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Abstract
Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor 

neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker 

based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole 

genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals. By comparing 

MN methylation with an atlas of tissue methylation we have derived a MN-specific signature of hypomethylated 

genomic regions, which accords with genes important for MN function. Through simulation we have optimised 

the selection of regions for biomarker detection in plasma and CSF cell-free DNA (cfDNA). However, we show that 

MN-derived DNA is not detectable via WGBS in plasma cfDNA. In support of our experimental finding, we show 

theoretically that the relative sparsity of lower MN sets a limit on the proportion of plasma cfDNA derived from MN 

which is below the threshold for detection via WGBS. Our findings are important for the ongoing development of 

ALS biomarkers. The MN-specific hypomethylated genomic regions we have derived could be usefully combined 

with more sensitive detection methods and perhaps with study of CSF instead of plasma. Indeed we demonstrate 

that neuronal-derived DNA is detectable in CSF. Our work is relevant for all diseases featuring death of rare 

cell-types.

Keywords Amyotrophic lateral sclerosis (ALS), Biomarker, Cell-free DNA, DNA methylation, Whole-genome bisulfite 

sequencing, IPSC-derived motor neuron
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Introduction
Amyotrophic lateral sclerosis (ALS) is an incurable neu-

rodegenerative disease where death results from motor 

neuron (MN) loss leading to respiratory failure. The 

design and development of novel therapeutics has been 

held back because of the lack of a specific biomarker. 

Currently, neurofilament proteins measured in plasma 

provide a non-specific readout of neuronal death [1]. 

Neurofilament proteins form important structural com-

ponents of the large myelinated axons which are found 

in MN. MN death triggers the release of neurofilaments 

from the cytoplasm into the extracellular space [2]; as a 

result the level of detectable neurofilament is a function 

of the rate of MN death, and thus neurofilament mea-

surement can be used as a biomarker of disease pro-

gression [1]. However, neurofilaments are not specific 

to MN and it is notable that serum neurofilament light 

chain (NfL) [3] is elevated in other neurological diseases. 

Indeed, for diagnosis of ALS, serum NfL is of limited 

value [4] even if it is useful for measuring the rate of pro-

gression. It follows that detection of a different marker 

which is released only from dying MN may outperform 

neurofilaments as a biomarker for ALS.

DNA methylation is fundamental to the control of gene 

expression and by inference, genomic methylation should 

be relatively cell specific. Cell-specific DNA methylation 

signals are stable between individuals, as was confirmed 

by a recent atlas of DNA methylation [5]. Moreover, DNA 

methylation is relatively stable over time [6]. Cell-free 

DNA (cfDNA) found in peripheral blood is the product 

of release from dying cells [7] and has been extensively 

proposed as a source of biomarkers in the cancer field 

[8]; methylated cfDNA is now the basis of FDA-approved 

applications e.g [9]. We hypothesised that a DNA methyl-

ation signature which is specific to MN, and is detectable 

within cfDNA, might be both sensitive and specific as a 

biomarker of the rate of MN death due to ALS.

We present whole genome bisulfite sequencing 

(WGBS) data from iPSC-derived MN from controls. 

These data complement our previously published epi-

genetic profiling from the same neurons [10]. It is prac-

tically difficult to obtain MN in sufficient quantity from 

post-mortem material to perform WGBS [11] and there-

fore we chose to focus on iPSC-derived MN which are a 

gold-standard model of ALS [12]. We note previous work 

demonstrating that DNA methylation changes detectable 

in iPSC-derived MN have correlates in ALS patient CNS 

tissue and in peripheral biofluids [13]. We have published 

WGBS of cfDNA from ALS patients and controls [14] 

but previously we lacked a MN signature for comparison. 

Here we show, using simulation and measurement, that 

MN-specific DNA methylation is not detectable within 

cfDNA in plasma by WGBS. Future work will evaluate 

our MN DNA methylation signature by other means and 

in other biofluids. Our approach is summarised in Fig. 1.

Results
Cell-specific DNA methylation within control iPSC-derived 

MN is similar to human adult CNS neurons

WGBS was performed at high depth to profile DNA 

methylation within iPSC-derived MN from two indepen-

dent differentiations from three neurologically normal 

individuals (Supplementary Table 1, Methods). A first 

question was whether the methylation signature of these 

neurons, which are derived in vitro, is consistent with 

CNS neurons obtained from human tissue.

WGBS sequencing data were processed and quality 

control (QC) was performed according to the ENCODE 

4 standards [16]. Methylation profiles of 205 samples cov-

ering 39 cell-types from an available methylation atlas [5] 

were combined with our samples, then used to segment 

the genome into blocks of co-methylated CpGs (Meth-

ods). Hierarchical unsupervised clustering was used to 

examine the relationships between samples (Methods, 

Fig. 2A). As expected, genome methylation within iPSC-

derived MN clustered closely with CNS neuronal sub-

types (Fig.  2B). On this basis we proceeded to use our 

data to identify MN-specific methylation (Methods).

Identification of cell-specific hypomethylated genomic 

regions

Next we derived DNA methylation changes specific to 

MN via comparison with the methylation profiles of 205 

samples covering 39 cell-types from an available methyla-

tion atlas [5]. Blocks of co-methylated CpGs that exhib-

ited hyper- or hypomethylation specifically in MN were 

identified (Methods) and taken forward for further analy-

sis. In total 8,729 regions were specifically hypomethyl-

ated in MN (Supplementary Table 2); hypomethylation 

indicates increased genomic accessibility suggestive of 

MN-specific function. A similar analysis identified 5,690 

blocks which were specifically hypomethylated in the 

total set of human CNS neurons compared to other cell-

types. The number of regions identified per cell-type var-

ied dramatically from 61,693 for gallbladder to 436 for 

colon fibroblasts.

MN-specific DNA methylation is linked to MN function but 

not to genetic risk for ALS

Cell-specific DNA methylation is typically hypometh-

ylated [5], which should be coincident with increased 

accessibility of underlying DNA over regulatory regions 

including enhancers [17]. As a validation of the regions 

we have identified, we examined the overlap of MN-spe-

cific hypomethylated enhancers and their target genes, 

with independent measurements of MN gene expression 

and ALS heritability (Fig. 3A).
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To derive associated genes from MN-specific hypo-

methylated DNA blocks, we applied the activity-by-

contact (ABC) model [15] to link regulatory regions to 

expressed genes within iPSC-derived MN (Methods). We 

found the total list of hypomethylated regions is associ-

ated with 2,046 expressed genes. We then tested this 

gene list for enrichment with gene expression specific 

to human cell types and tissues included in ARCHS4 

[18] using Enrichr [19], and found they were most sig-

nificantly enriched for genes expressed specifically in 

spinal motor neurons isolated from post-mortem tissue 

[20] (Fisher’s exact test, p = 4.22e-19, OR = 1.79, using 

the ARCHS4 database [18], Fig.  3B). This demonstrates 

that the methylation profiles of the iPSC derived motor 

neurons are congruent with transcriptional profiles of 

human motor neurons.

