
This is a repository copy of MetricGAN+KAN: Kolmogorov-Arnold networks in metric-
driven speech enhancement systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/221982/

Version: Accepted Version

Proceedings Paper:
Mai, Y. and Goetze, S. orcid.org/0000-0003-1044-7343 (2025) MetricGAN+KAN: 
Kolmogorov-Arnold networks in metric-driven speech enhancement systems. In: ICASSP 
2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP) Proceedings. ICASSP 2025 - 2025 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 06-11 Apr 2025, Hyderabad, India. Institute of 
Electrical and Electronics Engineers (IEEE) ISBN 9798350368758 

https://doi.org/10.1109/ICASSP49660.2025.10890542

© 2025 The Author(s). Except as otherwise noted, this author-accepted version of a paper 
published in ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP) Proceedings is made available via the University of 
Sheffield Research Publications and Copyright Policy under the terms of the Creative 
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted 
use, distribution and reproduction in any medium, provided the original work is properly 
cited. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



MetricGAN+KAN: Kolmogorov-Arnold Networks

in Metric-Driven Speech Enhancement Systems

Yemin Mai1 and Stefan Goetze1,2
1Speech and Hearing (SPandH) group, School of Computer Science, The University of Sheffield, Sheffield, United Kingdom

2South Westphalia University of Applied Sciences, Iserlohn, Germany

{ymai5, s.goetze}@sheffield.ac.uk, goetze.stefan@fh-swf.de

Abstract—Neural-network-based speech enhancement (SE) approaches

have shown to be particularly powerful in combination with perceptually

motivated metrics to produce high-quality enhanced speech signals.

Among these deep learning (DL)-based SE models, MetricGAN and

its extension can generate output signals directly optimising quality

metrics. The recently proposed Kolmogorov-Arnold networks (KANs)

with learnable activation functions have shown great success in replacing

multi-layer perceptrons (MLPs). This work proposes the use of KANs in

a MetricGAN framework and analyses their performance in replacing

different types of network layers. The best-performing proposed Met-

ricGAN+KAN model uses approximately 80% fewer parameters and

achieves 13.2% higher SE performance (measured by PESQ) on the

Voicebank-DEMAND dataset, compared to the MetricGAN+ baseline.
Index Terms—Speech enhancement, quality metrics, Kolmogorov-

Arnold network (KAN), Generative adversarial network (GAN), Met-

ricGAN

I. INTRODUCTION

Single-channel speech enhancement (SE) has been a popular

research field for some decades [1], focusing on improving the

quality [2]–[5] or intelligibility [6]–[8] of speech signals in noisy,

reverberant environments [9]. Machine learning (ML)-based ap-

proaches have led to significant performance gains in recent years,

and become the first choice of modelling for SE [10]–[13]. Generative

adversarial networks (GANs) [14] which consist of two sub-models,

a generator and a discriminator, have proven to be effective in SE.

The MetricGAN [15] approach and its extensions [16]–[24] have

achieved the-state-of-the-art results on the Voicebank-DEMAND [25]

dataset. However, only limited research exists for optimising the

model structure of the MetricGAN framework even though this was

already suggested by the authors of [16]. Furthermore, it is time-

consuming to train the model with replay buffer, which is necessary

for addressing catastrophic forgetting [26].

Recently, KANs [27] have been proposed, integrating learnable

activation functions parameterised by B-spline curves into neurons.

Authors of KANs have also mentioned that KANs can overcome

catastrophic forgetting [27]. Hence, this work analyses the use KANs

in the MetricGAN+ framework. The proposed KAN-based SE model

is therefore denoted as MetricGAN+KAN, and this work aims at

validating some advantages of KANs in a MetricGAN setting and

analysing, which network layers can be changed to KAN-based

structures. To this end, different model structures, i.e. positions to

replace model layers with KAN-based layers, are compared in terms

of performance as well as model parameters on the Voicebank-

DEMAND [25] task.

II. REVIEW OF THE METRICGAN+ FRAMEWORK

MetricGAN+ [16] is a spectro-temporal masking-based SE ap-

proach. For this, the noisy input signal is first converted to a magni-

tude spectrogram Xf,τ and a phase spectrogram γf,τ by the short-

time Fourier transform (STFT), where f is the frequency index and

τ is the frame index. For the enhancement process, a spectral mask

Mf,τ is computed and multiplied with the magnitude spectrogram

of the noisy signal to obtain an estimate of the clean magnitude

spectrogram

Ŝf,τ = Mf,τ ·Xf,τ . (1)

Then, an estimate of the clean signal is re-synthesised using Ŝf,τ and

γf,τ , i.e. by applying the inverse STFT to Ŝf,τe
jγf,τ .

