it deals with the differentiation of elements present in a given image. 
In essence, semantic segmentation entails the labeling of each class of pixels or region in an image (or video) 
with a semantic meaning33. In the specific case under discussion, semantic segmentation can be defined as the 
process of classifying the pixels in a micrograph as either belonging to a given particle or not. This results in the 
creation of matrices known as masks, which represent the projection of a segmented area in an image. Several 
algorithms have been proposed to handle this task, such as thresholding34, watershed transformations35, quick 
shift algorithm36, simple linear iterative clustering (SLIC)37, and also, “shallow” machine learning algorithms, 
like random forest38,39. However, these AI approaches, in the form of shallow machine learning, are frequently 
limited in their capacity to analyze raw data input. This incapacity stems from the fact that the shallow models 
only incorporate one level of data transformation, which limits their data processing efficiency38,39.

One of the most frequently employed metrics for evaluating the precision of computer vision tasks is the 
comparison of a new method with a ground truth segmentation. A result that is closer to the ground truth 
is considered to be of higher quality than one that deviates from this value. In some cases, the ground truth 
must be provided by specialists who analyze the particles manually, which is also a challenging process. Despite 
the indication of accuracy provided by comparing the automated measurements to the ground truth, it is not 
inherently necessary to attest to the reproducibility of the developed technique40.

As a branch of machine learning, deep learning32 has been further developed over the past few decades, 
enabling the identification of more intricate correlations than before. The high complexity of the analyses made 
possible by deep learning has led to these models becoming a significant component in pattern recognition tasks, 
such as image classification41, object detection and instance segmentation42, and semantic segmentation43,44. 
This adoption has occurred in a plethora of areas, including medical images45, autonomous driving46, remote 
sensing47, seismic interpretation48, and on the aforementioned analysis of microscopy images of colloidal 
particles28,30. The efficacy of these models relies on the multi-level representations of raw data via non-linear 
transformations, thereby enabling the encoding of semantic representations that can be leveraged for pattern 
recognition32. Nevertheless, the performance of deep learning models is highly correlated to the amount and 
quality of data available during the training phase49. The process of labeling data can be a slow, time-consuming, 
and biased endeavor. Consequently, there is a growing interest to generalize to tasks where only a few images 
are available for training50. These settings are referred to as few-shot scenarios51 or zero-shot52. The zero-shot 
scenario is an extreme case of generalization, whereby a pre-trained model is deployed in a target domain, for 
which it was not specifically trained. This circumvents the shortcomings associated with the necessity of training 
a model while retaining the capacity for semantic segmentation-related operations.

Segment anything model
The Segment Anything Model (SAM)53 is a powerful method trained over a huge and diverse basis of annotated 
segmentation tasks. Thus, SAM is capable of achieving high-quality semantic segmentation results in several 
tasks without domain-specific pre-training. Recently, SAM53 has been proposed as a method capable of 
segmenting images without the need of further pre-training, applicable to a broad range of image types. This 
represents an innovative task and solution to zero-shot learning in certain scenarios that aim at segmenting 
any instances in an image without requiring further training of models. The straightforward usability of the 
SAM, along with its efficiency53, lends itself to effective analysis of intricate structures within micrographs. In 
the case of complex colloids, this segmentation routine substitutes the manual measurements that had already 
been performed for multi-lobed complex nanoparticles2,19, thereby saving time and minimizing the potential 
for human error23,54. To date, SAM has only been employed55 for the identification of particles without any 
accompanying morphological analysis or validation against experimental results. The absence of validated 
morphological analysis from SAM-generated segmented images shows that there is a lot of unexplored potential 
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in the field of particle characterization from segmented images. Consequently, we aim to explore the relevant 
features that can be leveraged from it. By utilizing simple optimization techniques, it should be possible to 
identify both individual elements and allocate them into aggregates they belong to. This approach facilitates the 
morphological analysis for complex particles and also allow for the analysis of individual elements within these 
particles.

