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In previous work, we have developed a method to approximate quantum thermal expectation values of spin systems using a
path integral approach in the framework of atomistic spin dynamics. In the present work, we extend this model from a single spin
coupled to a constant magnetic field, to the more general case of a system of spins coupled by isotropic Heisenberg interaction, in
a potentially time-dependent magnetic field. In a first approximation, the classical atomistic model is extended by an effective field
which for every interaction pair, depends only on the two interacting spins. This implies that we have a straightforward generalisation
from 2 to N interacting spins. We compare our results to exactly solvable cases using exact diagonalisation for two-spins.

Index Terms—Atomistic spin dynamics, Path-integrals, Quantum spin systems, Stochastic simulations.

I. INTRODUCTION

IN CONDENSED MATTER physics, it can be a useful

trick to map a classical system onto a quantum equivalent

one, which can sometimes be more easily solved. As a rule

of thumb, however, solving quantum problems is more tricky

because of the exponential scaling of the Hilbert space with

the size of systems. Hence a more popular approach is to map,

or at least to build an approximation method from the initial

quantum problem to a more readily solvable classical one.

This is often called classicalisation and is used in the context

of quantum optics where one can approximate a quantum

system in contact with a thermostat as a classical but stochastic

system, depending on the bath properties [1]. Following this

idea, and inspired by path integral molecular dynamics [2], we

have developed an approach in the context of atomistic spin

dynamics [3] for deriving quantum thermal expectation values

of quantum spin systems using a path integral approach. In

the present work, we have extended our former model from a

single spin interacting with a constant magnetic field [4], to a

system of two spins coupled by Heisenberg interaction and a

more general - potentially time-dependent - magnetic field.

II. THE QUANTUM SYSTEM AT HAND

We begin with two quantum spins defined by their joint

state |QS⟩ ≡ |s1,m1; s2,m2⟩ and the action of the operators
ˆ⃗
S(i) and Ŝ

(i)
z on these states







(

ˆ⃗
S(i)

)2

|s1,m1; s2,m2⟩ = si(si + 1) |s1,m1; s2,m2⟩

Ŝ(i)
z |s1,m1; s2,m2⟩ = mi |s1,m1; s2,m2⟩ .

(1)

As mentioned in the introduction, they are coupled to each

other by isotropic Heisenberg exchange and to an external

field by a Zeeman interaction

Ĥ = −
gµB

ℏ
B⃗ ·

(

ˆ⃗
S1 +

ˆ⃗
S2

)

−
J

ℏ2

ˆ⃗
S1 ·

ˆ⃗
S2 (2)

where g is the electronic lande g-factor, µB is the Bohr

magneton, ℏ is Planck’s reduced constant and J is the ex-

change constant. This yield a partition function defined as the

following trace

Z =

(s1,s2)
∑

(m1,m2)=−(s1,s2)

⟨QS| e−βĤ |QS⟩ (3)

where β = 1
kBT

, kB is Boltzmann’s constant and T is the

temperature. For B⃗ constant, one can always choose the quan-

tisation axis such that only Bz is non-zero and it is then always

possible (in principle) to exactly solve by diagonalisation of

the Hamiltonian [5]. This is useful to provide a reference to

compare to the approximated scheme, which we will derive

in the next section and which can be used more generally.

III. EFFECTIVE HAMILTONIAN DERIVATION PROCEDURE

A. From a discrete to a continuous description

The first step is always, as was the case in our previous

work, to use spin coherent states [6] labeled as |z1; z2⟩, defined

as

|z1; z2⟩ =

(

1 + |z1|
2
)−s

(1 + |z1|2)
s exp

(z1

ℏ
Ŝ
(1)
− +

z2

ℏ
Ŝ
(2)
−

)

|0⟩ (4)

where |0⟩ ≡ |s1, s1; s2, s2⟩ and z1 and z2 are complex. Using

these spin coherent states, we recover a continuous description

in terms of an integral partition function, rather than a sum

Z =

∫

dµ(z1)dµ(z2) ⟨z1; z2| e
−βĤ |z1; z2⟩ (5)

where the integration measures are required to ensure the

resolution of unity. Up to this point, the method is exact. To

go further, we need to be able to compute an approximation

of the expectation value contained in (5).