MetricGAN+ [16] consists of two neural networks (NNs), a

generator G aiming to estimate the mask Mf,τ and a discriminator D
assessing the quality of the masking-based SE by metric prediction.

The generator G takes a noisy spectrogram Xf,τ as the input and

outputs the mask Mf,τ . Figure 1 visualises the generator G0 of the

MetricGAN+ baseline [16], which can be split into a part containing

recursive layers, i.e. a bidirectional long short-term memory (LSTM)

[28] and a part containing non-recursive layers, i.e. linear layers for

MetricGAN+ with a leaky rectified linear unit (ReLU) activation

function. A learnable sigmoid outputs the mask Mf,τ .
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Figure 1: Generator model G0 (MetricGAN+ baseline).

Figure 2 visualises the discriminator model structure of Metric-

GAN+, denoted as D0. Subscripts 0 in Figures 1 and 2 indicate

the MetricGAN+ baseline [16] model in contrast to model variants

introduced later in this work. After a batch normalisation (BN) layer,

it can be split into a convolutional part and a non-convolutional part.
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Figure 2: Discriminator model D0 (MetricGAN+ baseline).

The discriminator D predicts a metric score Q′(·) normalised be-

tween 0 and 1 (often a normalised version of the perceptual evaluation

of speech quality (PESQ) metric) given the noisy (or enhanced)

magnitude spectrogram and the corresponding clean spectrogram

Sf,τ . The discriminator is thus a differentiable surrogate function

which imitates non-differentiable intrusive metrics of audio quality

such as PESQ [29], subjective mean opinion score (MOS) [30],

or DNSMOS [31] since such perceptually motivated metrics often

correlate better with human perception [2], [32] than traditional loss

functions such as the simple mean squared error (MSE) and hence

can address discriminator evaluation mismatch (DEM) [15].



In terms of training, the loss function for the discriminator is given

by
LD =EX,S

[

(D(S,S)−Q
′(S,S))2+

(D(G(X),S)−Q
′(G(X),S))2+

(D(X,S)−Q
′(X,S))2

]

,

(2)

where E is the expectation operator, X is the magnitude spectrogram

matrix of the noisy signal containing Xf,τ∀f, τ and S is the respec-

tive clean spectrogram matrix. The loss function for the generator is

given by

LG = EX

[

(D(G(X),S)− w)2
]

, (3)

with w being the desired metric score that the discriminator assigned

to the enhanced speech, which is set to 1 in [16] maximising the

enhancement or varied in [22]. In each epoch, MetricGAN+ is trained

using the following procedure:

1) Train the generator G using back-propagation (BP) [33].

2) Store current enhanced signals Ŝ = G(X) and the corresponding

scores Q′ into the so-called replay buffer.

3) Train the discriminator D using clean signals S, current en-

hanced speech signals Ŝ = G(X) and noisy signals X.

4) Repeat 3), but use a part of the previously enhanced signals

Ŝ = G(X) from the replay buffer, controlled by the hyper-

parameter history_portion [16], [22].

As mentioned above, the replay buffer is used to address catas-

trophic forgetting in the discriminator. It can greatly improve the

performance of the discriminator, and subsequently improve the

quality of signals enhanced by the generator. However, training with

the replay buffer also increases training time.

Authors of MetricGAN+ [16] already mention that the structure

of the discriminator can be improved which will be analysed in this

work by using KANs in the recursive and non-recursive parts of the

generator (cf. Figure 1) as well as in the convolutional and non-

convolutional part of the discriminator (cf. Figure 2).

III. REVIEW OF KOLMOGOROV-ARNOLD NETWORKS (KANS)

KANs [27] are a recently proposed type of NN architecture having

gained considerable attention on GitHub1. The novelty of KANs

is that the activation function is placed within the neuron, and is

learnable. It is inspired by the Kolmogorov-Arnold representation

theorem [34]

f(x) =

2n+1
∑

q=1

Φq

(

n
∑

p=1

ϕq,p (xp)

)