Outline
We present an analysis routine based on a pre-trained deep learning model for image segmentation that allows 
determination of the dimensions and morphology of structures with different levels of complexity depicted in 
micrographs. The model particles differ in their morphological complexity and were chosen to confirm that the 
developed method can extract morphological information from complex arrangements. As a proof of concept, 
we analyze the particles and their subdivisions and extract morphological information that is only obtainable 
when these analyses are combined. The presented analyses dismiss the need to train a dedicated deep learning-
based model. This was achieved by using a previously trained general segmentation model and optimizing post-
processing techniques. The development presented here can expand and accelerate the existing capabilities of 
the methods whilst also making them more accurate. To validate the data obtained here, the measurements 
performed are compared to the measurements provided when the model particles were first presented19. The 
results show that a generalist segmentation model can reliably be used to analyze complex nanostructures and 
extract information present across multiple levels of organization with complete reliability. The analysis routine 
presented here also avoids the systemic errors associated with manually measuring complex particles.

Methods
Dataset
The preparation of spheres, dimers, and trimers was achieved using emulsion polymerization and a series of 
seeded emulsion polymerizations along the lines given recently19. All electron micrographs presented were 
obtained using field-emission scanning electron microscopy on a Gemini 500 microscope (Carl Zeiss A.G., 
Oberkochen, Germany) with an operation tension of 3kV. All images were taken at a magnification of 25,000 × 
and analyzed as received from the microscope.

Manual measurements
A series of manual measurements were conducted as a means of establishing a benchmark, the ground truth, 
for the subsequent automated image analyses. The manual measurements were conducted utilizing the oval 
measuring tool in the ImageJ software (NIH, US Department of Health and Human Services, Washington, D.C., 
U.S.A.). ImageJ was selected for use in this process due to its broad applicability and prominent position in the 
field of image analysis26,56. Each mask was created manually and represented a circular entity. The longest line 
segment that can be fitted into the oval masks represents the diameter of the circular entity.

Watershed method
The image analysis referred to as reference method (RM) was centered on the masking technique using the 
ImageJ software. The widespread use of the ImageJ software and the large community using it led to the 
publishing of extensive libraries of plugins for it. These plugins, which are also used here, expand the software’s 
capabilities beyond what it was originally intended for56. In order to measure the particles in this study using 
the ImageJ Watershed plugin, it was necessary to tune the plugin’s parameters, making the analysis presented 
here distinct from what is usually done with ImageJ. When treating and analyzing the images, the first plugins 
used were the median filter and the rolling ball background subtraction plugins. This process removed the 
background, leaving only the particles to be analyzed. These treated images were then converted to binary 
images using the AutoThreshold plugin. For all the samples, the watershed plugin was then used in a process 
that consisted of segmenting the images using a low-sensitivity transformation and then saving the data for the 
resulting masks. The same procedure was repeated for the spheres and the dumbbells, but now with a higher 
watershed transformation sensitivity. The methodology of using a higher sensitivity watershed transformation 
to promote the individual masking of the trimer lobes was also tested but failed to deliver consistent results (see 
the Supplementary Information section, Fig. SI 1 and 2). This led to the need to conduct the second round of 
measurements by selecting the oval measuring tool in the ImageJ software and manually fitting ellipses to each of 
the trimer lobes. Regardless of the analyzed sample, the masks obtained in the first step were used as references 
to assign the masks obtained in the second step to each other. This was done using a custom post-processing 
code based on comparing the position of the masks obtained in the two subsequent masking procedures. This 
ensures that the mask representing a given lobe is contained within the mask representing a given complete 
particle. For the spheres, only one mask obtained in the second masking process was observed for each mask 
obtained in the first masking step. This is to be expected since the spheres are not subdivided. For the dumbbells 
and trimers, assigning smaller masks representing the lobes to a larger one representing the entire particle allows 
for the determination of which lobes belong to each particle. This also makes it possible to determine which 
lobes belong to the same set and constitute the same multi-lobed particle. The post-processing stage serves to 
augment the array of information provided by the ImageJ software. The post-processing algorithm excludes 
instances with areas that are less than half the mean area of all masks for a given image. Furthermore, masks 
exceeding 1.5 times the mean area of all masks in a given image are rejected. This process is possible due to the 
use of model particles with minimal dispersity in this study19. Furthermore, the aspect ratio and circularity of 
the masks are employed as parameters for their rejection during post-processing. Any masks with an aspect ratio 
exceeding 1.15 and a circularity or roundness of less than 0.85 are not considered to be spheres. Similarly, any 
masks with an aspect ratio of less than 1.4 are not considered to be dimers. This is achieved by organizing the 
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particles into sets using their relative positions. The details used during the implementation of this method are 
presented in the project’s GitHub and institutional servers linked in the Additional Information section. These 
details include the ImageJ macros and the post-processing algorithm developed to treat the data obtained from 
the macros.

