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Robust finite-temperature many-body scarring on a quantum computer
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Mechanisms for suppressing thermalization in disorder-free many-body systems, such as Hilbert space
fragmentation and quantum many-body scars, have recently attracted much interest in foundations of quantum
statistical physics and potential quantum information processing applications. However, their sensitivity to
realistic effects such as finite temperature remains largely unexplored. Here, we have utilized IBM’s Kolkata
quantum processor to demonstrate an unexpected robustness of quantum many-body scars at finite temperatures
when the system is prepared in a thermal Gibbs ensemble. We identify such robustness in the PXP model, which
describes quantum many-body scars in experimental systems of Rydberg atom arrays and ultracold atoms in
tilted Bose-Hubbard optical lattices. By contrast, other theoretical models which host exact quantum many-body
scars are found to lack such robustness and their scarring properties quickly decay with temperature. Our study
sheds light on the important differences between scarred models in terms of their algebraic structures, which
impacts their resilience to finite temperature.
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I. INTRODUCTION

The development of programmable Rydberg atom arrays
[1] (see, also, the review [2]) has ushered in an era of experi-
mental explorations of a weak breakdown of thermalization,
now commonly referred to as quantum many-body scars
(QMBSs) [3–5]. In QMBS systems, only a small (typically
vanishing in system size) fraction of eigenstates violate the
eigenstate thermalization hypothesis (ETH) [6,7], while the
rest of the many-body spectrum is chaotic. Such systems
exhibit thermalizing dynamics from most initial states; how-
ever, their dynamics can be strikingly regular for a small
set of special initial conditions, as indeed observed in ex-
periments [1,8–10]. This “intermediate” behavior between
chaos and integrability has attracted attention in the context
of controlling quantum dynamics [8] and entanglement [11]
in complex systems and using such systems for quantum-
enhanced metrology [12–14].

Given the strong sensitivity of scarred dynamics on the
initial state, in this work we address a natural question for
experiments and applications of QMBSs: how sensitive is
scarring to finite temperature T ? For example, imperfec-
tions in state preparation—due to finite temperature—could
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strongly impact the subsequent dynamics. In a scenario com-
monly studied in the literature, an initial state of interest, |ψ0〉,
is prepared as the ground state of a simple preparation Hamil-
tonian Ĥi. The system is then quenched by rapidly changing
the parameters so that the dynamics is now governed by a final
Hamiltonian Ĥf , for which our prepared state is no longer
necessarily close to the ground state. Here, we will consider
the case where, instead of the ground state, the Gibbs state of
Ĥi at temperature T is obtained as a result of preparation.

For the so-called PXP model [15–17]—the effective model
of Rydberg atom arrays mentioned above—we find that the
finite-T preparation scheme still results in remarkably robust
QMBS signatures, even at high temperatures. We present
evidence for this based on both large-scale classical simula-
tions as well as quantum simulation of finite-T quenches on
the IBM quantum computer. Surprisingly, for other models
where QMBS states obey exact algebraic relations, such as
the spin-1 XY magnet [18], we find opposite behavior: sig-
natures of QMBS decay fast with temperature. Our results
establish the robustness of QMBSs at finite temperature in
the PXP model and show they can be harnessed on existing
quantum hardware. Moreover, they highlight the fine differ-
ences between QMBS models depending on the nature of the
underlying scarring mechanism and the algebraic structure of
their QMBS subspaces.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our finite-temperature quench proto-
col and several diagnostics, in particular the interferometric
Loschmidt echo F (t ), that we will employ to characterize
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thermalization and scar dynamics. In Sec. III, as a warmup,
we discuss the spin-1 XY model [18], which exhibits exact
QMBS states that are fully decoupled from the thermal bulk
of the spectrum. This analytically tractable example will al-
low us to establish intuition about the expected behavior of
the Loschmidt echo after a finite-T quench. We will show
that the echo can be accurately modeled by assuming the
dominant contribution comes from the ground state. Thus,
in the spin-1 XY model, the scar dynamics is sensitive to
preparing the system in the ground state of the prequench
Hamiltonian. By contrast, in Sec. IV, we will study the same
finite-T quench protocol for the PXP model and show that the
simple ground-state approximation of the echo breaks down
and the postquench dynamics exhibits more pronounced scar-
ring signatures than naively expected. These results are further
verified using the IBM quantum computer in Sec. V. We con-
clude with a discussion of these findings in Sec. VI, while the
Appendices contain further details about the Loschmidt echo
and its low-temperature approximation, different preparation
protocols, results for the deformed PXP model with nearly
exact QMBSs, and details of the quantum algorithm executed
on IBM hardware.

II. FINITE-T QUENCH PROTOCOL AND DIAGNOSTICS
OF THERMALIZATION

To probe the effect of temperature, we prepare the system
in a thermal Gibbs state at a given inverse temperature β =
1/T using some prequench Hamiltonian Ĥi. We then perform
a quench by evolving the state with the quench Hamiltonian
Ĥf . The two Hamiltonians are related, as Ĥi must have the
reviving state of Ĥf as its ground state. In addition, we also
ensure that our initial state is always essentially at infinite tem-
perature with respect to Ĥf such that any ergodicity breaking
is caused by QMBSs and not by proximity to the ground state
of Ĥf ; see Appendix A.