, (4)

where f : [0, 1]n → R is smooth, ϕq,p : [0, 1] → R, and Φq : R →
R. Based on (4), KANs replace the weight matrix in a traditional NN

layer with a matrix of functions, denoted by Φ = {ϕq,p} where p =
1, 2, . . . , nin and q = 1, 2, . . . , nout. ϕ(·) is a learnable activation

function formulated as the scaled sum of a base activation function

b(x) and a learnable curve g(x),

ϕ(x) = w1b(x) + w2g(x), (5)

where w1 and w2 are scaling factors which can be learnable. It is

noteworthy that in the original paper [27], only one scaling factor is

used for ϕ(·). Liu et al. used sigmoid linear units (SiLUs) [35]

b(x) =
x

1 + e−x
(6)

as the base activation functions for KANs. Several implementations

have been reviewed in [36]. For the learnable curves, B-splines, which

1https://github.com/KindXiaoming/pykan.

require basis functions and controlling points were proposed initially

with B-spline basis functions of order k defined as [37], [38]

Bi,0(x) =

{

1 if xi ≤ x ≤ xi+1,

0 otherwise,
(7)

Bi,k(x) =
x− xi

xi+k − xi

Bi,k−1(x) +

xi+k+1 − x

xi+k+1 − xi+k

Bi+1,k−1(x), (8)

with xi for i = −k,−k+1, . . . , G+k being the predefined boundary,

and G the grid size. The spline curve is given by

g(x) =

G+k−1
∑

i=0

ciBi,k(x), (9)

where ci for i = 0, 1, . . . , G+k−1 is the trainable controlling point,

and g(x) is defined on [x0, xG].
KANs have also been integrated into convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), called convolutional

KANs (CKANs) [39] and recurring KANs (RKANs) [40], respec-

tively. In CKANs, the kernel becomes a group of learnable activation

functions. The result of a 2-D convolution (with stride 1) is given by

a
(l)
x,y =

m
∑

i=1

n
∑

j=1

ϕ
(l)
i,j

(

a
(l−1)
x+i,y+j

)

, (10)

where a
(l)
x,y is the feature map at layer l. In RKANs, the prediction

at time t is given by

ŷt = Φht, (11)

where ht is the hidden state at time t.

As mentioned in [27], advantages of KANs are that KANs can

overcome catastrophic forgetting, because the update of ci only

changes part of the spline curve, and that KANs have a better scaling

law than traditional NNs, i.e., using fewer parameters to achieve

similar (or higher) performance compared to traditional NNs. Bodner

et al. [39] have shown that these two advantages also hold for

CKANs.

IV. EXPERIMENTS

A. Dataset

The Voicebank-DEMAND dataset [25] is used for the following

experiments, created from the Voicebank dataset [41] mixed with

various types of noises (cafeteria, car interior, a kitchen, meeting,

metro station, restaurant, train station and heavy traffic) from the

DEMAND dataset [42], recorded indoor and outdoor, and two others

(babble noise and speech-shaped noise).

The training set of Voicebank-DEMAND consists of 11572 noisy

speech signals at 4 signal-to-noise ratios (SNRs) of 0, 5, 10, and

15 dB paired with the respective clean speech reference signals from

28 different speakers (14 male, 14 female), with English or Scottish

accents. The testset contains 824 utterances, mixed at SNRs of 2.5,

7.5, 12.5 and 17.5 dB, with five different noises which do not appear

in the training set (bus, cafe, office, public square and living room)

and contains speech from two (one male, one female) speakers who

do not appear in the training set.

B. Implementation

Models are trained using the SpeechBrain framework [43]. For

the implementation of KANs, efficient-kan [44] is used, and

torch-conv-kan [36] for CKANs (with parametric ReLU [45]

activation at the output). For RKANs, a gated recurrent unit (GRU)



[46] version of RKANs, namely GRU-KAN, is implemented. GRU-

KAN uses the same formulae as GRU, but uses (11) for computing

the prediction.

C. Experiment Setup

In the following, layers in the MetricGAN+ structure are succes-

sively replaced by KAN layers to analyse where these are advanta-

geous later in Section V. Figures 3 and 4 illustrate this for layers in

the generator G from Figure 1 being replaced step-by-step, i.e. first

in Figure 3 one linear layer from Figure 1 is replaced by a KAN

layer to result in the MetricGAN+KAN generator structure G1 and

then, in Figure 4, the KAN layer replaces both linear layers from the

MetricGAN+ baseline in Figure 1, resulting in MetricGAN+KAN

generator structure G2.

Degraded
Features

BLSTM
In 257

Hidden 200
Layers 2

KAN Linear
(400, 80)

Linear
(80, 257)

Learnable
Sigmoid

Mask

Figure 3: MetricGAN+KAN generator structure G1, replacing one

linear layer from Figure 1 by a KAN layer.
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Figure 4: MetricGAN+KAN generator structure G2, replacing both

linear layers from Figure 1 by a KAN layer.