SAM-based method
The image segmentation for the SAM-based method was based on the automatic generation of masks using 
one single forward pass. The model’s parameters regarding the density of points sampled were adjusted for the 
particle size. The stability threshold was also adapted for the actual case to avoid duplicated and poor-quality 
masks. After the mask generation provided by the SAM, the segments were filtered to avoid the identification 
of foreign objects or areas of background as particles. Similarly, the circularity of the particles was also used as a 
filter to avoid unrelated masks. The mask features, such as diameter, area, perimeter, position, etc., were obtained 
using the regionprops algorithm from Scikit-Image57.

The SAM can segment between the lobes but does not directly provide the information that two or more 
lobes belong to the same set. This is not a problem when analyzing spherical particles, as they are not subdivided. 
This translates to the fact that, for the spheres, the described masking and measuring method constitutes the 
complete analysis. As no subdivisions exist in the spherical particles, each mask obtained is analyzed as a stand-
alone element and is individually measured using the regionsprops algorithm. For the dumbbells and trimers, 
however, the masks representing each lobe must first be assigned to those representing the other lobes in the 
same particle. In this case, the assignment process was done by minimizing the distance between the centroids 
of the lobes. Assigning the lobe masks to the other lobes constituting the same particle expands what the SAM 
delivers. With this expansion, it is possible to measure the collective morphological properties of multi-lobed 
particles. These collective morphological properties, like for the RM, include the distance between the lobe 
centroids and the angle between the three trimer lobe centroids. The implementation details can be found in the 
project’s GitHub and institutional servers (see Accession codes in the Data Availability Section).

The utilization of the Segment Anything Model as a segmentation methodology also presents certain 
challenges that are addressed during post-processing. The primary factor is that the Model can provide 
overlapping masks, whereby a pixel can be assigned to more than one mask during the semantic segmentation. 
This issue was addressed through the development of a post-processing algorithm, which involved repeating the 
same requirements demonstrated for the post-processing of the watershed-based RM measurements.

Results and discussion
Particle morphology is known to greatly influence the self-assembly and hydrodynamic properties of colloidal 
suspensions15. Given its vital importance, extensive morphological characterization is necessary for these 
particles12,19. A thorough morphological characterization based on image segmentation and subdivision 
recognition can also be conducted for particle-based materials25 and other large structures20. In either case, a 
rigorous understanding of the morphology is needed, including the ability to determine the size of the subdivisions 
and their relative positions. A range of sets of particles with increasing complexity was employed in this study to 
confirm the applicability of the method developed. The different sets are morphologically distinct and demand 
different kinds of post-processing. The nanospheres SphPS (Fig. 1A) are the simplest to analyze as they are 
not subdivided. Their measurement was used to confirm that the size of nanoparticles can be determined by 
processing segmented images and to match up-to-date image analysis techniques. The analysis of the dumbbell 
nanoparticles DiPS (Fig. 1B) demands data processing with higher complexity, as the particles are composed of 
two separate segments. In this case, the capability to measure structures with higher complexity was attested by 
determining the distance between the center of each particle lobe. The trimer nanoparticles TriPS (Fig. 1C) have 
a total of three subdivisions. This is displayed in a more complex analysis when compared to both the SphPS and 
DiPS nanoparticles. In the case of TriPS, the parameter used to validate that the collective morphology can be 
determined using the methodology developed here was the widest (i.e., central) angle between the centroids of 
the segments. The angle of the TriPS is an important morphological feature, as it determines attributes like the 
aspect ratio and the overall hydrodynamic behavior and self-assembly of the nanoparticles.

Figure 1. Micrographs of (A) nanospheres (SphPS), (B) two-lobed dumbbell nanoparticles (DiPS), and (C) 
and three-lobed trimer nanoparticles (TriPS) with scale bars representing 250 nm. Throughout this study, these 
three sets of particles were used as a proof of concept for the automated SAM-based analysis presented here.
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Analysis of spherical particles
For the analysis of the SphPS nanoparticles, manual measurements were taken as a direct basis for comparison. 
In Fig. 2, the comparison between the segmentation techniques is shown. The same FESEM image is first 
presented as segmented by the RM (Fig. 2A) and by the SAM-based method (Fig. 2B). Initially, it is possible to 
observe that in both cases, the projections of the spheres in the micrographs are identified individually. Although 
the RM method was capable of identifying the spheres individually, some of the sphere projections (<1%) were 
segmented into two parts. For the same method, some particles were not identified and did not appear as masks, 
showing a tendency to not properly recognize the particles on the edge of an organized domain. These two 
segmentation errors were not observed for the SAM, where the particles were adequately segmented with no 
overlap. The fact that the spheres were not subdivided and that the spheres on the edges of organized domains 
were also identified by the SAM-based method shows an advantage of SAM over RM.