To further characterise the function of MN-specific 

hypomethylated genes we examined RNA-sequenc-

ing from iPSC-derived motor neurons obtained from 

245 ALS patients and 45 controls (www.answerals.org) 

(Methods). Genes linked to hypomethylated regions in 

MN were highly expressed within iPSC-derived MN 

compared to the background transcriptome (Wilcox rank 

sum test, p < 2.2e-16, Fig. 3C) which is consistent with an 

important role in MN function. Four genes were reported 

as differentially expressed (FDR < 0.05, negative binomial 

test) between ALS patients and controls in this data, but 

genes linked to hypomethylated regions in MN were not 

enriched within ALS-associated differentially expressed 

genes (Wilcoxon rank sum test, p = 0.25, Fig. 3D).

Finally, we performed linkage disequilibrium score 

regression (LDSC) [21] using a recent GWAS study of 

ALS [22] to examine disease-specific heritability enrich-

ment within MN-specific hypomethylated regions. 

Heritability for ALS was enriched within hypomethyl-

ated regions but this was not statistically significant 

(OR = 25.2, se = 26.05, p = 0.38, LDSC, Methods). We 

conclude that MN-specific DNA hypomethylation is 

Fig. 1 Derivation and biomarker evaluation of a hypomethylated DNA signature from whole genome bisulfite sequencing (WGBS) of human motor 

neurons. MN-specific DNA hypomethylation was used to assess the proportion of MN DNA within cfDNA in plasma from ALS patients (n = 12) and CSF 

from controls (n = 4). We sort to verify the validity of MN-specific DNA hypomethylated regions by linking regions to target genes and cross-checking 

those genes with independent observations of MN gene expression; we hypothesised that correctly identified hypomethylated regions should indicate 

regions of open, active and transcribed chromatin which should be statistically enriched in measures of MN-specific gene expression. We linked regions 

to target genes using the activity-by-contact (ABC) model [15]

 

http://www.answerals.org
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Fig. 2 iPSC-derived MN maintain a DNA methylation signature consistent with human adult neurons. (A) Whole genome bisulfite sequencing (WGBS) 

of genomic DNA derived from human iPSC-derived MN was used to derive a profile of genomic methylation within MN for comparison with methylation 

profiles of 205 samples covering 39 cell-types [5]. (B) Unsupervised clustering was used to assess cell-similarity and revealed that iPSC-derived MN (blue 

text) cluster together with human CNS neurons (green text)
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Fig. 3 MN specific DNA methylation is linked to MN function but not to genetic risk for ALS. (A) We used independent measurements of MN gene 

expression and ALS heritability to verify the biological validity of identified MN-specific hypomethylated genomic regions. MN-specific hypomethylated 

genes are enriched with genes expressed in human MN (B) and in human iPSC-derived MN (C). MN-specific hypomethylated genes are not differentially 

expressed in ALS iPSC-derived MN compared to control MN (D)
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associated with gene expression linked to MN function, 

but we find no conclusive evidence that there is a specific 

association with genes dysregulated in MN in a disease 

context.

An optimum set of hypomethylated DNA regions for ALS 

biomarker design

An important use of cell-type-specific methylation pro-

files is for the deconvolution of complex mixes of DNA 

to identify the proportions of contributing cell types. This 

has the potential to lead to a novel biomarker of ALS: 

Cell-free DNA (cfDNA) found within plasma is released 

from dying cells and thus, the quantity of DNA sourced 

from CNS neurons, and MN in particular, should be pro-

portional to the rate of MN death. Neuronal DNA is not 

normally seen in the plasma [5], which may be due to a 

low rate of neuron death or to the blood brain barrier, but 

brain-derived DNA has been detected in plasma under 

pathological conditions [23, 24] demonstrating its poten-

tial to serve as a biomarker.

To deconvolute plasma cfDNA we optimised the UXM 

algorithm [5] for the low coverage (~ 10x) typical of 

methylation studies of cfDNA; in particular we optimised 

the choice and configuration of MN-specific methyla-

tion blocks. The UXM algorithm was chosen as it makes 

use of read level methylation data, and has achieved 

accurate deconvolution of cell types present at propor-

tions as low as 0.1% [5]. Optimisation was performed 

using synthetic data generated by spiking WGBS data 

derived from plasma cfDNA of healthy individuals, with 

sequencing reads derived from human MN at a known 

proportion between 0.01 and 10% (Methods, Fig.  4A). 

We simulated relatively low coverage (10x) to match cov-

erage in the actual ALS cfDNA samples. We observed a 

linear correlation between the actual and predicted per-

centage of spike-in MN DNA with an adjusted r2 < 0.9 in 

all marker sets (Fig. 4B). A configuration of UXM using 

500 MN-specific blocks with a minimum of 3 CpGs pro-

duced the highest detection probability at 1% spike-in, 

but 500 blocks with a minimum of 4 CpGs performed 

better at both 0.5% and 0.1% spike-in (difference in detec-

tion probability between 0.1 and 0.2 at each % spike-in, 

Fig.  4C). However, we note that at spike-ins of ≤ 0.5%, 

AUC was poor for all sets of MN marker blocks. The 

greatest AUC (0.69) at 1% spike-in was achieved with 500 

blocks with a minimum of 3 CpGs, in keeping with its 

higher probability of detection (Supplementary Fig. 1A); 

this was the configuration taken forward to analyse ALS 

patient samples.

As seen in [5, 25], deconvolution frequently identi-

fied false-positive cell-types within the synthetic mix-

ture (Supplementary Fig.  2B). We used a linear model 

to examine the effect of coverage and number of marker 

regions the total number of cell types identified in a 

sample. Both coverage (p = 0.04) and number of mark-

ers (p = 3.7e-4) were significantly negatively correlated 

with the number of cell types identified, suggesting that 

increased coverage and using more marker regions per 

cell-type will reduce the number of cell types falsely iden-

tified within a mixture.

MN-derived DNA is not detectable within plasma cfDNA

When we applied our optimised deconvolution utilising 

500 MN-specific methylation blocks with a minimum 

of 3 CpGs to plasma cfDNA WBGS from n = 12 ALS 

patients we did not identify MN-derived DNA in any 

sample (Fig.  4D) suggesting that if MN DNA is present 

it is below the detectable limit of ~ 1% of plasma cfDNA 

(Fig. 4B-C).

Neuronal-derived DNA is detectable in CSF cfDNA

The cerebrospinal fluid (CSF) surrounds the spinal cord 

and brain, and is encapsulated by the inner cerebrospinal 

fluid-brain barrier. It might be expected that CSF cfDNA 

is enriched in neuronal DNA compared to plasma and so 

we attempted to fully characterise the contributing cell 

types within CSF cfDNA (Methods).