To save space for visualisations of all generator structures under

test, Table I summarises the recursive and non-recursive parts as

defined in Figure 1 leading to 6 different generator structures G1

to G6 under test (in addition to the MetricGAN+ baseline).

Table I: Generator structures. Recursive part specifies the type of

RNN and non-recursive part specifies the type of feed-forward layers

as visualised in Figure 1. Number in the parenthesis specifies the

hidden size (or the number of neurons), and × specifies the number

of layers (default value is 1). MGK abbreviates MetricGAN+KAN.

Structure Recursive part Non-recursive part

MetricGAN+ [16] BLSTM (200× 2) Linear (300, 257)
MGK-G1 BLSTM (200× 2) KAN (80), Linear (257)
MGK-G2 BLSTM (200× 2) KAN (257)
MGK-G3 BLSTM (40) KAN (257)
MGK-G4 BGRU (40) KAN (257)
MGK-G5 BGRU (100) Linear (300, 257)
MGK-G6 BGRU-KAN (40× 2) KAN (257)

Accordingly, Table II defines the model structure of 5 different

KAN-based discriminator structures D1 to D5 and Table III shows

the number of parameters of each of the generator and discriminator

models.

All models are trained for 400 epochs. For KAN hyper-parameters,

the range of splines is [−1, 1], the grid size is 5, and the spline order

is set to 3. Other hyper-parameters used in MetricGAN+KAN are the

same as MetricGAN+.

The code to reproduce experiments can be found on GitHub2.

2https://github.com/Unuse1ess/MetricGAN-KAN

Table II: Discriminator structures. Convolutional part specifies the

type of CNN and non-convolutional part specifies the type of feed-

forward layers (cf. Figure 2). The number in the parenthesis specifies

the number of output channels. The shape of all the convolutional

kernels is 5× 5.

Structure Convolutional part Non-convolutional part

MetricGAN+ [16] Conv2d (15× 4) Linear (50, 10, 1)
MGK-D1 Conv2d (15× 4) Linear (50), KAN (1)
MGK-D2 Conv2d (15× 4) KAN (1)
MGK-D3 CKAN2d (15× 2) KAN (1)
MGK-D4 CKAN2d (15× 3) KAN (1)
MGK-D5 CKAN2d (20) KAN (1)

Table III: The number of parameters of all (a) generator and (b)

discriminator variants.

(a) Generator parameters.

G0 1 895 514
G1 2 038 674
G2 2 725 857
G3 301 537
G4 277 617
G5 353 314
D6 361 267

(b) Discriminator parameters.

D0 19 010
D1 18 989
D2 17 839
D3 57 531
D4 108 157
D5 9 205

V. RESULTS

Table IV shows the performance of different generator structures as

specified in Table I in terms of PESQ and the composite metrics for

signal, background and overall quality, respectively. The discriminator

structure is kept constant being the baseline [16] discriminator D0.

Table IV: Results for different generators. NHP indicates that no

history portion was used during training, i.e. history_portion

is set to 0.

PESQ CSIG CBAK COVL

Noisy 1.97 3.35 2.44 2.63

MetricGAN+ [16] 2.89 3.78 2.92 3.31

MGK-G1-D0 2.85 3.73 2.90 3.26

MGK-G1-D0 (NHP) 2.68 3.93 2.73 3.30

MGK-G2-D0 2.82 3.80 2.93 3.28

MGK-G3-D0 2.85 3.69 2.83 3.23

MGK-G4-D0 2.94 3.82 2.88 3.35

MGK-G5-D0 2.88 3.94 2.80 3.38

MGK-D6-D0 2.93 3.84 2.93 3.36

Table V shows the results for the different discriminator structures

D for fixed generator G0. Model architecture details are according to

Table II.

Table V: Results of only changing discriminators.

PESQ CSIG CBAK COVL

Noisy 1.97 3.35 2.44 2.63

MetricGAN+ [16] 2.89 3.78 2.92 3.31

MGK-G0-D1 2.94 4.00 2.91 3.45

MGK-G0-D2 2.93 3.97 3.01 3.44

MGK-G0-D3 3.02 4.03 3.02 3.50

MGK-G0-D4 3.30 4.02 3.04 3.63

MGK-G0-D4 (NHP) 2.72 3.96 2.75 3.32

MGK-G0-D5 2.96 4.15 3.19 3.55

Discriminators D1 and D2 which integrate KANs improve the

performance of SE marginally with slightly fewer parameters, com-



pared to MetricGAN+. In terms of discriminators integrated with

CKANs, discriminators D3 and D4 show significant improvement,

however with higher parameter count, and discriminator D5 shows

slight improvement with significantly fewer parameters.