We will denote the eigenstates of Ĥi by |En〉 and their
corresponding eigenenergies En, assuming they are sorted in
increasing order, En+1 � En. The initial state is then the mixed
state,

ρ̂(β ) = e−βĤi

Z
= 1

Z

∑
n

e−βEn |En〉〈En|, (1)

with Z = ∑
n e−βEn the partition function of Ĥi. For simplic-

ity, we will always add a constant diagonal contribution to Ĥi

to ensure that the ground state has energy E0 = 0, which has
no impact on the physics but simplifies the calculations.

At time t = 0, we quench the system with the Hamiltonian
Ĥf , generally distinct from Ĥi, and let it evolve freely as a
closed system. We characterize the dynamics by the interfer-
ometric Loschmidt echo,

F (t ) = |Tr{e−iĤ f t ρ̂}|2, (2)

which is a suitable generalization of the more familiar return
fidelity, to which it reduces in the case of a pure state. If Ĥf

obeys the ETH and ρ̂ is close to an infinite-temperature state
with respect to Ĥf , then we expect F to quickly approach
1/D, with D the Hilbert space dimension. On the other hand,
after a quench from a scarred initial state, we expect F (t )

to return to an O(1) value after some number of cycles with
period τ . As such, the main quantity we will investigate is Fk ,
which is the maximum of F (t ) in the vicinity of t = kτ . When
performing system-size scaling to the thermodynamic limit,
we will also use the fidelity density, f = ln(F )/N , which is
an intensive quantity. We will use the same notation of fk to
denote ln(Fk )/N .

In order to detect an anomalous response at finite tempera-
ture, it is important to have some intuition about the behavior
of Fk . The simplest conjecture one could make is that only the
ground state contributes to the revivals. We then expect Fk to
behave as Fk = F∞

k /Z2 away from β = 0, where F∞
k is the

value at β = ∞ which is equal to 1 in the case of “perfect”
scarring. While our focus is mostly on the regime of large β

where signatures of scarring have a chance of being measured
in experiment, we can refine our approximation to also make
predictions as β gets closer to 0. The full derivation can be
found in Appendix B, with the final result

Fk = F∞
k

Z2
+

(
1 − 1

Z

)2

D . (3)

Due to several approximations involved in the derivation, this
formula is rather crude for low β and is only meant to give an
idea of the magnitude of Fk in that regime. However, we will
show that in the spin-1 XY model, our prediction agrees well
with the numerical results over the full range of β.

As a second diagnostic, we turn towards observables. In
particular, we study the density of Ĥi defined as ĥ = Ĥi/N .
The expectation value of ĥ at time t is given by 〈ĥ〉β (t ) ≡
Tr[ρ̂β (t )ĥ], where we use angular brackets 〈·〉β to denote an
expectation value in the Gibbs state at inverse temperature β.
As our focus is on initial states at infinite temperature with
respect to the quench Hamiltonian Ĥf , we are interested in
the deviation of ĥ from its infinite-T expectation value,

δĥ = (ĥ − 〈ĥ〉β=0)/〈ĥ〉β=0. (4)

Note that ĥ is positive semidefinite by construction as the
ground-state energy was set to zero. As ĥ is not proportional
to the identity, it must have strictly positive eigenvalues and
thus 〈ĥ〉β=0 (equal to the mean of the eigenvalues) cannot be
zero, meaning that δĥ is never singular.

Similar to the Loschmidt echo, we will focus on the ob-
servable expectation value after k periods. In the majority
of scarred models, scarring dynamics can be viewed as state
transfer between two product states. For both models that we
study in this work, we additionally have that these two states
are extremal eigenstates of Ĥi. As such, we expect 〈ĥ〉 (t ) and
〈δĥ〉 to be maximal at t = (k + 1/2)τ and minimal at t = kτ ,
with k an integer. To minimize clutter, we will use an abbrevi-
ation for the expectation value 〈δĥ〉β (kτ ) ≡ δhk , keeping the
inverse temperature β implicit, and we will consider k both
integer and half integer. Analogous to Eq. (3), we can derive
the expected behavior in large systems to be

δhk = (
h∞

k / 〈ĥ〉β=0 − 1
)
/Z, (5)

where h∞
k is the value at zero temperature at t = kτ , which

reduces to zero in the case of perfect scarring. The simplicity
of this expression comes from the various conditions we have
imposed on our initial state—see Appendix B.
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III. SPIN-1 XY MODEL

To test our theoretical predictions, we first apply the di-
agnostics introduced above to the finite-T quenches of a
one-dimensional (1D) spin-1 XY magnet [18], in which the
QMBS eigenstates can be exactly constructed. The spin-1 XY
model is described by the Hamiltonian