It should be noted, however, that these systemic errors in RM do not affect the size distribution. This can be 
ascertained by the exclusion of oversegmented masks from the analysis during post-processing. Nevertheless, 
the subdivision errors have no impact on the sphere diameter (d

Sp
) distributions illustrated in Fig. 2A. This is 

evidenced by the concordance between the RM and SAM measurements and the MM, the last representing the 
ground truth here. The high degree of agreement between the measurements demonstrates that both RM and 
SAM are effective in determining the diameter size distributions of spheres in micrographs with reliability. The 
RM method is based on the watershed algorithm, which has been optimized for use with circular masks58,59. In 
contrast, the SAM method has yet to be proven to be reliable for determining such distributions. From this point 
onwards, both the size distributions obtained with RM and with SAM can be considered to be accurate. This 
benchmark is important for attesting to the accuracy of the method and demonstrating that SAM can be applied 
to determine the size distribution as effectively as the more commonly used ImageJ60 and dedicated NNs28.

The agreement between the data observed for the size distributions (Fig. 2C) is also present when the mean 
diameter values (d

Sp,n
) are compared (Table 1). The results demonstrate that the d

Sp,n
 values obtained with RM and 

SAM exhibit a maximum discrepancy of less than 2% in comparison to the benchmark manual measurements. 
This difference lies within the standard deviation (SD) of the measured distributions, and is lower than the error 
of 5% expected for electron microscopy itself17,18. Despite the agreement in the data obtained using RM and 
SAM regarding d

Sp,n
 and SD, the polydispersity index (PDI) values of these distributions do vary. A PDI value 

of 1 represents a sample in which all the particles have the same size. The higher the PDI value is, the broader 
the size distribution of the sample is. When using the SAM, a lower dispersity of the particles is found than in 
the case of the RM. This reflects the narrower size distribution observed in Fig. 2C for SAM compared to RM.

Measurement Manual measurements Reference method SAM-based method

Mean (nm) SD (nm) PDI Mean (nm) SD (nm) PDI Mean (nm) SD (nm) PDI

Sphere diameter 132 6 1.0018 132 5 1.0016 134 4 1.0009

Table 1. Comparison between the diameter distributions obtained from images segmented manually, using 

the Euclidean distance-based watershed methodology (RM) and the Segment Anything Model-based method 

(SAM). The mean sphere diameters (d
Sp,n

) differ by less than 2%, a value lower than the error expected for 

measurements taken using electron microscopy. This observation reflects the high agreement between the 

d
Sp

 distributions obtained using manual measurements, RM and SAM. The distributions, however, are not 

rigorously the same, with the SAM-based method having a slightly lower polydispersity index (PDI), reflecting 

a narrower distribution.

 

Figure 2. Comparison between the segmentation of the microscopy images performed using the (A) 
watershed-based RM and the (B) SAM-based method. (C) The distributions of sphere diameters for MM, RM, 
and SAM exhibit a high degree of coincidence with the MM, here taken as the ground truth. The fact that RM 
and SAM strongly coincide with the ground truth demonstrates the precision and reliability of both automated 
processes in determining the dimensions of elements within microscopy images. The scale bars represent 250 
nm.
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Analysis of dumbbell particles
The analysis of the dumbbell nanoparticles adds extra layers of complexity when compared to the analysis 
routine presented for the spheres. The extra challenge is characterized by the need to identify the dumbbell 
lobes as two entities that belong to the same set of particles. Conducting the analysis in such a manner is crucial, 
as some morphological and hydrodynamic aspects depend on both lobes and their relative positioning10. The 
unfulfilled need to extract morphological data from images with the described depth demonstrates that this kind 
of analysis is not trivial. This section describes the morphological characterization of two-lobed particles. Here, 
the lobes are identified as stand-alone elements and as constituents of the same set. This depth of identification 
allows for the determination of properties that are individual to each lobe (i.e. lobe diameter) and that apply to 
both lobes (i.e. distance between the center of the dumbbell lobes).

