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Classification of microstructural defects in
selective laser melted inconel 713C alloy
using convolutional neural networks

Ethan L Edmunds and Meurig Thomas

Abstract

Microstructural defects are commonly found in additively manufactured materials and can have significant effects on the

material’s bulk properties. This warrants defect detection and classification during microstructural evaluation, which is
often laborious, costly, and can yield sub-optimal results if done manually. Previous attempts to facilitate automated clas-

sification in additively manufactured nickel-alloys have used supervised machine learning methods, such as kth-nearest

neighbour classification and decision trees. This study proposes and evaluates the use of convolutional neural networks
for microstructural defect classification in selective laser melted Inconel 713C samples. It outlines the process used to

create, augment and expand the dataset, as well as hyperparameter selection for the neural network architecture to

yield optimal classification performance.
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Introduction

Additive manufacturing (AM) is a class of manufacturing

processes, that enables the creation of components,

layer-by-layer using a high-energy heat source, from three-

dimensional models. The characteristics of AM lead to

various advantages when compared to traditional manufactur-

ing processes. For instance, AM enables the production of

intricately complex parts with enhanced design flexibility,

optimises structural topology to improve mechanical proper-

ties, consolidates multiple components into single units to

reduce weight and cost, and supports on-demand production,

collectively enhancing efficiency, cost-effectiveness, and

environmental sustainability.1–3 While these advantages are

significant, further exploration is needed to deepen our under-

standing of the “process-microstructure-property” relation-

ship in AM, which would enhance the design and

optimisation of materials and manufacturing processes.4

Components produced using AM methods are typically

prone to the presence of microstructural defects, such as

lack of fusion defects, gas porosities, solidification cracking

and keyhole collapses, which pose risks in structural applica-

tions, especially when under cyclic loading conditions.5,6 For

these reasons, studying the “process-microstructure-property”

relationship is vital to advancing the performance of engineer-

ing components. An essential part of the investigation of this

relationship is correctly detecting and classifying microstruc-

tural defects from microstructural images. However, when

performed manually, the detection and classification of

microstructural defects can often be laborious, costly and

yield suboptimal results, suggesting the need for an alterna-

tive strategy to detection and classification.7

Machine Learning (ML) is a branch of Artificial

Intelligence that offers a solution to data analysis in the field

of materials science. It focuses on pattern identification and

cognitive acquisition concepts, which optimise performance

criteria based on example data or past experiences.8,9 In the

field of AM, supervised and unsupervised machine learning

methods have been used for a variety of microstructural detec-

tion and classification applications. For instance, unsupervised

learning has been used to classify gas pores, keyhole pores

resulting from excessive energy input, and lack of fusion

pores caused by insufficient energy input.10 Unsupervised

machine learning has been employed to identify and classify

anomalies in a laser powder bed additive manufacturing

process using a moderately-sized training database of image

patches.11 K-means clustering, a supervised ML model, and

support vector machines, a unsupervised ML model, have
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been used to detect porosities in thin-walled aluminium alloy