Ĥf ,XY =J
N−1∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1

) + h
N∑

j=1

Ŝz
j + D

N∑
j=1

(
Ŝz

i

)2

+ J3

N−3∑
j=1

(
Ŝx

j Ŝ
x
j+3 + Ŝy

j Ŝ
y
j+3

)
, (6)

where Ŝα
j are the standard spin-1 operators on site j. Unless

specified otherwise, we will set J = 1, h = 1, D = 0.1, and
J3 = 0.1 and assume open boundary conditions (OBCs). For
these values of parameters, the model was shown to be nonin-
tegrable and displays chaotic level statistics [18]. At the same
time, preparing the system in the initial state,

|ψ0〉 =
N⊗

j=1

[ |+1〉 − (−1) j |−1〉√
2

]
, (7)

was shown to give rise to perfect oscillatory dynamics [18],
revealing the existence of QMBSs. The N + 1 special eigen-
states of Ĥf ,XY have a simple form, being the superposition
of all configurations with m sites equal to |1〉 and n − m sites
equal to |−1〉. Essentially, they correspond to forming a large
spin in the effective spin-1/2 subspace formed by {|−1〉 , |1〉}
on each site. The QMBS oscillations can then be understood
as the precession of this large spin, with the initial state |ψ0〉
in Eq. (7) having overlap only with the scarred eigenstates.
This motivates our choice of this model, as it admits a similar
description of QMBS dynamics to the PXP model, studied in
Sec. IV below, but with the added benefit of a closed analytic
form for the QMBS eigenstates.

To prepare the state in Eq. (7), we can use the prequench
Hamiltonian proposed in Ref. [18],

Ĥi,XY = N

2
+

N∑
j=1

(−1) j
[(

Ŝx
j

)2 − (
Ŝy

j

)2]
. (8)

Figure 1 shows F1 after a quench along with its theoretical
counterpart, computed using

Z = (1 + e−β + e−2β )N , (9)

which is straightforward to derive as the Hamiltonian Ĥi,XY

is noninteracting. The agreement with the prediction is quite
good, showing that states above the ground state indeed make
a small contribution to the revivals.

To further verify how much the excited states impact
the dynamics, we investigate the scenario where an energy
penalty

Ĥi → Ĥi + V |Em〉〈Em|, V → ∞, (10)

is added to the preparation Hamiltonian. This essentially
removes the desired eigenstate (e.g., the ground state with
m = 0), while leaving the rest of the spectrum completely
untouched due to the orthogonality of eigenstates. Figure 2

0.0
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F 1

N = 6

N = 8

N = 10

10−2 10−1 100 101 102

β

−1.0

−0.5

0.0

f 1

N = 6

N = 8

N = 10

FIG. 1. Maximum interferometric amplitude after a quench in
the spin-1 XY model for various temperatures using the preparation
Hamiltonian in Eq. (8). The dashed lines show the expected scaling
in Eq. (3), with the partition function given by Eq. (9).

shows the results for this modified quench, where we remove
either the ground state or the first set of excited states. We
see that the revivals are rapidly destroyed, except for small
fluctuations that are expected to decay exponentially with
system size.

Finally, in Fig. 3, we study the deviation of the expectation
value of Ĥi/N from the thermal value after the quench. Similar
to the fidelity data, the numerical results match well with the
theoretical prediction.

Overall, we see that our approximation of nonthermalizing
dynamics by only the ground state holds. In particular, the
agreement with analytical prediction is good considering the
relatively small system sizes accessible to the exact numerics
on the spin-1 XY model. Nonetheless, one might wonder about
the influence of the choice of Ĥi. Indeed, choosing an operator
more closely related to the algebraic structure of scars could
maybe lead to different results. In particular, we can opt for a
Hamiltonian such that the scarred subspace is concentrated in
the low-lying excitations. In Appendix C, we do this by adding
a strong energy penalty on the |0〉 state to Ĥi. This lifts many
states higher in energy, while leaving the QMBS eigenstates

0 2 4 6 8 10
t

0.0

0.5

1.0

F(
t)

All E E > E0 E > E1

FIG. 2. Maximum interferometric amplitude at zero temperature
after a quench in the spin-1 XY model with N = 10 and using Ĥi in
Eq. (8). Two different energy penalties on the low-energy spectrum
are compared. The perfect revivals in the case without penalty (“all
E”) are in stark contrast with their absence in cases with penalty
(E>E0, E>E1), showing that scarred dynamics occurs only near zero
temperature.
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k
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k = 3/2
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k = 5/2
k = 3

FIG. 3. Extremal value of 〈ĥ〉 around t = kτ for the spin-1 XY
model with system size N = 9 and using Ĥi in Eq. (8). The dashed
black line indicates the theoretical prediction from Eq. (5), while the
dash-dotted gray line illustrates the value of δh at t = 0.

untouched as they have no overlap on any configuration with
|0〉 sites. As a consequence, the excited states with energy En

have n |1〉 sites in a background of |−1〉, similar to the scarred
eigenstates. Nonetheless, we find close results to those with Ĥi

in Eq. (8), meaning that only the ground state contributes to
revivals even in this more optimal case.

IV. THE PXP MODEL

The second model we consider is the PXP model [15,16],
which comprises a 1D chain of spin-1/2 degrees of freedom,

Ĥf ,PXP =
N∑

j=1

P̂j−1σ̂
x
j P̂j+1, (11)

defined in terms of Pauli matrices σ̂ α , α = x, z, and the pro-
jector P̂j = (1̂ j − σ̂ z

j )/2. Here we assume periodic boundary
conditions (PBCs), identifying (N + 1) ≡ 1, which will allow
us to reach larger system sizes and demonstrate the robustness
of the results.