B. Approximating expectation values

We now we expand the exponential as

⟨z1; z2| e
−βĤ |z1; z2⟩ = 1− β ⟨z1; z2| Ĥ |z1; z2⟩

+
β2

2
⟨z1; z2| Ĥ

2 |z1; z2⟩+ . . .
(6)

where the first corrections appear in the term
β2

2 ⟨z1; z2| Ĥ
2 |z1; z2⟩. Depending on the desired

order N of approximation, one needs to compute
βN

N
⟨z1; z2| Ĥ

N+1 |z1; z2⟩ which yields an approximate

expression of the form

⟨z1; z2| e
−βĤ |z1; z2⟩ ≈ F [β, z1, z̄1, z2, z̄2] (7)

Here again the spin coherent states prove useful as there is

a mapping from the spin coherent states, in terms of complex

z1 and z2, to unit vectors n⃗1 and n⃗2 such that

F [β, z1, z̄1, z2, z̄2] = F [β, n⃗1, n⃗2] (8)

It is this expression that is used to derive an effective classical

Hamiltonian.

C. Mapping to classical Hamiltonian

Once we have an expression in terms of classical vectors, we

need to rewrite the approximated form (8) as an exponential.

Taking the exponential of the logarithm, we have

F [β, n⃗1, n⃗2] = exp(ln(F [β, n⃗1, n⃗2])) (9)

and we know that F [β, n⃗1, n⃗2] = 1 + f [β, n⃗1, n⃗2] where

f [β, n⃗1, n⃗2] → 0 as β → 0. Hence we can perform a Taylor

expansion as β → 0 for the logarithm, and we finally end up

with an expression of the required form

Zapp =

∫

dn⃗1dn⃗2e
βHeff[β,n⃗1,n⃗2]. (10)

where the effective Hamiltonian is temperature dependent. We

will now use this effective Hamiltonian for atomistic spin

dynamics simulations

IV. ATOMISTIC SIMULATIONS

Using the standard method of atomistic spin dynamics, we

can derive an effective field from the Hamiltonian as

B⃗
(i)
eff = −

1

gµBs

∂Heff

∂n⃗i

(11)

where n⃗ is our normalised magnetic moment, which is then

dynamically sampled with the Landau-Lifshitz-Gilbert equa-

tion

˙⃗n(i) = −
γ

1 + α2

(

n⃗(i) × B⃗
(i)
eff + αn⃗(i)

(

n⃗(i) × B⃗
(i)
eff

))

(12)

where γ is the gyromagnetic ratio and α is the Gilbert damping

parameter.

We have performed atomistic simulations of (12) using a

symplectic integration scheme, for the exactly solvable case

of 2-spins in a constant magnetic field along the z-direction.

Results are displayed in Fig. 1 along with exact diagonalisation

results as a reference.
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z

® =
s (

ħ) s=3=2, J=1:0g¹B
exact quantum solution
classical-limit ASD
quantum-approximation ASD

Fig. 1. Total spin z-component normalised expectation value as a function
of temperature for s = 3/2 and J = gµB . Dashed curves are results from
atomistic simulations for the classical limit (blue) and first quantum correction

(red) as ⟨Ŝz⟩ /s = nz = 0.5
(

n
(1)
z + n

(2)
z

)

. The yellow line is obtained by

exact diagonalisation.

The results show that for very low temperatures, our model

struggles to capture the correct expectation value and grows

above the value of the normalisation (we would like to empha-

size that the expectation values require a normalisation factor

for reasons specified in [4]). However, the quantum corrected

model very quickly moves towards the exact quantum solution

and around T = 3K we obtain results very close to the

quantum expectation value with our approximate method,

significantly improving on the classical model.

V. CONCLUSION

We have shown that it is possible to approximate quantum

thermal expectation values of interacting quantum systems

using a path-integral approach in the framework of atomistic

spin dynamics simulations. In this method, the underlying

quantum nature of the spins is translated into an effective field

which contains both the classical limit, as well as additional

terms which represent quantum fluctuations in an effective

way. Moreover, in a first approximation, the effective field

depends only on the interacting pair and can thus straightfor-

wardly be generalised to N interacting spins, providing a way

to efficiently simulate quantum thermal expectation values for

very large interacting spin systems.
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