In the analysis of dumbbells, both RM and SAM have been demonstrated to be effective methods for 
determining diameter distributions. This consideration, which is rooted in the findings for spherical particles, 
is pivotal for the subsequent observations. A manual segmentation of the dumbbells would inevitably introduce 
systemic errors, rendering the data unusable for the determination of the distance between the dumbbell lobes. 
The systemic errors originate from the methodology employed to ascertain the distance between the dumbbell 
lobes. This is achieved by identifying their respective centers as their centroids. As the manual segmentation 
process would also entail the superimposition of the masks representing each dumbbell lobe, the distance 
between the centroids is consequently distorted to values that are less than the actual distance. Given the 
unavoidable presence of systemic errors associated with MM and the proven accuracy of RM and SAM, only the 
automated analyses were conducted in the further course of the study.

For the RM, the identification of the lobes starts with using the Euclidean-based watershed segmentation 
method with a low sensitivity or high tolerance (Fig. 3A). This step segments the images between the dumbbells 
without dividing between the lobes. The following step involves the same segmentation technique, but with 
a higher sensitivity or lower tolerance (Fig. 3B). In this case, the two-step image segmentation can discern 
between the dumbbells and their lobes. This process, however, can fail for up to 5% of the dumbbells, especially 
when one of the lobes is significantly smaller than the other one. This can be explained by the fact that the 
watershed methodology used in the RM is optimized for circular shapes58,59. One strategy to overcome the lack 
of segmentation between the dumbbell lobes could be using the watershed algorithm with a lower tolerance. 
However, this approach also leads to the segmentation processes taking place within the lobes and the consequent 
identification of a single lobe as two elements. In addition to the incapacity of the Watershed algorithm to 

Figure 3. Comparison of the segmentation of dumbbell micrographs. Scale bars represent a length of 250 
nm. (A) Low-sensitivity watershed segmentation identifies the dumbbells as a whole, and (B) high-sensitivity 
watershed segmentation identifies each of the dumbbell lobes individually. These two successive steps form the 
image segmentation in the reference method (RM) and are analogous to the one performed using the Segment 
Anything Model (SAM). (C) For the SAM, the segmentation directly differentiates between the individual 
lobes in each dumbbell. After the image segmentation is performed and the dumbbell lobes are assigned to the 
other lobes in the same particle, the size distributions for the (D) larger (d

D1
) and (E) smaller dumbbell lobes 

(d
D2

) can be determined. The distributions measured with RM and SAM are shown to have a high agreement. 
The same observation is made for the lobe distance distributions (l

D1D2
). The RM follows a methodology that is 

widely used in determining the morphology of particles26,60. The fact that the SAM method can deliver similar 
results can confirm this methodology as a viable option in determining the morphology of particle segments 
within complex arrangements. These results also prove that identifying the dumbbell lobes as part of larger 
assemblies is possible. With this, the SAM approach has proven its potential by pushing the limits and meeting 
the challenges in the morphology analysis of complex nanoparticles.
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segment between two highly overlapping circular projections, its use also demands a parameter-tuning process. 
With the SAM-based method, on the other hand, the image segmentation is correctly achieved using the same 
parameters employed for the spheres (Fig. 3C). The size distributions observed for the larger dumbbell lobes 
(d

D1
) (Fig. 3D) and for the smaller ones (d

D2
) (Fig. 3E) and for the lobe distance distribution (l

D1D2
) (Fig. 3F) 

show a high agreement between the measurements taken using the RM and the SAM. It can be noticed that the 
lobes segmented with the SAM method show a slightly higher diameter, following what is also observed for the 
spheres. The assignment of the dumbbell lobes was demonstrated by distinguishing between large and small 
lobes in the same particles and determining the distance between their centroids. This assignment has not been 
shown in similar works and represents a significant advancement over the most recent efforts to fully automate 
the morphological analysis of particles from micrographs55.