structures with an average classification accuracy of 99%.12

Deep Learning, another subset of ML algorithms, has

been pivotal in advancing the state-of-the-art across

various domains, including speech and visual object detec-

tion and classification.13,14 Deep Learning algorithms are

better at learning complicated patterns from more

complex datasets, leading to their increased use in materials

science applications. For instance, it has been used to distin-

guish between metallic morphologies with dendrites and

those without.15 It has also been used for lath-bainite seg-

mentation in complex-phase steel, achieving an accuracy

of 90% which rivals the accuracy of expert segmenta-

tions.16 Deep learning has also found use in the design of

new materials and to link microstructural characteristics

to the material’s bulk properties.17,18 For an overview on

the previous use of deep learning approaches in microstruc-

tural characterisation, the reader is directed to these

resources for more information.16,19 In particular for AM,

Deep Learning has been used to enhance process monitor-

ing and quality identification by automatically analysing

image data of manufactured parts with Convolutional

Neural Networks (CNNs).20 Graph autoencoders with

graph convolutional networks have been used to analyse

and design micro lattice architectures by mapping structures

to mechanical properties and reconstructing designs based

on desired properties.21 Finally, PyroNet, a CNN-based

model, and IRNet, a Long-term Recurrent Convolutional

Network-based model, have been used for in-situ porosity

detection in laser-based AM, fusing predictions from both

networks for improved accuracy.22 For more information

on the applications of deep learning in additive manufactur-

ing, the reader is directed to the following articles.23,24

This paper builds on the work of Aziz et al. who used k-th

Nearest Neighbours (kNN) and decision tree algorithms to

classify defects found in a variety of nickel-alloys with

89.8% and 90–92% accuracy respectively.25 In this study,

CNNs are used to automatically classify the different types

of defects that are present in Inconel 713C alloy. It will

outline the process to sourcing binary images of individual

defects from micrographs of the alloy samples, the preproces-

sing that the dataset underwent, as well as the methodologies

used for CNN optimisation including hyperparameter tuning

and data augmentation. It will then evaluate the efficacy of

neural networks as a method to classifying defects, comparing

the network’s performance to that of the supervised machine

learning methods used by Aziz. et al.25

Methodology

Dataset creation and preparation

A range of micrographs of the Inconel 713C alloy samples

were produced using selective laser melting during a research

program at the University of Sheffield, with varying settings for

power, beam velocity and hatch spacing.26 The micrographs,

an example of which is shown in Figure 1, were then imported

into MATLAB and converted into a binary image, clearly

showing the microstructural defects. The scale, shown on the

bottom, along with defects that intersected the border of the

micrograph were removed, to ensure the quality of the

dataset. In addition, defects that were too small (below 10

pixels in area), were excluded as low-resolution images

made manual classification challenging. After filtering

unwanted data, individual binary images of the defects in the

micrographs were created, as illustrated in Figure 1. The

images were categorised into specific classes: ‘crack’, ‘pore’,

‘lack of fusion’, and ‘pore with crack’ defects. This process

was applied to the 18 micrographs, yielding a dataset of

4800 binary images of microstructural defects. In this

dataset, there were 1807 ‘crack’ defects, 900 ‘lack of fusion’

defects, 1830 ‘pore’ defects, and 263 ‘pore with crack’ defects.

Figure 1. Example micrograph used to create the dataset, with example binary images of each defect type that were found in the
micrographs. This includes (b) ‘crack’, (c) ‘pore’, (d) ‘lack of fusion, and (e) ‘pore with crack’ defects.
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Data augmentation

The defect dataset images were standardised to a size of 200

× 200 pixels. It should be noted that resizing images can

lead to some loss or distortion of the original information,

as shrinking an image may lead to loss of detail, and enlar-

ging an image may lead to pixelation.27 This may affect the

accuracy of subsequent image analysis or ML models that

rely on high-quality data. Data augmentation was also

applied to the dataset. Deep learning models typically

demand extensive datasets to gather sufficient information

and patterns for effective training and performance. Data

augmentation can support with mitigating overfitting to

training data, which would result in the model’s poor gen-

eralisation performance on unseen samples.28,29 In this

work, augmentation involved a random reflection on the

X and Y axis of the image, a random rotation of the

image from 20 to −20 degrees around its centre, and a

random scaling of 0.9 to 1.1. Following augmentation,

the dataset was compiled into a training dataset (70%)

and a validation dataset (30%).

Baseline model

To begin, a baseline neural network was created as a foun-

dational model for optimisation. It used a filter size of 5× 5

which was kept consistent for all subsequent model train-

ing. The baseline model consisted of 4 blocks and 10

filters per block. Each block is of a standard architecture,

containing a two-dimensional (2d) convolution layer,

batch normalisation layer, rectified linear unit (ReLU)

layer and a max pooling layer as shown in Figure 2. 2d con-

volution layers apply convolution operations, where kernels

(filters) slide over the input image to extract features such as

edges, textures or patterns.30 Batch normalisation layers sta-

bilise and accelerates training by normalising activations

from the previous layer in the network.31 ReLU layers are

an activation function that introduce non-linearity into the

model, enabling the CNN to learn more complex patterns

from the input data,32 while max pooling layers downsam-

ple spatial dimensions to reduce computational cost and

emphasise the most significant features.33 By varying the

number of blocks and ‘stacking’ them on top of each

other, we achieve a network with different architectures,

modifying its ability to learn the patterns from the training

data and improving overall performance. For a more

detailed description of Deep Learning and CNNs, the

reader is directed to this textbook for more information.34

Hyperparameter tuning and optimisation

An important feature of designing and optimising neural

networks is hyperparameter tuning.