The PXP model physically arises as an effective model of
Rydberg atoms in the strong Rydberg blockade regime [19].
Moreover, the same model can be realized at a special reso-
nance condition in the one-dimensional Bose-Hubbard optical
lattice in the presence of tilt potential [9]. The key property
of the PXP model is that neighboring excitations are forbid-
den due to the nearest-neighbor interactions Vnn (e.g., due to
van der Waals forces between Rydberg atoms) being much
larger than any other term in the Hamiltonian. In the spin lan-
guage, this regime is implemented via the projectors P̂ which
ensure that flips do not generate any pairs of · · · ↑↑ · · · , and
hence the dynamics always remains within the constrained
subspace. Unless specified otherwise, we will work fully
within the constrained sector of the Hilbert space where there
are no neighboring pairs · · · ↑↑ · · · . This implicitly assumes
that the temperatures considered below should be in the
regime kBT 	 Vnn.

The PXP model displays nonthermalizing dynamics when
initialized in the Néel state, |Z2〉 ≡ | ↑↓↑↓ . . . ↑↓〉. Evolving
this state with the Hamiltonian in Eq. (11), one observes that
the dynamics of local observables is approximately regular
[17]. By contrast, other initial states exhibit fast equilibration,
as expected in a chaotic system [1]. Conversely, this atypical
dynamics is also reflected in the ergodicity breaking among a

−0.4

−0.2

0.0

f k

(a) N = 28

0.5 1.0 2.0 5.0
β

0.0

0.5

F k

k=1 k=2

10−1 100 101

β

−1

0

1

δh
k

(b) N = 22

k=1
k=2
k=1/2

k=3/2
k=0

FIG. 4. (a) Fidelity density and (b) deviation of staggered mag-
netization density as a function of inverse temperature in the PXP
model. Inset of (a) shows the fidelity. All quantities show strong
deviation from the naive expectation of Eqs. (3) and (5), denoted by
the dashed lines of the same color. The deviation from the expected
behavior should be contrasted with the spin-1 XY model in Figs. 1
and 3. Note that the latter results for the spin-1 XY model are obtained
in much smaller system sizes compared to the PXP model in this
figure.

subset of eigenstates of the PXP model [20–22], even in the
presence of perturbations [23,24] or in energy transport [25].

Given the special role of the |Z2〉 state for scarred dynamics
in the PXP model, for our finite-temperature state preparation,
we use the staggered magnetization operator,

Ĥi = 1̂N + M̂SN, M̂S = 1

N

N∑
j=1

(−1) j σ̂ z
j , (12)

which has the |Z2〉 state as its unique ground state with zero
energy. The initial Hamiltonian (12) is chosen as it is easily
realizable in experiment and quantum simulation, it breaks the
degeneracy between the Néel state and its translated equiva-
lent, and its first excited eigenstates can be viewed as defects
on top of the |Z2〉 state due to thermal fluctuations.

The dynamics of Fk , fk , and hk are obtained via exact
diagonalization and plotted in Fig. 4 for various system sizes,
indicated in the legend. For reference, we also plot the pre-
dictions of Eqs. (3) and (5) with dashed lines. Figure 4 shows
that for all the metrics, there are surprisingly strong devia-
tions from theoretical predictions. An obvious reason for the
mismatch between numerics and theoretical predictions could
be finite-size effects. This appears unlikely, however, as a
sensitive quantity such as the fidelity density is well converged
in system size, as shown in Fig. 5 for an illustrative point
β ∼ 1, away from both the β ≈ 0 and β → ∞ regimes. One
can clearly observe fidelity peaks at times that are multiples of
τ ≈ 4.8, which coincides with the known revival period of the
PXP model [20]. Consequently, we still see strong deviations
in fk and Fk at large system size N = 28, where D = 710 647,
while for hk , we probed system sizes up to N = 22, where
D = 39 603. A detailed study of finite-size scaling of fk and
δhk is provided in Fig. 5(b). These results show that both quan-
tities are well converged already at N ≈ 20, and we expect
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(a)
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β
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0.0
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(b)

k=1

k=2
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β
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1
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k

(c)

k= 1
2

k=1

12 14 16 18 20 22 24 26 28
N

FIG. 5. Fidelity density and observables after a finite-T quench
in the PXP model. (a) Fidelity density over time for different sys-
tem sizes for β = 0.89, away from the high- and low-temperature
regimes. (b) Fidelity density and (c) observable extrema. The dashed
lines correspond to the theoretical expectations of Eqs. (3) and (5)
for k = 1. Both metrics are well converged in system size and show
robustness to finite temperature when compared to the expected
behavior.

the observed behavior to persist in larger systems, including
the larger-than-expected fidelity density near infinite temper-
ature. Note that the corresponding results for the spin-1 XY
model (Figs. 1–3) showed good agreement with the analytical
prediction despite much smaller system sizes compared to the
PXP model.

A more plausible explanation for the mismatch between
numerics and theory in Fig. 4 would be the presence of other
states leading to regular dynamics beyond the ground state of
Ĥi. We test this in Fig. 6 where we compute the fidelity in the
case where the ground state is effectively projected out using
Eq. (10). Not only are clear revivals visible when the ground
state is excluded, the same is true when the first set of exci-
tations is excluded as well. This indicates that the assumption
that only the ground state yields a significant contribution is
not correct in the case of PXP, accounting for the discrepancy
with the theoretical predictions.