The comparison made on the basis of d
D1

, d
D2

 and l
D1D2

 and their corresponding distributions as obtained 
using the RM and the SAM are supported by their mean values and deviations (Table 2). The mean diameters 
of the larger dumbbell lobes d

D1,n
 differ by 1%, whereas the mean diameter of the smaller dumbbell lobes d

D2,n
 

deviate by 4%. Despite the higher disagreement observed for d
D2,n

, the deviation is still within the experimental 
error expected for electron microscopy17,18. In both cases of d

D1,n
 and d

D2,n
 the PDI and SD values are lower 

when SAM is used instead of RM. The lower dispersity of the distributions observed here follows what was 
observed for the spheres. This could also be explained by the higher number of segmentation mistakes observed 
for RM. However, such mistakes don’t affect the distance between the dumbbell lobe centroids. This observation 
is based on the fact that the mean distance between the dumbbell lobes (l

D1D2,n
), diverges less than 1% between 

the two methods.

Analysis of trimer particles
The complexity of analzying trimer particles is even greater than that for the dumbbell particles. Here, the 
particles are composed of three lobes, and these must be individually identified and assigned to the trimers to 
which they belong. The three lobes are named T1 for the smaller trimer extremity, T2 for the lobe in the middle, 
and T3 for the larger extremity. Here, it must be made clear that T2 represents the lobe in the middle, not the one 
of medium size. Having T2 as the middle lobe means that its centroid is the vertex of the trimer angle (θ). There 
may be an overlap between the size distributions of the lobes T1 and T2, meaning that the recognition of these 
lobes must be done using their relative positions in the form of the angle θ. As they are not strictly the same from 
a chemical point of view, the distinction between them is essential for the chemical interpretation of the data19.

Like for the two-lobed particles, a low-sensitivity watershed transformation is used to segment between the 
whole trimers (Fig. 4A). The next step in the RM workflow involves individually identifying the trimer lobes, a 
process that demands their segmentation from each other. This segmentation is similar to the one used for the 
dumbbells but not rigorously the same. The strategy to use a more sensitive watershed transformation on the 
second segmentation run fails to deliver consistent segmentation between T2 and T3 (see the Supplementary 
Information section, Fig. SI 1 and 2). The source of this problem is the fact that the watershed algorithm segments 
between elements based on their boundaries. The reliance on the boundaries of the elements leads to failures 
when discerning between overlapping regions31. The failure in segmenting between the projections of T2 and 
T3 reflects the high overlap between the circular projections of these lobes and confirms the limitations of the 
watershed segmentation method. These limitations led to the need to perform manual measurements to the RM 
to characterize T1, T2, and T3 individually. This approach was based on manually projecting ellipses over each 
of the lobes (Fig. 4C). This method takes around 10 h of labor to measure each set of images containing around 
500 trimers and is subjected to human interference and bias54. The lengthy process of identifying the lobes using 
manual fitting and the inherent susceptibility to biased results highlight the need to develop a more efficient and 
accurate automated segmentation method.

The masking obtained using the SAM (Fig. 4F) shows how the segmentation between the lobes can be 
achieved with little to no trimers failing to be segmented. The first step in the morphological characterization 
is the identification of the lobes as elements of a particle. This process was conducted by minimizing the sum 
of distances between the centroids. The second step is determining the largest angle between the centroids of 
the three lobes present in a given set (θ). The SAM segmentation of the trimer images, in contrast to the RM, 
made the determination of each lobe’s centroid using non-overlapping elements feasible. The methodological 

Measurement Reference method SAM-based method

Mean (nm) SD (nm) PDI Mean (nm) SD (nm) PDI

Diameter large lobes D1, d
D1,n

178 8 1.0023 180 7 1.0015

Diameter small lobes D2, d
D2,n

158 10 1.0036 164 8 1.0022

Distance D1D2, l
D1D2,n

122 5 124 9

Table 2. Overview of morphological data obtained for the DiPS sample using both RM and SAM. The values 

for the mean diameter of the large lobes (d
D1,n

), for the mean diameter of the small lobes (d
D2,n

), and for 

the mean distance between the lobes in each dumbbell (l
D1D2,n

) show a high level of agreement between the 

two methods. The same is also observed for the deviations in SD and PDI observed for the three analyzed 

distributions. The fact that very similar results are found when using either RM or SAM indicates that the 

latter can be used without detriment to the morphological analysis. This also confirms that it is possible 

to automatize the analysis of complex particles, including the determination of collective morphological 

properties.
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difference between RM and SAM in segmenting T1, T2, and T3 leads to measuring two different values for the 
same angle (Fig. 4D). This is observed with the trimer angle for the RM (θ

RM
) being larger than the trimer angle 

measured for the SAM (θ
SAM

). The methodological difference between the RM and the SAM when determining 
the centroid and the angle is illustrated in Fig. 4E. The determination of morphological aspects using centroids 
as references follows the common practice in modern simulations12,61.