In ML models, there are two types of parameters to con-

sider: model parameters, which are initialised internally in

the model and vary as the machine learning algorithm

learns (such as weights of neurons in a neural network),

and hyperparameters, which are freely selectable external

parameters that do not vary while the model is learning.35,36

In the context of neural networks, hyperparameters are set-

tings that can be changed to influence the learning process

(such as training time, learn rate, or batch size) and the

architecture of the neural network (such as number and

type of hidden layers and number of neurons).37,38

Hyperparameter optimisation algorithms are useful

because they enhance neural network performance by tai-

loring its architecture to the specific dataset and application,

standardise comparisons between models, and reduce

human effort required to explore possible combinations of

hyperparameters.36 In this work, two methods of hyperpara-

meter optimisation were performed: (i) Grid-search and (ii)

Bayesian optimisation.

Grid-search is a basic hyperparameter tuning method

where a model is built using each combination of hyperpara-

meters, trained, and then evaluated based on its performance.39

In this grid-search, the number of blocks and filters in the

CNN were explored, to evaluate which combination of these

two CNN characteristics yields the optimal performance for

microstructural defect classification. A disadvantage to grid

search is that as the range of values being explored increases,

the computational efficiency of the algorithm drastically

decreases. To combat this, each model trained during grid

search used 25% of the training dataset, improving computa-

tional efficiency of the algorithm. The optimal CNN architec-

ture that yielded the optimal results in grid search was then

trained with the full training dataset, to evaluate its perform-

ance on the full dataset and standardise training. During grid-

search, CNN architectures with 2–7 blocks and 5–25 filters

(with increments of 5) were explored.

Figure 2. General structure of a convolutional neural network
(CNN) highlighting (a) the feature extraction ‘blocks’ and (b) the
classification layers for processing input datasets into output
labels.
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Bayesian optimisation is a more advanced approach to

hyperparameter optimisation. The algorithm builds a response

surface model using the mean and uncertainty predictions to

guide the selection of subsequent data collection.40 It’s

ability to ‘learn’ from previous iterations makes it a more effi-

cient approach to hyperparameter selection and Neural

Architecture Search when compared to grid search.41 Due to

this improvement compared to grid search, the scope of hyper-

parameters explored during optimisation was widened. This

included varying the number of blocks, number of filters,

initial learn rate, mini batch size, learn rate drop factor, and

learn rate drop period.

Results and discussion

Original dataset

Confusion matrices describing the performance of the base-

line model and models produced using optimisation

methods are shown in Figure 3. Confusion matrices

display the counts of actual versus predicted classifications

provided by the model, with each cell in the matrix repre-

senting the frequency of predictions for each class, includ-

ing both correct and incorrect predictions. Confusion

matrices allow for the evaluation of overall model accuracy

and assists with identifying the model’s weaknesses when

classifying certain types of defects. Table 1 presents the per-

formance of each model in accurately classifying defects

within the validation dataset along with its total accuracy.

The network produced by gridsearch optimisation con-

tained 7 blocks and 10 filters, whereas Bayesian optimisa-

tion yielded a model with 8 blocks and 26 filters. There

was a steady increase in model classification performance

as different optimisation methods were used to vary the

hyperparameters of the model, with the Bayesian optimised

model yielding the highest overall classification perform-

ance. This suggests that CNNs with more complex architec-

tures yield better results, as they are better able to capture

distinctive features between different types of microstruc-

tural defects, which has been found in prior research.42,43

Similar to supervised ML models produced by Aziz

et al.,25 the CNNs faced consistent challenges in accur-

ately classifying ‘pore with crack’ defects. These defects

combine the characteristics of ‘pore’ and ‘crack’ defects,

which already exist as separate classes in the dataset.

The CNNs struggle due to overlapping features between

these classes, making it difficult to distinguish and classify

them effectively. ‘Pore with crack’ defects may overlap

with ‘pore’ or ‘crack’ defects due to shared visual features

such as round void shapes from pores and linear, sharp

features from cracks. Moreover, this disparity could also

stem from the imbalance in the dataset, where there were

only 263 instances of ‘pore with crack’ defects out of a

total of 4800 defects. This imbalance may suggest that

the model is overfitting to the more prevalent defect

types.44,45

Despite it’s poor performance in correctly classifying

‘pore with crack’ defects, the models showed strong cap-

ability at distinguishing between ‘lack of fusion’, ‘pore’

and ‘crack’ defects. The final model produced by

Bayesian optimisation showed a overall performance of

91.6%, which is similar to that of models produced by

Figure 3. Confusion matrices showing the performance of the baseline, grid-search optimised, and Bayesian optimised models for
classifying ‘crack’, ‘pore’, ‘lack of fusion’ and ‘pore with crack’ defects in the original dataset. The validation dataset consists of 1439
instances.