No WGBS data was available from ALS patient CSF 

cfDNA. We analysed WGBS of CSF cfDNA derived from 

four hydrocephalus patients [26]. Coverage was very low 

(0.12-0.45x, Supplementary Table 3) due to the low con-

centration of cfDNA within the CSF, so samples were 

merged to improve deconvolution accuracy. We discov-

ered that neuronal and oligodendrocyte DNA comprised 

13% and 14% of the total cfDNA with the remainder 

largely composed of a mix of blood, epithelial, and adipo-

cyte cell types (Supplementary Fig. 2); MN-derived DNA 

was not detectable in any sample. The contribution of 

adipocytes may in part reflect the lumbar puncture pro-

cedure used to collect CSF as DNA. The lack of a num-

ber of CNS-specific cell-types such as microglia within 

the reference leads to a possible assignment error which 

is impossible to quantify, and is likely responsible for the 

small proportion of epithelial and pancreatic cell types 

identified.

The theoretical maximum proportion of MN-derived DNA 

within plasma cfDNA is very low

We did not detect MN DNA in any ALS patient sample 

suggesting that if MN DNA is present it is below ~ 1% 

of plasma cfDNA. We questioned if this was a detection 

deficiency or whether there might be insufficient MN 

DNA for detection. To address this we modelled the the-

oretical maximum proportion of MN DNA that might be 

expected within plasma cfDNA (Fig. 5A).

Recent work [27] has estimated the effect of cellu-

lar turnover on the proportion of DNA derived from 

different cell-types detectable within plasma cfDNA. 
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Fig. 4 Optimised set of MN-specific hypomethylated genomic regions is not detectable in ALS patient plasma cfDNA. (A) We used a synthetic mix of 

WGBS reads from non-diseased plasma cfDNA together with spike-in reads from iPSC-derived MN to determine the optimum set of MN-specific regions 

for detection in ALS patient biosamples. (B) At spike-ins of 1–10% there is a linear relationship between spike-in and predicted MN DNA concentrations 

for all sets of MN-specific methylation blocks; p < 0.02, adjusted r2 > 0.998, Pearson’s product moment correlation coefficient. (C) At spike-ins ≲ 1% it is 

possible to detect reads derived from MN-specific regions but the detection probability is < 0.5. (D) MN-specific DNA is not detectable within ALS patient 

plasma
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The proportion of DNA released from dying cells that 

reaches cfDNA varies dramatically, from 3% of released 

DNA for megakaryocytes and endothelial cells, to 

0.003% for erythrocyte progenitors. Although there 

are > 86  billion neurons in the human CNS [28], lower 

MN are a rare subtype of neurons, and previous work 

has estimated that there may be < 500,000 in total [11]. 

Assuming optimum availability then 3% of released MN 

DNA will be detectable within plasma cfDNA, equal to 

that of megakaryocytes. If we assume all lower MN die 

over the course of disease, we can estimate the theoreti-

cal maximum proportion of MN DNA as a part of total 

plasma cfDNA as a function of the rate of disease pro-

gression (Methods, Fig.  5B). From this we can calculate 

Fig. 5 The theoretical maximum proportion of MN-derived DNA within plasma cfDNA is very low. (A) We can estimate the proportion of plasma cfDNA 

derived from MN based on the number of MN dying, the proportion of released DNA which reaches plasma cfDNA and the half-life of cfDNA. (B) For 

different disease durations between one and five years we estimate the proportion of plasma cfDNA derived from MN; and (C) we estimate the rate of 

MN-death necessary to achieve a given concentration within plasma cfDNA
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that even for the fastest theoretical disease progression 

rate, the plasma concentration of MN DNA would be 

several orders of magnitude smaller than our threshold 

for detection, primarily because of the small number of 

MN relative to other cell types. We have assumed a half 

life for cfDNA of 114 min [29]. In our simulation experi-

ments we achieved a detection probability greater than 

chance only when the proportion of cfDNA attributed to 

MN was > 1% (Fig. 4B-C) which determined the thresh-

old for theoretical detection.

We sought to estimate what rate of MN death would 

be required to produce a detectable concentration 

within cfDNA. Using the proportion of DNA from cel-

lular turnover detectable as cfDNA in the plasma from 

endothelial cell and erythroblasts as maximum and mini-

mum estimates, we show that even if all lower MN died 

within 24  h, their contribution to cfDNA would still be 

below the limit of detection for WGBS (Fig. 5C). We con-

sider this estimate of wider use to the field as it predicts 

whether a detectable quantity of cfDNA will be present 

from a known rate of cell death.

Methods
Our pipeline is summarised in Supplementary Fig. 1 and 

details of all software are provided in Supplementary 

Table 4.

Tissue culture and development of pure iPSC-derived MN

iPSCs were cultured in mTesR Plus media (StemCell 

Technologies) in Matrigel-coated 6-well plates (Corn-

ing) and maintained at 37  °C, 5% CO2. Cells were pas-

saged when ~ 80% confluent using ReLeSR (StemCell 

Technologies), according to the manufacturer’s instruc-

tions. iPSCs were differentiated into neural progenitor 

cells (NPCs) using a modified version of the dual SMAD 

inhibition protocol [10, 30]. On the day after plating (day 

1), after the cells had reached ~ 100% confluence, the 

cells were washed once with PBS and the medium was 

replaced with neutralization medium (50% of KnockOut 

DMEM/F-12, 50% of Neurobasal), 0.5× N2 supplement 

(ThermoFisher), 1x Gibco GlutaMAX Supplement (Ther-

moFisher), 0.5x B-27 supplement (ThermoFisher), 50 U 

ml − 1 penicillin and 50 mg ml − 1 streptomycin, supple-

mented with SMAD inhibitors (DMH-1 2 μm; SB431542 

10  μm; and CHIR99021 3  μm). This medium was 

changed every day for 6 days, and on day 7 the medium 

was replaced for neural medium supplemented with 

DMH-1 2  μm, SB431542 10  μm and CHIR 1  μm, All-

Trans Retinoic Acid 0.1  μm (RA), and Purmorphamine 

0.5 μm (PMN), the cells were kept in this medium until 

day 12 when it was possible to observe a uniform neuro-

epithelial sheet. At this point the cells were split 1:6 with 

Accutase (Gibco), onto matrigel substrate in the presence 

of 10  μm of ROCK inhibitor (Y-27632 dihydrochloride, 

Tocris), giving rise to a sheet of neural progenitor cells 

(NPC). After 24 h of incubation the medium was changed 

to neural medium supplemented with RA 0.5  μm and 

PMN 0.1 μm, and the medium was changed every day for 

6 more days. On day 19 MN progenitors were split with 

accutase onto to matrigel-coated plates and the medium 

was replaced with neural medium supplemented with 

RA 0.5  μm, PMN 0.1  μm, compound E 0.1  μm (Cpd E, 

Tocris), BDNF 10ng/mL, CNTF 10ng/mL and IGF 10ng/

mL until day 28. On day 29, the media was replaced with 

neuronal media (neurobasal media supplemented with 

1% of B27, BDNF 10ng/mL, CNTF 10ng/mL and IGF 

10ng/mL). The cells were then fed on alternate days with 

neuronal medium until day 40.