It was shown that using the RM to segment the lobe projections on the images of TriPS requires manually 
fitting ellipses to each trimer lobe. This leads to errors arising from the overlap between the projections of the 
lobes when determining θ and the distance between the lobes (Fig. 5D–F). This contributes to the centroids of 
each lobe being identified in a different position from their expected location, thereby skewing the lobe distance 
distributions. The comparison of the RM to the SAM regarding the distance distribution between the lobes 
T1 and T2 (l

T1T2
) (Fig. 5D) shows a small discrepancy between the methods. The proximity between the l

T1T2
 

measurements can be expected due to the low degree of overlap between the projections of the lobes T1 and T2. 
As the overlap between the ellipses fitted to T1 and T2 is low, the shift in the relative positions of the lobes is 
also low. For the distance between the lobes T2 and T3 (l

T2T3
) (Fig. 5E), however, the discrepancy between the 

distributions obtained with the RM and with the SAM is larger. The larger disagreement is seen due to the larger 
degree of overlap between the projections of T2 and T3. As the projection overlap is high, so is the shift in the 
relative centroid position of the masks used in RM. The shift in the relative positions of the centroids of T2 and 
T3 when RM is used explains the discrepancy between (l

T2T3
) measured using RM and SAM. When the distance 

distributions between the lobes T1 and T3 (l
T1T3

) are observed (Fig. 5F), a disagreement between the RM and 
the SAM is found. The overlap of the projections of T1 and T3 with the projection of T2 for RM can explain this 
finding. The discrepancy between the lobe distance data gathered using SAM and RM once more corroborates 
the efficacy of employing a non-overlapping masking technique in the form of SAM to morphologically 
characterize particles from micrographs. Additionally, the manual fitting of masks can lead to errors regarding 
the size distribution of the lobes23,54. This assumption is supported by the size distributions observed for all the 
trimer lobes (Fig. 5). It can be seen that the diameter distributions of T1 (d

T1
) (Fig. 5A), T2 (d

T2
) (Fig. 5b), and 

T3 (d
T3

) (Fig. 5C) are different when measured using RM or SAM.
It was observed that the values determined for θ, inter-lobe distances, and lobe sizes differ between BM and 

SAM. This observation was taken from the distributions presented in Figs. 4 and. 5 and shown in detail in Table 
3. Part of the error associated with measuring the individual lobes manually can be attributed to human bias 
when creating the masks for these individual trimer lobes23,54. Additionally, RM itself is credited as a source of 
systemic error due to the nature of the overlapping projections of each trimer lobe. Because of that, the results 
would still fail to indicate the correct positions of each lobe, even with a perfect manual fit. This positioning error 

Figure 4. Comparison of different segmentation algorithms applied to the same image of the TriPS sample. 
(A) When the watershed algorithm is applied with low sensitivity to the trimer nanoparticles, it is possible 
to segment between them. (B) When the sensitivity is set to a higher value, however, the segmentation is not 
complete, and the lobes T2 and T3 are still identified as a single element. As the segmentation between T2 
and T3 cannot be done solely using the watershed algorithm, the masks for each of the trimer lobes must be 
made manually (C). This makes the created masks overlap with each other, shifting the centroids from the 
trimer lobes and resulting in deviations in the trimer angle distribution (D,E). The shift, together with the 
unavoidable human bias present when the masks are manually prepared, urges for the development of a non-
biased automatized method to characterize multi-lobe particles morphologically. The SAM segmentation of 
lobes is such a method (F) and succeeds in segmenting the lobes T2 and T3 from each other. The scale bars on 
the micrographs represent 250 nm.
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is unavoidable when circles are projected over lobes made up of overlapping spheres. This underlines the need 
to use segmentation methodologies capable of creating masks for complex nanoparticles without overlapping 
labels. The measurement of collective morphological properties like the lobe distances and the trimer angle 
confirm that the masks identifying the trimer lobes can be assigned to each other. This assignment represents an 
advancement to what is currently present in the literature for similar works.