0 5 10 15
t

0.0

0.5

1.0

F(
t)

All E E > E0 E > E1

FIG. 6. Interferometric amplitude after a quench in the pure PXP
model for N = 28 at zero temperature, with or without energy penal-
ties placed on the low-energy spectrum. Revivals can be seen even
when the ground state (E>E0) and the first set of excited states
(E>E1) are excluded from the initial Gibbs state. The existence of
revivals in the cases with energy penalty should be contrasted with
their absence in the spin-1 XY model in Fig. 2.

This directly implies that unlike most models with ex-
act QMBS, the PXP model possesses additional families of
scarred eigenstates with a similar structure. While this anal-
ogous structure allows them to show up in the low-energy
spectrum of Ĥi, it also means that it is very difficult to remove
them to try and recover the same behavior as in the XY model
without destroying the main set of scarred eigenstates.

V. QUANTUM SIMULATION

Our previous results for the PXP model strongly suggest
that scarring signatures persist at finite temperature. We now
demonstrate that this robustness can be witnessed in a cur-
rent generation of quantum simulators. We have employed
the IBM quantum processor, Kolkata, which uses a heavy
hex topology and has quantum volume 128 [26], to simulate
finite-T quenches in the PXP model.

The IBM processors use a cross-resonance gate to generate
the CNOT entangling operation. On this hardware, we simu-
lated the time dependence of the staggered magnetization, M̂S ,
in Eq. (12). We simulate the evolution of the system under
the Hamiltonian (11) but now, for convenience, assuming
open boundary conditions. As in the classical simulations,
we simulate evolution for an initial Gibbs state (1) at tem-
perature 1/β, working fully within the constrained Hilbert
space. However, rather than explicitly preparing the thermal
state (1) on the quantum computer, we use the EρOq method
[27–30], which involves sampling from the density matrix
(1) via the traditional Markov chain Monte Carlo (MCMC)
method; see Appendix E for details. We have used the suite
of error-mitigation techniques provided by QISKIT RUNTIME

[31], which include dynamic decoupling [31–38], random-
ized compiling [39–45], and readout mitigation (specifically
T-REx) [46–63]. We also used a rescaling procedure to coun-
teract the signal loss from the effective depolarizing channel
caused by the randomized compiling [64–66].

We have simulated the PXP model at five different inverse
temperatures β ∈ {0.1, 0.5, 1, 2, 4} and generated Nc = 105

configurations at each β. The time-evolution operator was
decomposed using the Trotter approximation with a time step
of δt = 0.4. The time evolution of M̂S is shown for eight
qubits in Fig. 7(a) for β ∈ {0.1, 1, 4}. While this is a relatively
small system, the PXP model is known to be difficult to
simulate even with advanced error-mitigation techniques [67].
We find that a reliable signal for the time dependence can
be obtained up to one oscillation or roughly 10 Trotter steps.
From this data, we can extract δhk ; in fact, as 〈ĥ〉β=0 = 1, it
is straightforward to see that δĥ = M̂S. In Fig. 7(b), we plot
δh1/2 for our quantum simulation along with the exact results.
Both show larger deviations from the thermal value that our
naive expectation would predict in Eqs. (3) and (5). While we
need to keep in mind the small system size used, which limits
the accuracy of our prediction based solely on the ground-state
contributing, its relatively good agreement with the exact data
means that we can expect the same kind of behavior in larger
systems.

VI. CONCLUSIONS AND DISCUSSION

We have studied the fate of wave-function revivals at fi-
nite temperature in two classes of QMBS models. The initial
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FIG. 7. IBM quantum simulation of finite-T quenches in the
PXP model. (a) Time dependence of M̂S for β ∈ {0.1, 1, 4} in
the PXP model with eight qubits and OBC. The data obtained on the
IBM device show good agreement with the numerical simulations.
(b) Relative deviation after a half period of 〈Ĥi〉/N from its predicted
value of Eq. (5). The quantum simulation data show larger deviation
than the naive expectation. In both panels, the error bars correspond
to partial systematic errors from rescaling and statistical sampling
from the density matrix. The simulations for β = 2 were run on July
26, 2023 and all other β on August 4th.

density matrix at temperature 1/β is produced by an annealing
procedure, instead of being a pure state previously considered
in the literature. For the spin-1 XY model, a prototype model
with exact QMBS states, we find that the low-T behavior
of the return fidelity as well as the oscillations of observ-
ables are well described by the analytical toy model given
by Eqs. (3)–(5), implying that only the T = 0 state gives a
nonvanishing contribution and the QMBSs are fragile with
respect to finite temperature. On the other hand, we found
that the PXP model violates this expectation and displays
unexpectedly robust signatures of QMBS dynamics, even at
high temperatures. In contrast to previous work that focused
on the efficient preparation of QMBS eigenstates [68], we
have observed robust QMBS signatures at finite temperature
in the dynamics of both the fidelity and local observables in
the PXP model. Finite-size scaling shows that this behavior
is well converged within the accessible system sizes. Using
a digital quantum computer, we have demonstrated persistent
QMBS revivals in the IBM device at finite temperature.