For immunostaining to confirm the purity of MN cul-

tures, neurons were washed with phosphate-buffered 

saline (PBS) and fixed with 4% paraformaldehyde for 

10 min at room temperature. After fixation samples were 

washed three times with PBS and permeabilized with 

0.3% Triton X-100 diluted in PBS for 5  min. The cells 

were subsequently blocked in 5% Donkey serum (Mil-

lipore) for 1 h at room temperature. After blocking, cell 

cultures were incubated with the appropriate primary 

antibodies: guinea pig anti-MAP2 1:1000 [Synaptic Sys-

tems #188004]; chicken anti-TUJ1 1:1000 [Merck Milli-

pore #AB9354]; or mouse anti-SMI32 1:1000 [Biolegend 

#801701]; diluted in PBS containing 5% of DS overnight. 

Cells were then washed with PBS three times. Fluores-

cent secondary antibodies (Alexa Fluor 488, 555, 594 

or 647, diluted 1:400 with DS) (ThermoFisher Scientific 

#A-21202, #A-21432, A-21450, #A-32744, #A-21206) 

were subsequently added to the cells and incubated for 

1  h. The samples were washed with PBS three more 

times and incubated with Hoechst 33,342 (Invitrogen) 

for nuclear staining for 5 min. All experiments included 

cultures where the primary antibodies were not added; 

non-specific staining was not observed in these negative 

controls. Images were obtained using an Opera Phenix™ 

High Content Screening System at 40x magnification. 

Images were analyzed using the Harmony™ Image analy-

sis system. 405, 488, 594, and 647  nm lasers along with 

the appropriate excitation and emission filters were 

used. These settings were kept consistent while taking 

images from all separate differentiations. In all cases we 

observed > 95% purity of MN cultures.

Whole genome bisulfite sequencing (WGBS) of DNA 

derived from iPSC-derived MN

We generated WGBS libraries following the Whole-

Genome Bisulfite Sequencing Data Standards and Pro-

cessing Pipeline  (   h t  t p s  : / / w  w w  . e n c o d e p r o j e c t . o r g / d a t a 

- s t a n d a r d s / w g b s /      ) .  In brief, genomic DNA was extracted 

from ~ 50,000 cells per technical replicate before shear-

ing and bisulfite treatment. Libraries were amplified by 

https://www.encodeproject.org/data-standards/wgbs/
https://www.encodeproject.org/data-standards/wgbs/
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PCR and purified. Library concentrations were measured 

(Qubit). WGBS libraries were paired-end sequenced on a 

NovaSeq 6000 system (Illumina) with target 30X cover-

age Raw data were processed with the ENCODE 4 pipe-

line for WGBS according to ENCODE 4 standards. Files 

are available at encodeproject.org and with the following 

accession numbers: ENCSR734EFX, ENCSR509LMK, 

ENCSR978LOX; data are also available at the Gene 

Expression Omnibus (GEO) with the following accession 

numbers: GSE215710, GSE215617 and GSE215648.

Paired-end FASTQ files were mapped to the human 

(hg38), lambda, pUC19 and viral genomes using bwa-

meth (v.0.2.0) then converted to BAM files using SAM-

tools (v.1.9)52. Duplicated reads were marked by 

Sambamba (v.0.6.5) with parameters ‘-l 1 -t 16 --sort-buf-

fer-size 16000 --overflow-list-size 10000000’ [31]. Reads 

with low mapping quality, duplicated or not mapped in 

a proper pair were excluded using SAMtools view with 

parameters ‘-F 1796 -q 10’. Reads were stripped from 

nonCpG nucleotides and converted to PAT files using 

wgbstools (v.0.2.0, downloaded from Github github.com/

nloyfer/wgbs_tools in September 2022), command wgb-

stools bam2pat --genome hg38. Methylation across the 

MN samples was examined using a PCA plot, and tech-

nical replicates were found to have low heterogeneity. 

Technical replicates were then merged to allow inclusion 

in the wgbstools pipeline.

Genome segmentation into methylation blocks

Using all three of our samples and 205 samples from 

a methylation atlas we segmented the genome into 

1,630,133 blocks of 4 or more CpGs using the wgbstools 

command ‘wgbstools segment --min_cpg 4 --max_bp 

5000’. PAT and BETA files for all 207 available samples 

mapped to GRCh38 were downloaded from GEO (acces-

sion number GSE186458) [5] on the 20th of September 

2022. As per the original publication we excluded two 

cardiomyocyte samples due to low coverage. We also 

segmented the genome into 1,938,130 blocks of 3 CpGs 

were identified using the wgbstools command wgbstools 

segment --min_cpg 3 --max_bp 5000; these blocks of 3 

CpGs were used only for marker selection.

Unsupervised clustering of DNA methylation profiles

Average methylation per block (of at least 4 CpGs in 

size) for each sample was extracted using the wgbstools 

command ‘beta_to_table’, replacing blocks with less than 

10x coverage in a sample with ‘NA’. We then selected the 

top 1% of blocks by variance, excluding blocks with any 

‘NA’ values across all samples, and used these for clus-

tering. Unsupervised clustering was performed using 

Python version 3.10.8, Dask version 2023.9.2, SciPy 

1.9.1, options method=’average’, metric=’cityblock’, 

optimal_ordering = True.

Derivation of MN-specific hypomethylated genomic 

regions

We applied the wgbstools command ‘find_markers’ 

together with all 205 samples used for segmentation. 

Default parameters were used to remove low coverage 

regions, samples with a read depth of less than 5 in a seg-

ment had the value set to NA, and segments with greater 

than 1 in 3 NA values in either the target or background 

cell type were removed. Regions were considered MN-

specific if there was a difference of at least 0.3 between 

the mean motor neuron methylation and mean of all 

other samples’ methylation within that block, and the p 

value of a t-test was equal to or below 0.05.