Conclusion
The study presented a novel method that uses a pre-trained deep learning model to automate the segmentation 
and morphological characterization of nanoparticles with varying degree of complexity from micrographs, 
showing higher accuracy and faster analysis than traditional methods. The deep learning model, known as the 
Segment Anything Model (SAM) had already been undergone generalist training. The stage that required the 
longest time, namely the model training, is therefore no longer necessary. This significantly reduces the time 

Measurement Reference method SAM-based method

Mean (nm) SD (nm) PDI Mean (nm) SD (nm) PDI

Diameter trimer lobe T1, d
T1,n

170 10 1.0033 178 8 1.0033

Diameter trimer lobe T2, d
T2,n

168 11 1.0044 178 14 1.0063

Diameter trimer lobe T3, d
T3,n

204 9 1.0018 216 11 1.0023

Distance T1T2, l
T1,T2, n

109 12 114 9

Distance T2T3, l
T2,T3, n

100 13 124 9

Distance T1T3, l
T1,T3, n

201 18 224 16

Mean (◦) SD (◦) Mean (◦) SD (◦)

 Trimer angle, θ
n

154 19 146 22

Table 3. Overview of morphological data obtained for the TriPS sample using both the RM and SAM. The 

deviations in the values between the values obtained using the RM and the SAM point to the fact that the data 

collection for the RM is not ideal. RM demands that overlapping projections to be fitted to the trimer lobes 

manually. This effectively works as a source of systemic error and explains the disagreement in the values 

observed between RM and SAM.

 

Figure 5. Lobe diameter distributions as measured for (A) T1 (d
T1,n

), (B) T2 (d
T2,n

), and (C) T3 (d
T3,n

) 
using both the manual RM and the automatized SAM. All the diameter distributions obtained using the RM 
are smaller than the ones obtained using the SAM, reflecting errors related to the overlap of the particles’ 
projections and possible human bias. The distributions of the distances between the lobes (D) T1 and 
T2 (l

T1,T2
), (E) T2 and T3 (l

T2,T3
) and (F) T1 and T3 (l

T1,T3
) also differ between RM and SAM. This latter 

discrepancy can be credited to the overlap between the lobes, which is not taken into consideration for the RM. 
This overlap between the masks in the RM measurements shifts the centroids of the lobes and leads to systemic 
error in the determination of the correct positioning of the trimers’ lobes and reflects on the distances between 
them.
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required for the entire analysis, making it much faster than manual measurements or dedicated deep-learning 
models.

A comparison of the results obtained using the SAM model with those obtained through a traditional 
approach allowed for the validation of the data and demonstrated that the acceleration of the analysis did not 
result in any loss of accuracy. The novel method thus avoids the need for labor-intensive manual measurements 
The comparison further demonstrated that the SAM-based method presented here is effective in segmenting 
between instances where the traditional erosion and dilation-based methods fail, offering an accurate and 
reliable approach for analyzing complex nanoparticles.

This is particularly important in the case of particles composed of segments with highly overlapping circular 
projections. The handling of partial overlap between individual segments within segmented particles or particle 
aggregates represents a significant challenge in the field of image segmentation. The evaluation of pre-trained 
segmentation models with particle dimers and trimers has revealed the distinctive capabilities of the SAM models 
in addressing this challenge. This is achieved through the identification of labels derived from the overlap of 
multiple masks, enabling the appropriate treatment of these complex structures. The appropriate assignment of 
subdivisions within a complex particle is made in accordance with the particle to which they belong, facilitating 
the extraction of more detailed information from a single image. This enables the utilization of the method even 
in instances where a meticulous determination of ground truth is unfeasible, despite the most rigorous manual 
evaluation, due to the superimposition of neighboring structural elements. In light of the methodology that 
has been developed thus far, a future direction is to expand the method for compositional analyses of samples 
comprising different sets of particles. It is hypothesized that this advancement could be achieved through post-
processing utilizing the masks generated by our method. This would facilitate new avenues in the investigation 
of aggregation processes that are of practical relevance in diverse fields. Furthermore, it is anticipated that the 
method can be expanded to other structures and systems, extending beyond the fields of colloidal particles and 
microscopy.

Data availability
Complete experimental data and developed codes are accessible via the institutional server registered with the 
DOI 10.48606/EsfTYSZxEqPwiVkZ. All accession codes are available via GitHub.
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