Analysing the performance of different generator structures, gen-

erators G1 and G2 show slightly degraded performance even with

significantly higher parameter count. Generator G3 uses less hidden

states and a smaller number of layers leading to significantly fewer

parameters, and still achieves similar performance. Generator G5

shows that the GRU architecture leads to better performance than

LSTMs, and generator G4 shows that KANs further improve the

performance of generator G5 with significantly fewer parameters.

Generator D6 shows that GRU-KAN also works well compared

to MetricGAN+. In summary, the integration of KANs leads to

only smaler improvements, while CKANs are able to significantly

improve SE performance. Both KANs and CKANs can have similar

performance compared to traditional NNs using fewer parameters,

and CKANs outperforms CNNs.

Among the tested variants of MetricGAN+KAN, MGK-G4-D4

achieves the best results in terms of PESQ and overall quality COVL

taking model complexity into account, i.e. while using 79.9% fewer

parameters (85.4% fewer for the generator, 468.9% more for the

discriminator), achieving 13.2% higher PESQ scores compared to

the MetricGAN+ baseline [16] (cf. Table VI).

Table VI: Results of further generator/discriminator combinations

compared to the baseline [16].

PESQ CSIG CBAK COVL

Noisy 1.97 3.35 2.44 2.63

MetricGAN+ [16] 2.89 3.78 2.92 3.31

MGK-G4-D3 3.00 3.98 2.95 3.46

MGK-G4-D3 (NHP) 2.66 3.85 2.88 3.24

MGK-G4-D4 3.27 3.97 2.97 3.59

MGK-G5-D3 3.07 4.10 3.00 3.57

MGK-G5-D4 3.08 4.08 2.99 3.56

MGK-D6-D3 2.99 4.03 3.04 3.49

MGK-D6-D4 3.12 3.90 2.95 3.48

Figure 5 compares the (a) clean, (b) noisy, and (c)-(d) enhanced

signals by (c) MetricGAN+ and (d) MGK-G4-D4 in terms of their

magnitude spectrograms.

Results in experiments without replay buffer indicated by NHP

in Tables IV, V and VI also show that MetricGAN+KAN still

suffers from catastrophic forgetting, and the use of replay buffer

is still necessary. Models trained without replay buffer still show

significantly lower performance. A possible reason may be that the

locality of splines only exists in (9). In (5), the spline curve is scaled,

which may reduce the effectiveness of the locality. In other words,

in some neurons, the base activation function has a higher influence

than the spline curve (cf. Figure 6). However, further experiments

might be necessary regarding this matter.

VI. POSSIBLE FUTURE WORK

In this work, MetricGAN+KAN is tested on the commonly used

Voicebank-DEMAND dataset to be comparable to most recent SE

literature. Since it is known that Voicebank-DEMAND is a rela-

tively simple task [22], [47], the model needs further experiments

on different datasets, such as e.g. [47]. Furthermore, reasons for

the still existing catastrophic forgetting in MetricGAN+KAN (or

KANs) need further investigation. Additionally, [36] presented several

implementations of the learnable curve, which may be a possible

direction for further research.
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Figure 5: Comparison of magnitude spectrograms.
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Figure 6: Changes of Eq. (5) in MGK-G0-D4, taken from epoch

100 (in blue) and epoch 400 (in red). ϕ
(ℓ)
i,j represents the learnable

activation function of input dimension i, output dimension j at layer

ℓ, with the corresponding input a
(ℓ−1)
j .

VII. CONCLUSION

This work analysed the use of KANs for a MetricGAN+ SE

system. The integration of KANs, CKANs and RKANs can improve

the SE performance of MetricGAN+. The proposed model, MGK-

G4-D4, achieves 13.2% higher PESQ scores with 79.85% fewer

parameters compared to the MetricGAN+ baseline [16], indicating

a better scaling law. Experimental results also show that the use of

KANs in MetricGAN+KAN cannot mitigate catastrophic forgetting,

and the replay buffer is still necessary.
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and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014.

[47] G. Close, T. Hain, and S. Goetze, “The effect of spoken language on
speech enhancement using self-supervised speech representation loss
functions,” in 2023 IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics (WASPAA), 2023.


	Introduction
	Review of the MetricGAN+ Framework
	Review of Kolmogorov-Arnold networks (KANs)
	Experiments
	Dataset
	Implementation
	Experiment Setup

	Results
	Possible Future Work
	Conclusion
	References