Identification of genes linked to MN-specific 

hypomethylated genomic regions

We implemented the ABC model [15] following the 

guidelines provided at  h t t  p s : /  / g i  t h  u b .  c o m /  b r o  a d  i n s t i t 

u t e / A B C - E n h a n c e r - G e n e - P r e d i c t i o n     using ATAC-seq 

data from the same iPSC-derived MN as described in 

[32]. Firstly we called peaks for the ATAC-seq profil-

ing using MACS2, and then identified the candidate 

enhancer elements using “makeCandidateRegions.py” 

with parameters peakExtendFromSummit = 250 and 

nStrongestPeaks = 150,000. The black-listed regions gen-

erated by the ENCODE 4  (   h t  t p s  : / / w  w w  . e n c o d e p r o j e c 

t . o r g /     ) were used for removing enhancers overlapping 

regions with anomalous sequencing reads. Second, we 

applied “run.neighborhoods.py” to quantify the enhancer 

activities by counting ATAC-seq and H3K27ac ChIP-seq 

reads in candidate enhancer regions. RNA-seq profil-

ing of iPSC-derived MNs was also provided to inform 

expressed genes. Quantile normalisation was applied 

using K562 epigenetic data as the reference. At last, using 

“predict.py” we computed the ABC scores by combining 

the enhancer activities (calculated by the second step) 

with the Hi-C profiling. Hi-C data was fit to the power-

law model. The default threshold 0.02 was used to define 

valid enhancer-promoter links. Finally we overlapped 

enhancers with hypomethylated regions and thereby 

inferred a link to a target gene for that enhancer.

Transcriptome analysis

For AnswerALS data [33], gene expression profiling of 

iPSC-derived MNs and phenotype data were obtained 

for 245 ALS patients and 45 neurologically normal con-

trols (https://www.answerals.org/). Gene expression was 

normalised by the trimmed mean of M-values normali-

sation method (TMM). We used a negative binomial test 

to determine genes differentially expressed between ALS 

patients and controls. Significance testing was performed 

for all genes expressed in MN (n = 22,976) defined as 

count above zero in more than half of samples; in addi-

tion we excluded the bottom 25% of genes based on mean 

https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
https://www.encodeproject.org/
https://www.encodeproject.org/
https://www.answerals.org/
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count across all samples. All analyses were carried out in 

EdgeR [34] v4.0 implemented in R 4.4.1.

LD score regression (LDSC)

We used LDSC [35] to determine whether there was a 

significant enrichment of SNP-based heritability for ALS 

within MN-specific hypomethylated regions. Partitioned 

heritability was calculated following guidelines at  h t t  p 

s : /  / g i  t h  u b .  c o m /  b u l  i k  / l d s c / w i k i / P a r t i t i o n e d - H e r i t a b i l i t 

y     [21]. Briefly, for all SNPs found within the total set of 

hypomethylated regions we examined the proportion of 

total SNP-based heritability. Enrichment was calculated 

by comparing the ratio of partitioned heritability to the 

quantity of genetic material.

Generation of synthetics mixes of MN-derived DNA 

together with plasma cfDNA

WGBS of plasma cfDNA samples produced by Caggiano 

C. et al. [14] were downloaded from  h t t  p s : /  / w w  w .  n c b  i . n l  

m . n  i h  . g o v / g e o / q u e r y / a c c . c g i ? a c c = G S E 1 6 4 6 0 0     in  F e b r u a r 

y 2023, including 12 ALS patients. Raw FastQ files were 

trimmed with Trim Galore version 6.7 using the options 

‘trim_galore --paired -clip_R1 4 --clip_R2 4 --three_

prime_clip_R1 12 --three_prime_clip_R2 12’ and then 

aligned to GRCh38 using the bowtie 2 aligner in Bismark 

version 22.3. Duplicate reads were removed with Bismark 

and Samtools version 1.16.1 was used to remove reads 

with a MAPQ score below 10. BAM files were then con-

verted to PAT and BETA files using wgbstools.

Using wgbstools command ‘mix_pat’, synthetic mixes 

of MN sample PGP_M_55_iPSC (Supplementary Table 

1) or cerebral neuron sample Cortex-Neuron-Z0000042F 

[5] and the either the 12 plasma cfDNA samples from 

healthy volunteers, or the 4 CSF cfDNA samples from 

hydrocephalus patients were created. By down- or up-

sampling the cfDNA and neuronal reads, spike-ins were 

made at 0–10%, and coverage was varied from 2.5-30x.

Deconvolution of plasma cfDNA and optimisation of a 

deconvolution algorithm

We derived uniquely hypomethylated regions for each 

cell-type to use for deconvolution. In this process we 

excluded the two samples used for spike-in to prevent 

overfitting. Segmentation was repeated as before to 

derive two sets of regions, one with a minimum length of 

3 CpGs and one with a minimum length of 4 CpGs. For 

both sets of regions cell type specific marker regions were 

found using wgbstools ‘find_markers’ with a minimum 

difference between target and background means of 0.3 

and a t-test p-value equal to or below 0.05. To derive dif-

ferent numbers of marker regions, for each cell-type the 

marker regions were ordered by the difference between 

the 75th-centile in the target group and the 2.5th centile 

in the background and then 25, 50, 100, 250, 300, 400, or 

500 marker regions were selected. Marker regions for all 

cell types were then used to create an atlas of the frag-

ment based methylation for each region across all cell 

types using the UXM tool downloaded from  h t t  p s : /  / g i  t h  u 

b . c o m / n l o y f e r / U X M _ d e c o n v     on the 31st of January 2023. 

We then used UXM to deconvolve the synthetic mixes, 

producing estimated cell type contributions for each mix. 

These were then analysed using R version 4.3.1 (2023-06-

16). To optimise region selection we tested using smaller 

or larger regions, and more or less regions per cell-type 

in order to maximise the probability of detection of 

spiked-in DNA, and minimise the normalised root mean 

squared error (RMSE).

Processing and deconvolution of CSF cfDNA

WGBS of CSF cfDNA samples [26] were downloaded 

from  h t t  p s : /  / w w  w .  n c b  i . n l  m . n  i h  . g o v / g e o / q u e r y / a c c . c g i 

? a c c = G S E 1 4 2 2 4 1     in April 2023, including four hydro-

cephalus patients. Reads were trimmed with trim-galore 

version 6.7 using the paired option and default settings. 

Due to low mapping efficiency of the reads we followed 

the ‘Dirty Harry’ protocol described by the creators of 

the Bismark software. Reads were first aligned as paired 

end reads using the bowtie aligner within Bismark. 

Unmapped R1 reads were then aligned in directional 

mode, and R2 reads were then aligned in pbat mode 

before combining them into a single file. Duplicate reads 

were then removed with Bismark, then Samtools ver-

sion 1.16.1 was used to remove reads with a MAPQ score 

below 10 before converting them into PAT and Beta files 

using wgbstools. Deconvolution of cfDNA WGBS was 

performed using the UXM tool as for plasma cfDNA.

Theoretical estimate of the maximum of MN-derived DNA 

within plasma cfDNA

The concentration of cfDNA produced from cell death is 

given by the standard pharmacokinetic equation for con-

centration produced by a drug infusion at a constant rate.

C = d( k0* t1/2 ) / ( ln(2) * Vd ).

Where C is the concentration in the plasma, k0 is the 

infusion rate, t1/2 is the half life, Vd is the volume of dis-

tribution, and d is the proportion of DNA from cell 

death present in the plasma. We were able to calculate 

the theoretical maximum concentration of MN DNA 

within plasma cfDNA as a function of the time period 

over which the DNA was released i.e. disease duration by 

making reasonable assumptions for each of these values. 