Table 1. Summary of accuracy for baseline, grid-search

optimised, and Bayesian optimised models in correctly classifying

defects in the original dataset. The validation dataset consists of

1439 instances.

Defect Type

Baseline

Model

Grid-search

Optimised

Model

Bayesian

Optimised

Model

Crack 93.3% 96.3% 96.5%

Lack of Fusion 84.8% 92.8% 85.1%

Pore 97.4% 95.2% 97.8%

Pore with Crack 5.3% 9.2% 35.5%

Total 88.6% 90.6% 91.6%
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Aziz et al.25 It should be noted when compared to kNN

classification and decision trees, the training and optimisa-

tion of CNNs for classification is significantly more time-

consuming and computationally intensive. Moreover, the

performance of the optimal models do vary each time

the model is trained as shown in Figure 4. The variability

observed in our model’s performance across different

training sessions shows the influence of factors such as

initial weight settings,46 data shuffling,47 and hyperpara-

meter choices.48 The randomness in training neural net-

works highlights the importance of training models

multiple times and reporting average performance

metrics to ensure reliable and robust model performance,

which is discussed further in Model evaluation and com-

parison. The overall accuracy of models produced by

Bayesian optimisation is similar to that of deep learning

models used for a variety of other applications in materials

science, such as models that classify dendritic and non-

dendritic microstructures and models that segment lath-

bainite in complex-phase steel, which are both roughly

90% accurate.15,16

Synthetic dataset

To address the sub-optimal performance in classifying

‘pore with crack’ defects, the original dataset was expanded

using data augmentation techniques to create a dataset con-

taining ‘synthetic’ data. Data augmentation is a valuable

tool in deep learning, enabling the expansion of datasets

for improved training and validation.49,50 In this study,

the augmentation process included randomly reflecting

the images along the X and Y axes, rotating the images

between 20 and −20 degrees around their centre, and

scaling the images randomly between 0.9 and 1.1. During

augmentation, the ‘pore with crack’ defect class was

expanded to 1052 instances – 4 times larger than the original

size. After augmentation, the data was divided into a training

set (70%) and a validation set (30%). The ‘crack’, ‘pore’ and

‘lack of fusion’ classes were not expanded as they were well

classified in previous models. The baseline model was

trained with 4 blocks and 10 filters. Grid-search optimisation

identified the optimal network configuration with 8 blocks

and 20 filters, while Bayesian optimisation yielded a CNN

with 9 blocks and 28 filters. The confusion matrices for the

models’ performance are provided in Figure 5, and their

accuracies are shown in Table 2.

Models trained on the synthetic dataset showed a 10%

improvement in ‘pore with crack’ classification for

Bayesian optimised models. However, the overall accuracy

decreased by roughly 10%, and ‘lack of fusion’ classifica-

tion accuracy dropped by approximately 15%. This

occurs because training on an imbalanced dataset often

leads to model bias towards majority classes, resulting in

poor generalisation on minority classes.44,45 By balancing

the dataset through augmentation, this bias is reduced,

leading to a more evenly distributed classification perform-

ance across all classes.

Model evaluation and comparison

It should be noted that other forms of performance

metrics, such as sensitivity, precision and recall are

Figure 4. Variation in training accuracy and validation accuracy with number of training iterations for the baseline model (4 blocks and
10 filters) trained on the original dataset.
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also available for model performance evaluation.25 A

key consideration is that the synthetic dataset exhibits

a different class distribution to the original dataset,

with more ‘pore with crack’ defects. For this reason,

performance measurement tools must consider both

the size of the dataset and the distribution of class

labels. By doing so, the models trained on the original

dataset and synthetic dataset can by compared, while

reflecting these differences. This ensures that the com-

parisons accurately reflect the models’ abilities to gen-

eralise and perform well across varied data

distributions and sizes. The Matthews Correlation

Coefficient (MCC) is an example of such a performance

metric, that was initially used to compare chemical

structures,51 and was then proposed as a standard per-

formance metric for binary and multi-class machine

learning applications.52,53 The MCC has been found

to be a reliable metric for evaluating model perform-

ance, particularly when comparing different datasets,

because it accounts for all four categories of the confu-

sion matrix: true positives, true negatives, false posi-

tives, and false negatives.54–56 Unlike simple

accuracy, which only measures the proportion of

correctly classified instances, MCC provides a more

nuanced assessment by considering the full range of

classification outcomes. This makes it especially

useful in both binary and multi-class classification pro-

blems and when dealing with imbalanced datasets.57

The MCC ranges from −1 to +1. An MCC of +1 indi-

cates perfect prediction, 0 suggests no correlation and

predictions are no better than random chance, and −1

reflects complete disagreement with entirely incorrect

predictions. Table 3 shows the MCC scores for the

various models trained.