The main question stemming from our study is how to un-
derstand the striking difference in the finite-T behavior of two
scarred models, the PXP and spin-1 XY models. In an attempt
to reconcile their different behaviors, in Appendix D we study
finite-T quenches for a perturbed variant of the PXP model
which is known to exhibit nearly perfect scarring [69–71].
Due to the nearly perfect QMBS subspace, the perturbed PXP

model may be expected to behave similarly to the spin-1 XY
model. Nevertheless, our results suggest that this expectation
is incorrect, as the finite-T dynamics in the perturbed PXP
model is found to be similar to the unperturbed PXP results
presented above.

We attribute the difference in finite-T behavior between
the PXP and other models to the different algebraic proper-
ties of their QMBS states. Namely, the QMBS states in the
PXP model form a representation of a large. su(2) spin [70],
which is a special case of the “restricted spectrum generating
algebra” that describes many other QMBS models, including
the spin-1 XY magnet [4,72–75]. In most of these models,
the nonthermal eigenstates are completely decoupled from the
thermal bulk, and hence they exactly form a single algebra
representation. By contrast, in the PXP model, the algebra is
inexact due to the small residual couplings to the thermal bulk.
More importantly, the nonthermal eigenstates form towers of
multiple su(2) representations that originate from a collective
spin-1 degree of freedom [22]. This means that when starting
from a finite-temperature ensemble in the PXP model, we can
have coherent contributions from states belonging to different
su(2) representations, which effectively provides a stronger
“shield” for QMBSs against finite temperature.

Unfortunately, due to a lack of an exhaustive construction
of multiple su(2) representations in the PXP model, their
impact on finite-T quench dynamics remains a conjecture at
this stage. One interesting direction to pursue would be to
construct toy models with a controllable number of embedded
algebra representations and probe their finite-T behavior. On
the other hand, it is worth noting that there are also other
frameworks for building QMBS models that extend beyond
the simple Lie algebra scheme considered here (e.g., [74,76–
78]) and it would be interesting to understand if any of them
display a similar robustness to finite temperature.

In compliance with EPSRC policy framework on research
data, this publication is theoretical work that does not require
supporting research data.
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APPENDIX A: EFFECTIVE TEMPERATURE
WITH RESPECT TO THE QUENCH HAMILTONIAN Ĥf

As our focus is on QMBSs, we want to make sure that
there are no other sources of periodic dynamics. In particular,
we want to avoid the initial state being close to the ground
(or ceiling) state of Ĥf , as approximately periodic dynamics
could arise from the initial state, having large overlap with
only the ground state and a few low-lying excited states. Thus,
we make sure that the initial density matrix ρ̂(β ) that we con-
sider is always essentially at infinite temperature with respect
to Ĥf , which can be expressed as a condition Tr[ρ̂(β )Ĥf ] ≈
Tr[Ĥf ]/D for all β, with D denoting the Hilbert space di-
mension. We emphasize that this statement is only about the
energy expectation value of Ĥf with respect to ρ̂ matching
that of infinite temperature, and not necessarily about ρ̂ being
a Gibbs state for Ĥf .

1. PXP model

The spectrum of Ĥf ,PXP is symmetric around E = 0 as this
Hamiltonian anticommutes with K̂PXP = ∏N

j=1 σ̂ z
j . The energy

eigenvalues must then sum to zero since, for any energy
eigenstates |E f ,k〉 of Ĥf ,PXP with energy E f ,k �= 0, there exists
another eigenstate |E f , j〉 = K̂PXP |E f ,k〉 which has an energy
E f , j = −E f ,k . This implies that at infinite temperature, the
effective energy is 0 since it is equal to the mean of all energy
eigenvalues. At the same time, the initial state considered
is |ψ0〉 = | ↑↓↑↓ . . . ↑↓〉. Importantly, this state is a basis
state in the computational basis, while the PXP Hamiltonian
Ĥf ,PXP is purely off-diagonal in this basis. This means that
〈ψ0|Ĥf ,PXP|ψ0〉 = 0, which corresponds to infinite tempera-
ture.

In fact, the previous argument can be applied to all states ρ̂

considered in this work to show they effectively correspond to
infinite temperature. Indeed, since Ĥi,PXP is diagonal in the
computational basis, we can take its basis states as eigen-
states |Ei,k〉. Then, for all these eigenstates, we must have
〈Ei,k|Ĥf ,PXP|Ei,k〉 = 0, for the same reason as for the |ψ0〉 state
above. This directly implies that

Tr[ρ̂(β )Ĥf ,PXP]= 1

Z

∑
k

e−βEi,k 〈Ei,k|Ĥf ,PXP|Ei,k〉=0. (A1)

Finally, we note that the perturbation considered in Ap-
pendix D is also off-diagonal in the computational basis and
preserves the antisymmetry of the spectrum. Thus, the same
conclusions also apply to the perturbed PXP model.

2. Spin-1 XY model

In the case with D = 0, Ĥf ,XY anticommutes with the
operator K̂XY = σ̂ x

1 σ̂
y
2 σ̂ x

3 σ̂
y
4 · · · σ̂ x

N−1σ̂
y
N . As in the PXP case,

this implies that the spectrum is symmetric around 0 and

that the energy expectation value at infinite temperature
is E = 0.