Using the values given for a 70  kg 20–25 year old man 

as has historically been used as standard, the volume of 

plasma is 3.0  L [36]. In the absence of a ground-truth 

for the proportion of DNA released from dying MN that 

reaches plasma cfDNA, we used observed maximum 

and minimum proportions for other cell-types: from 3% 

for megakaryocytes and endothelial cells to 0.003% for 

https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164600
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164600
https://github.com/nloyfer/UXM_deconv
https://github.com/nloyfer/UXM_deconv
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142241
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142241
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erythrocyte progenitors [27]. Infusion rate is given by the 

rate of cell death, and converted to weight of DNA using 

the conversion 1 diploid genome = 6.46pg [37]. The total 

number of lower MN has been estimated at ~ 500,000 

[11] and we estimate a constant rate of loss over the 

disease course based on the observation that neurofila-

ment levels, a biomarker of neuronal death, rise prior to 

disease onset then reach a stable concentration that is 

proportional to speed of progression [38]. The half life 

of plasma cfDNA has been measured using a variety of 

means, including the decrease in foetal cfDNA following 

pregnancy, the decrease in tumour cfDNA following sur-

gery, and the increase and decrease in cfDNA following 

exercise [39]. A key point is to distinguish between the 

distribution half life and steady state half life. As shown 

by experiments with radiolabeled double stranded DNA 

[40], following an infusion DNA is taken up by soft tis-

sues causing its concentration in the plasma to decrease 

rapidly until an equilibrium is reached with equal move-

ment of DNA between the soft tissues and plasma. Fol-

lowing this the concentration of DNA will reach a steady 

state where its concentration is determined by the infu-

sion rate and the steady state half life. We use 114 min as 

our estimate for the steady state half life as this is based 

on the fall in circulating tumour DNA following complete 

resection of the tumour [41]. cfDNA from the tumour 

would have reached a steady state prior to the surgery 

and its decrease from the surgery would be in line with 

the steady state half life. When estimating the proportion 

of cfDNA we use the concentration of 297pg/ul as the 

expected concentration of plasma cfDNA as this was the 

average concentration in controls age and sex matched to 

ALS patients [14].

Discussion
ALS is currently an incurable and invariably fatal neu-

rodegenerative disease [42]. Biomarkers are crucial for 

translational medicine and the recent development of 

serum NfL as a biomarker for ALS [1] has been key to 

the development of new treatments [43]. However, a key 

deficiency of NfL measurement is that it is not specific 

to MN [3], the primary degenerating cell in ALS. We and 

others have hypothesised that detection of cell-specific 

methylation of DNA within plasma cfDNA might pro-

vide an alternative and more specific biomarker for ALS. 

Here we show theoretically and experimentally that this 

goal is potentially not achievable using WGBS of plasma 

cfNDA, at least under the experimental conditions we 

encountered. Alternative approaches are needed which 

may include alternative biofluids or detection methods.

We have developed a MN-specific set of hypomethyl-

ated genomic regions using WGBS in iPSC-derived MN 

from neurologically normal individuals, together with an 

atlas of tissue-specific methylation [5]. We demonstrate 

that these regions are associated with genes which are key 

to MN function but not significantly enriched with ALS 

genetic risk. Our regions are likely to be useful for future 

works aiming to detect DNA derived from MN using dif-

ferent detection methods. The use of iPSC-derived MN is 

a potential limitation, despite that fact that these cells are 

a gold standard model of ALS [12] and recapitulate many 

features found in post mortem MN. It is possible that we 

have excluded certain MN-specific DNA methylation 

which is not found in their iPSC-derived counterparts; 

future work which includes isolation of post mortem in 

sufficient numbers [11] to perform WGBS, may revise 

our findings. Another potential limitation is the fact that 

iPSCs were derived from individuals of different ages, 

including one individual significantly below the age of 

onset of ALS (Supplementary Table 1). The reason for 

this inclusion was to try and isolate a MN-specific rather 

than an aging-specific signal but this could have impaired 

the detection of MN death in ALS patients in an unmea-

surable manner. However, this does not affect the con-

clusions of our simulations and therefore our central 

conclusions are unchanged.

Our simulations and our measurements suggest that 

the sensitivity of WGBS is limited to 1% of plasma cfDNA 

which is significantly greater than the maximum propor-

tion of plasma cfDNA derived from rapidly degenerating 

MN, which we estimate theoretically to be 1.6*10− 5%. 

This is due to the relatively small number of MN com-

pared to the ongoing turnover of other cell-types. It 

is not inconceivable that MN-derived DNA could be 

detected at this level but targeted amplification together 

with more sensitive detection will be necessary, perhaps 

using customised oligonucleotide probes for selected 

CpG sites.

An important limitation to our work, and the major-

ity of deconvolution algorithms, is that they assume the 

sequenced DNA fragments are randomly distributed 

across the genome, which is not correct. It is known that 

the formation of cfDNA from genomic DNA leads to 

preferential preservation of nucleosome-bound DNA, so 

cfDNA from different cell types or tissues produces frag-

mentation patterns with greater depth at sites bound to 

nucleosomes [44]. Enrichment of MN-specific methyla-

tion blocks used for detection with nucleosome-bound 

genomic regions could potentially improve the per-

formance of detection. Alternatively WGBS protocols 

including post-bisulfite adaptor tagging (PBAT) can aid 

detection of subnucleosomal fragments [45, 46].

It is possible that use of an alternative biofluid might 

enable detection of MN-specific DNA. CSF is the obvi-

ous choice given that, unlike blood, it is not separated 

from MN by the blood brain barrier (BBB). However, the 

extremely low concentration of cfDNA in CSF – 0.4ng/

mL versus 7.7ng/mL in plasma [47] – may again be 
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prohibitive. Our preliminary analysis suggests that neu-

ronal but not MN-derived DNA is detectable within CSF 

cfDNA via WGBS, but this did not include sequencing 

data from ALS patients.

Our study has contributed WGBS data from iPSC-

derived MN (encodeproject.org, Methods) and the 

identification of MN-specific hypomethylated genomic 

regions. We have not achieved a new biomarker for ALS 

but we have delineated the challenge for this approach 

through both theoretical calculations and experimental 

measurements. We have shown that WGBS of cfDNA 

derived from plasma is not likely to lead to a new bio-

marker for ALS and that future research should focus on 

developing our MN-specific regions with a more sensi-

tive detection method. Our approach is relevant to any 

disease defined by the progressive loss of a specific cell 

type.

Supplementary Information
The online version contains supplementary material available at  h t t  p s : /  / d o  i .  o r 

g / 1 0 . 1 1 8 6 / s 1 2 9 2 0 - 0 2 5 - 0 2 0 8 4 - w     .  

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Acknowledgements

We are very grateful to the ALS patients and control subjects who generously 

donated biosamples. We acknowledge transcriptomic data provided by the 

AnswerALS Consortium. Figures were created using BioRender.com.