The scores indicate that the models proficiently classify

‘crack’, ‘pore’, and ‘lack of fusion’ defects, whereas ‘pore

with crack’ defects are generally less accurately classified.

Notably, models optimised using Bayesian optimisation

achieved the highest MCC scores overall. While there is a

slight improvement in the MCC score for ‘pore with

crack’ defects between models trained on the original and

synthetic datasets, there is a significant decrease in MCC

for the ‘crack’, ‘pore’, and ‘lack of fusion’ defects. This

behaviour reflects the trade-off involved in balancing a

dataset, as more balanced datasets lead to models that dis-

tribute their ability to correctly classify different defects

more evenly.

Training neural networks is inherently random due to

factors such as shuffled epochs, randomly initialised

weights, and biases. Additionally, it is important to note

that CNNs require significantly more computational

power to train compared to supervised machine learning

methods like kNN classification or decision tress. To

ensure model robustness, CNNs with architectures opti-

mised through Bayesian optimisation were trained 10

times each with overall accuracy being recorded. Each

time a model was trained, the training and validation data-

sets were randomised completely. Statistical data sum-

marising the average performance are presented in

Table 4, showing that the models are robust and

perform consistently in terms of accuracy.

Figure 5. Confusion matrices showing the performance of the baseline, grid-search optimised, and Bayesian optimised models for
classifying ‘crack’, ‘pore’, ‘lack of fusion’ and ‘pore with crack’ defects in the synthetic dataset. The validation dataset consists of 1677
instances.

Table 2. Summary of accuracy for baseline, grid-search

optimised, and Bayesian optimised models in correctly classifying

defects in the synthetic dataset. The validation dataset consists of

1677 instances.

Defect Type

Baseline

Model

Grid-search

Optimised

Model

Bayesian

Optimised

Model

Crack 91.5% 91.5% 92.6%

Lack of Fusion 62.6% 73.7% 70.7%

Pore 93.6% 95.4% 96.4%

Pore with Crack 36.7% 43.4% 44.0%

Total 72.2% 80.9% 81.2%
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Conclusions

This paper has proposed and explored the use of CNNs in

the classification of microstructural defects found in addi-

tively manufactured nickel-based superalloys. The various

CNNs produced have shown good capabilities in classify-

ing the variety of microstructural defects found in addi-

tively manufactured nickel-alloys. Classification

performance increases as the CNN’s architecture becomes

more complex, with increased number of layers and filters

in the model. CNNs trained on the original dataset and pro-

duced by Bayesian optimisation have shown the best per-

formance (approximately 92% accuracy) which is

comparable to the accuracy of supervised ML models pro-

duced by Aziz et al.,25 and deep learning models produced

for other tasks in materials science.15,16 Despite its success,

CNNs have consistently shown poor performance in cor-

rectly classifying ‘pore with crack’ defects, due to the

lack of data for this defect class and the overlapping fea-

tures it shares with the ‘pore’ and ‘crack’ classes. To

improve the model’s classification ability with ‘pore with

crack’ defects, data augmentation techniques were used to

increase the size of the dataset, creating more ‘pore with

crack’ defects for models to train on. While these models,

which used synthetic data, showed better performance

with ‘pore with crack’ classification, it’s classification

ability for the ‘crack’, ‘pore’ and ‘lack of fusion’ defects

suffered. Supervised ML models produced by Aziz

et al.25 also show difficulty with correctly classifying

these ‘pore with crack’ defects, suggesting alternative strat-

egies are needed to accurately predict these defects using

automated means. To enhance the accuracy of the CNNs

developed in this work, expanding the dataset of micro-

structural defects is recommended, providing the deep

learning algorithm with a more diverse and expansive train-

ing base. Transfer learning presents another approach to

CNN design, which involves repurposing a pretrained

CNN for defect classification. This technique can drastic-

ally reduce the number of images and computational

power needed for training, without much performance

drop.19 Finally, alternative network architectures like

Fully Convolutional Networks (FCNs) can directly

process images of varying dimensions, which could elimin-

ate resizing errors during preprocessing and improve model

robustness and reliability.58
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