The expectation value of the state |ψ0〉 under Ĥf ,XY can
be computed analytically and is given by DN . So, for D = 0,
we have that its energy is 0 and therefore this state is at
infinite temperature. We have a similar result for ρ̂ at all values
of β. Indeed, the eigenvalues of Ĥi,XY can all be written as
basis states in the basis {|−〉 , |0〉 , |+〉}, with |+〉 = (|+1〉 +
|−1〉)/

√
2 and |−〉 = (|+1〉 − |−1〉)/

√
2. This directly im-

plies that they all have zero net magnetization as this is the
case for |−〉, |0〉, and |+〉. Thus, their energy contribution
from the term h

∑N
j=1 Ŝz

j is 0. It is also straightforward to
check that all the other terms (for D = 0) are purely off-
diagonal in the basis {|−〉 , |0〉 , |+〉} and so all eigenstates of
Ĥi,XY have expectation value E = 0 under Ĥf ,XY. As in the
PXP case, this directly implies that Tr[ρ̂(β )Ĥf ,XY] = 0 for
all β.

In order to remove as much structure as possible and
match the discussion of QMBSs in the spin-1 XY model in
Ref. [18], we now set D = 0.1. As two other parameters (h
and J) are equal to 1, the value D = 0.1 should not cause
significant shifts in the spectrum, while being large enough
to break the antisymmetry. In fact, one can analytically show
that the infinite-temperature energy is shifted to 2DN/3. It is
important to remember that for such a local 1D system, the
range of the spectrum also scales linearly with system size
(up to a subleading correction), and thus the relevant quantity
is the energy density, E/N . As the system size is varied, we
see that the difference in infinite-temperature energy density
between D = 0 and D = 0.1 is constant, 2D/3 = 1/15, which
is relatively small compared to the full energy-density range.
We numerically compute its minimum and maximum values,
which we find to be −2.3513 and 2.3513 for D = 0, and
−2.3012 and 2.4019 for D = 0.1 (for system size N = 14,
with similar differences in smaller system sizes). This illus-
trates that the effect on the spectrum by changing D = 0 →
0.1 is small.

A similar analysis can be performed for the state |ψ0〉, for
which the energy density is D. The difference between this
energy density and that of infinite temperature is constant
at D/3 = 1/30. Once again, this difference is small when
compared to the full range of the energy density (−2.3012
to 2.4019 for D = 0.1 at N = 14).

In Fig. 8(a), we plot the energy density of ρ̂ with respect to
Ĥf ,XY for the full range of β that we investigate. As expected,
the energy density varies smoothly between 2D/3 and D. The
inset illustrates that this range is small when compared to the
full spectrum by displaying D and 2D/3 over the density of
states (DOS).

The effective inverse temperature β f of ρ̂ with respect to
Ĥf ,XY is defined by the condition

Tr[ρ̂Ĥf ,XY] = Tr[Ĥf ,XYe−β f Ĥ f ,XY ]

Tr[e−β f Ĥ f ,XY ]
. (A2)

As ρ̂ depends on β, the same is true for β f . However, as
expected, β f is always small. For N = 8, we find that it
varies between 0 (for β = 0) and −8.8 × 10−3 (for β = ∞).
This is illustrated in Fig. 8(b). We emphasize that this value
of β f is even smaller than the smallest values of β that we
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FIG. 8. Position of the energy of ρ̂(β ) in the spectrum of Ĥf ,XY

as β is varied in the spin-1 XY model for N = 8. (a) Energy-density
expectation of ρ̂(β ) with respect to Ĥf ,XY. The solid black line
and the red dashed line represent the energy density at β = ∞ and
β = 0, respectively, in both the main plot and the inset. Inset: The
density of states (DOS) of Ĥf ,XY. The fact that the two lines are
almost superimposed when looking at the full energy density range
shows that ρ̂ is essentially in the middle of the spectrum for all β.
(b) Effective temperature β f of ρ̂(β) with respect to Ĥf ,XY.

consider for state preparation, for which no changes are seen
when β is further decreased.

In conclusion, we find that for D = 0.1, the density matrix
ρ̂ is effectively at infinite temperature for all values of β.
As such, we expect it to thermalize quickly, unless there is
an obstruction to this due to QMBSs. We briefly note that
the same considerations apply when using the alternative
preparation Hamiltonian discussed in Appendix C. Indeed,
the Hamiltonian in Eq. (C1) shares the same eigenstates
as the one in Eq. (8), only their energy is modified. As
such, the energy density of ρ̂ still varies between 2D/3 and D,
leading to the same β f . While the exact form of β f (β ) might
be slightly different, it will still be extremely close to infinite
temperature.

APPENDIX B: LOW-TEMPERATURE APPROXIMATION

Here we derive the expected behavior of the interferomet-
ric Loschmidt echo and of the expectation value of a local
observable ĥ in a scarred system following a quench.