Author contributions

CH, PJS, MPS, SZ, JM, EH and JCK conceived and designed the study. CH, AN, 

AMB and JCK performed statistical analyses. AKW, CDSS, LF and TM carried 

out experiments. CH, EH, JM, SZ, JCK, KK, CC, and NZ interpreted the data with 

assistance from all other authors. JCK, JM, PJS, and MPS supervised the work. 

CH, EH and JCK wrote the manuscript with feedback from all other authors.

Funding

This work was supported by the National Institutes of Health (CEGS 

5P50HG00773504, 1P50HL083800, 1R01HL101388, 1R01-HL122939, 

S10OD025212, P30DK116074, and UM1HG009442 to MPS), the Wellcome 

Trust (216596/Z/19/Z to JCK), and NIHR (NF-SI-0617-10077 to PJS). CH/JCK are 

supported by the MNDA (899 − 792). We also acknowledge support from a 

Kingsland fellowship (TM), and the NIHR Sheffield Biomedical Research Centre 

for Translational Neuroscience (IS-BRC-1215-20017) and the NIHR Sheffield 

Clinical Research Facility.

Data availability

MN WGBS data generated during the current study are available at the 

Gene Expression Omnibus (GEO) repository with the following accession 

numbers: GSE215710, GSE215617 and GSE215648. ALS patient plasma cfDNA 

WGBS data generated as part of [14] and analysed during the current study 

are available at the GEO repository with the following accession numbers: 

GSM5014683, GSM5014684, GSM5014685, GSM5014686, GSM501469, 

GSM5014692, GSM5014693, GSM5014694, GSM5014695, GSM5014696, 

GSM5014697, GSM5014698. CSF cfDNA WGBS data generated as part of [26] 

and analysed during the current study are available at the GEO repository with 

the following accession numbers: GSM4223629, GSM4223630, GSM4223631, 

and GSM4223632. WGBS from 207 samples performed as part of a tissue atlas 

[5] and analysed during the current study are available at the GEO repository 

under the accession number GSE186458. Gene expression profiling of iPSC-

derived MNs for ALS patients and neurologically normal controls performed 

as part of [33] and analysed during the current study are available at data.

answerals.org.

Declarations

Ethics approval and consent to participate

The study was approved by the South Sheffield Research Ethics Committee. 

Also, this study followed study protocols approved by Medical Ethical 

Committees for each of the participating institutions. Written informed 

consent was obtained from all participating individuals. All methods were 

performed in accordance with relevant national and international guidelines 

and regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 5 November 2024 / Accepted: 6 January 2025

References

1. Lu C-H, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, et al. 

Neurofilament light chain: a prognostic biomarker in amyotrophic lateral 

sclerosis. Neurology. 2015;84:2247–57.

2. Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament 

Proteins in Health and Disease. Cold Spring Harb Perspect Biol. 2017;9.

3. Verde F, Steinacker P, Weishaupt JH, Kassubek J, Oeckl P, Halbgebauer S, et al. 

Neurofilament light chain in serum for the diagnosis of amyotrophic lateral 

sclerosis. J Neurol Neurosurg Psychiatry. 2019;90:157–64.

4. Davies JC, Dharmadasa T, Thompson AG, Edmond EC, Yoganathan K, Gao J, 

et al. Limited value of serum neurofilament light chain in diagnosing amyo-

trophic lateral sclerosis. Brain Commun. 2023;5:fcad163.

5. Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A, et al. A 

DNA methylation atlas of normal human cell types. Nature. 2023;613:355–64.

6. Li Y, Pan X, Roberts ML, Liu P, Kotchen TA, Cowley AW Jr, et al. Stability of 

global methylation profiles of whole blood and extracted DNA under differ-

ent storage durations and conditions. Epigenomics. 2018;10:797–811.

7. Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulat-

ing cell-free DNA. Cancer Biol Ther. 2019;20:1057–67.

8. Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free 

DNA as a molecular marker for cancer management. Biomol Detect Quantif. 

2019;17:100087.

9. Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, et al. 

Septin 9 methylated DNA is a sensitive and specific blood test for colorectal 

cancer. BMC Med. 2011;9:133.

10. Zhang S, Cooper-Knock J, Weimer AK, Shi M, Moll T, Marshall JNG, et al. 

Genome-wide identification of the genetic basis of amyotrophic lateral 

sclerosis. Neuron. 2022;110:992–e100811.

11. Gautier O, Blum JA, Maksymetz J, Chen D, Schweingruber C, Mei I et al. 

Human motor neurons are rare and can be transcriptomically divided into 

known subtypes. bioRxiv. 2023;:2023.04.05.535689.

12. Sances S, Bruijn LI, Chandran S, Eggan K, Ho R, Klim JR, et al. Modeling ALS 

with motor neurons derived from human induced pluripotent stem cells. Nat 

Neurosci. 2016;19:542–53.

13. Catanese A, Rajkumar S, Sommer D, Masrori P, Hersmus N, Van Damme P, et 

al. Multiomics and machine-learning identify novel transcriptional and muta-

tional signatures in amyotrophic lateral sclerosis. Brain. 2023;146:3770–82.

14. Caggiano C, Celona B, Garton F, Mefford J, Black BL, Henderson R, et al. Com-

prehensive cell type decomposition of circulating cell-free DNA with CelFiE. 

Nat Commun. 2021;12:2717.

15. Stamenova EK, Aiden EL, Lander ES, Engreitz JM. Activity-by-contact model 

of enhancer–promoter regulation from thousands of CRISPR perturbations. 

Nature. 2019.

https://doi.org/10.1186/s12920-025-02084-w
https://doi.org/10.1186/s12920-025-02084-w


Page 14 of 14Harvey et al. BMC Medical Genomics           (2025) 18:10 

16. ENCODE Project Consortium, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, 

Shoresh N, et al. Expanded encyclopaedias of DNA elements in the human 

and mouse genomes. Nature. 2020;583:699–710.

17. Wiench M, John S, Baek S, Johnson TA, Sung M-H, Escobar T, et al. DNA 

methylation status predicts cell type-specific enhancer activity. EMBO J. 

2011;30:3028–39.

18. Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, et al. Massive 

mining of publicly available RNA-seq data from human and mouse. Nat Com-

mun. 2018;9:1366.

19. Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene 

Set Knowledge Discovery with Enrichr. Curr Protoc. 2021;1:e90.

20. Nizzardo M, Taiana M, Rizzo F, Aguila Benitez J, Nijssen J, Allodi I, et al. 

Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta 

Neuropathol. 2020;139:837–53.

21. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Parti-

tioning heritability by functional annotation using genome-wide association 

summary statistics. Nat Genet. 2015;47:1228–35.

22. van Rheenen W, van der Spek RAA, Bakker MK, van Vugt JJFA, Hop PJ, Zwam-

born RAJ, et al. Common and rare variant association analyses in amyotrophic 

lateral sclerosis identify 15 risk loci with distinct genetic architectures and 

neuron-specific biology. Nat Genet. 2021;53:1636–48.

23. Chatterton Z, Mendelev N, Chen S, Carr W, Kamimori GH, Ge Y, et al. Bisulfite 

Amplicon sequencing can detect Glia and Neuron Cell-Free DNA in blood 

plasma. Front Mol Neurosci. 2021;14:672614.

24. Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-

Dembinsky A, et al. Identification of tissue-specific cell death using methyla-

tion patterns of circulating DNA. Proc Natl Acad Sci U S A. 2016;113:E1826–34.

25. Li S, Zeng W, Ni X, Liu Q, Li W, Stackpole ML, et al. Comprehensive tissue 

deconvolution of cell-free DNA by deep learning for disease diagnosis and 

monitoring. Proc Natl Acad Sci U S A. 2023;120:e2305236120.

26. Li J, Zhao S, Lee M, Yin Y, Li J, Zhou Y et al. Reliable tumor detection by whole-

genome methylation sequencing of cell-free DNA in cerebrospinal fluid of 

pediatric medulloblastoma. Sci Adv. 2020;6.

27. Sender R, Noor E, Milo R, Dor Y. What fraction of cellular DNA turnover 

becomes cfDNA? bioRxiv. 2023.

28. Voytek B. Are there really as many neurons in the human brain as stars in the 

Milky Way. Scitable, Nature Education.

29. Chen K, Zhao H, Yang F, Hui B, Wang T, Wang LT, et al. Dynamic changes 

of circulating tumour DNA in surgical lung cancer patients: protocol for a 

prospective observational study. BMJ Open. 2018;8:e019012.

30. Du Z-W, Chen H, Liu H, Lu J, Qian K, Huang C-L, et al. Generation and expan-

sion of highly pure motor neuron progenitors from human pluripotent stem 

cells. Nat Commun. 2015;6:6626.

31. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing 

of NGS alignment formats. Bioinformatics. 2015;31:2032–4.

32. Zhang S, Moll T, Rubin-Sigler J, Tu S, Li S, Yuan E et al. Deep learning model-

ing of rare noncoding genetic variants in human motor neurons defines 

CCDC146 as a therapeutic target for ALS. medRxiv. 2024.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 

1 0 1 / 2 0 2 4 . 0 3 . 3 0 . 2 4 3 0 5 1 1 5       

33. Baxi EG, Thompson T, Li J, Kaye JA, Lim RG, Wu J, et al. Answer ALS, a large-

scale resource for sporadic and familial ALS combining clinical and multi-

omics data from induced pluripotent cell lines. Nat Neurosci. 2022;25:226–37.

34. Chen Y, Chen L, Lun ATL, Baldoni PL, Smyth GK. edgeR v4: powerful differen-

tial analysis of sequencing data with expanded functionality and improved 

support for small counts and larger datasets. bioRxiv. 2024.

35. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Work-

ing Group of the Psychiatric Genomics Consortium. LD score regression 

distinguishes confounding from polygenicity in genome-wide association 

studies. Nat Genet. 2015;47:291–5.

36. ICRP. ICRP publication 89: basic anatomical and physiological data for Use in 

Radiological Protection: reference values. SAGE Publications Limited; 2003.

37. Piovesan A, Pelleri MC, Antonaros F, Strippoli P, Caracausi M, Vitale L. On the 

length, weight and GC content of the human genome. BMC Res Notes. 

2019;12:106.

38. Benatar M, Wuu J, Andersen PM, Lombardi V, Malaspina A. Neurofilament 

light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis 

and phenoconversion. Ann Neurol. 2018;84:130–9.

39. Khier S, Lohan L. Kinetics of circulating cell-free DNA for biomedical applica-

tions: critical appraisal of the literature. Future Sci OA. 2018;4:FSO295.

40. Emlen W, Mannik M. Effect of DNA size and strandedness on the in vivo clear-

ance and organ localization of DNA. Clin Exp Immunol. 1984;56:185–92.

41. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating 

mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.

42. Cooper-Knock J, Jenkins T, Shaw PJ. Clinical and molecular aspects of Motor 

Neuron Disease. Colloquium Ser Genomic Mol Med. 2013;2:1–60.

43. Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, et al. 

Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med. 

2022;387:1099–110.

44. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises 

an in vivo nucleosome footprint that informs its Tissues-Of-Origin. Cell. 

2016;164:57–68.

45. Miura F, Ito T. Post-bisulfite adaptor tagging for PCR-free whole-genome 

bisulfite sequencing. Methods Mol Biol. 2018;1708:123–36.

46. Miura F, Shibata Y, Miura M, Sangatsuda Y, Hisano O, Araki H, et al. Highly 

efficient single-stranded DNA ligation technique improves low-input whole-

genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids 

Res. 2019;47:e85.

47. Wu J, Liu Z, Huang T, Wang Y, Song MM, Song T, et al. Cerebrospinal fluid 

circulating tumor DNA depicts profiling of brain metastasis in NSCLC. Mol 

Oncol. 2023;17:810–24.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 

published maps and institutional affiliations.

https://doi.org/10.1101/2024.03.30.24305115
https://doi.org/10.1101/2024.03.30.24305115

	﻿Evaluation of a biomarker for amyotrophic lateral sclerosis derived from a hypomethylated DNA signature of human motor neurons
	﻿Abstract
	﻿Introduction
	﻿Results
	﻿Cell-specific DNA methylation within control iPSC-derived MN is similar to human adult CNS neurons
	﻿Identification of cell-specific hypomethylated genomic regions
	﻿MN-specific DNA methylation is linked to MN function but not to genetic risk for ALS
	﻿An optimum set of hypomethylated DNA regions for ALS biomarker design
	﻿MN-derived DNA is not detectable within plasma cfDNA
	﻿Neuronal-derived DNA is detectable in CSF cfDNA
	﻿The theoretical maximum proportion of MN-derived DNA within plasma cfDNA is very low

	﻿Methods
	﻿Tissue culture and development of pure iPSC-derived MN
	﻿Whole genome bisulfite sequencing (WGBS) of DNA derived from iPSC-derived MN
	﻿Genome segmentation into methylation blocks
	﻿Unsupervised clustering of DNA methylation profiles
	﻿Derivation of MN-specific hypomethylated genomic regions
	﻿Identification of genes linked to MN-specific hypomethylated genomic regions
	﻿Transcriptome analysis
	﻿LD score regression (LDSC)
	﻿Generation of synthetics mixes of MN-derived DNA together with plasma cfDNA
	﻿Deconvolution of plasma cfDNA and optimisation of a deconvolution algorithm
	﻿Processing and deconvolution of CSF cfDNA
	﻿Theoretical estimate of the maximum of MN-derived DNA within plasma cfDNA

	﻿Discussion
	﻿References