1. Interferometric Loschmidt echo

Let us first focus on the interferometric Loschmidt echo,
defined in Eq. (2) in the main text. Let us denote by |En〉 the
eigenstates of Ĥi with eigenenergies En. As done in the main
text, we will assume E0 = 0. For a given value of the inverse
temperature β (with respect to Ĥi), our initial mixed state will
then be given by

ρ̂ = 1

Z

∑
En

e−βEn |En〉〈En|, (B1)

FIG. 9. Square root of the return fidelity after evolving the eigen-
states |En〉 of Ĥi with Ĥf for a single period. The eigenstates are
sorted by increasing energy such that En � En+1. The red dashed
lines indicate 1/

√
D. Results shown are for (a) the spin-1 XY model

with N = 10 spins and (b) the PXP model with N = 20. The multiple
points at the same value in the latter are due to Ĥf ,PXP being invari-
ant under translation because we use periodic boundary conditions.
Overall, we see the expected behavior that only states with n/D close
to 0 and 1 (i.e., near the ground and ceiling states) have a return
fidelity close to 1. Between these two extremes, the fidelity is lower
and gets even lower at longer times. However, we also see that 1/

√
D

is a relatively crude estimate of the actual fidelity values for these
states.

where Z = ∑
En

exp(−βEn) is the partition function. Substi-
tuting the expression for the density matrix, Eq. (2) becomes

Fρ̂ (t ) = 1

Z2

∣∣∣∣ ∑
En

e−βEn〈En|e−iĤ f t |En〉
∣∣∣∣
2

. (B2)

At times that are multiples of the period, t = kτ , we know that
〈E0|e−iĤ f t |E0〉 = √

F∞
k , where the 0 subscript denotes infinite

β (or, equivalently, zero temperature). Let us discuss the other
eigenstates |En〉 with n �= 0. We assume they are thermalizing
with respect to Ĥf , and so we should get

〈En|e−iĤ f t |En〉 ≈ e−irn/
√
D, (B3)

for sufficiently long t . This is a relatively crude approximation
after a single period; however, the contrast between the ground
state and the rest of the spectrum is already clear at that point,
as shown in Fig. 9.

As the factors e−irn are essentially random phases with a
very small individual contribution, we can forget about their
weights and consider an equal superposition. In practice, we
assume the same prefactor for all states except the ground
state. This prefactor is computed by taking the total sum of
the e−βEn for n �= 0 (i.e., excluding the ground state), which
is simply Z − e−βE0 = Z − 1 since we have set E0 = 0. We
then divide by the number of states, D − 1 ≈ D, in the limit
of large system sizes (i.e., we can neglect the exclusion of the
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ground state in the total count). We can verify that this ex-
pression indeed gives 0 at β = ∞ (where only the term of the
ground state should contribute) and 1 in the thermodynamic
limit for β = 0 (where the contribution of the ground state
is irrelevant). While this approximation is not very accurate
for larger values of β where the weights of the different
En can strongly vary, in that regime the contribution of the
ground state completely dominates around t = kτ . As such,
any inaccuracy in the contribution of the other eigenstates
will be effectively negligible. On the other hand, for small
β, the ground state no longer dominates but the prefactor of
each eigenstate is close to equal. Thus, our approximation is
justified and we can rewrite

Fρ̂ (kτ ) = 1

Z2

∣∣∣∣√F∞
k + Z − 1

D
∑
n �=0

〈En|e−iHf kτ |En〉
∣∣∣∣
2

≈ 1

Z2

∣∣∣∣√F∞
k + Z − 1

D Tr
[
e−iHf kτ

]∣∣∣∣
2

. (B4)

Taking the expectation value, the cross product vanishes as
its expectation value is zero for a chaotic system. Meanwhile,

1
D2 |Tr[e−iHf kτ ]|2 is simply the spectral form factor (SFF). At
times of the order of the Heisenberg time, this quantity is
known to saturate to

1

D2
E[|Tr(e−iHf kτ )|2]

k�1−−→ 1/D. (B5)

The symbol E denotes an expectation value (in the proba-
bilistic sense) over several realizations with random disorder
in some of the parameters. This is because the SFF is not
self-averaging in general [79]. However, for the PXP model
considered in the main text, there is no known parameter that
can be modified without affecting the scarring. As a conse-
quence, we take the approximation that a single realization
will be close to the expectation value, leaving us with

Fρ̂ (kτ ) = F∞
k

Z2
+

(
1 − 1

Z

)2

D , (B6)

for a long enough kτ . While this approximation is relatively
crude, it still provides us with a prediction for the overall
magnitude of Fk for β < 1, where the second term is the main
contribution. In the regime β > 1, the contribution F∞

k
Z2 from

the ground state will instead be the only relevant one. Thus we
expect a much higher accuracy in that regime and we focus
on it.

2. Observables

We now derive an expression for the expectation value of
ĥ if only the ground state of Ĥi shows perfect revival in Ĥf

and all other eigenstates thermalize rapidly. As in the previous
section, we denote by |En〉 the eigenstates of the prequench
Hamiltonian Ĥi and by τ the revival period. The previous
assumption then translates into the statement

〈En|e−iĤ f τ |Em〉 = δn,0δm,0 + (1 − δn,0)(1 − δm,0)√
D − 1

, (B7)

with D the Hilbert space dimension and τ assumed to be
large. We have checked the validity of Eq. (B7) numerically,
finding that the magnitudes of matrix elements are indeed

distributed around 1/
√
D, albeit with a large spreading, with

the dominant matrix element coming from the ground state
(n = m = 0).

Equation (B7) will prove useful to compute the expectation
value of ĥ = 1

N Ĥi over time, defined as

〈ĥ〉 (t ) = Tr[ρ̂(t )ĥ]

= 1

N

∑
n,m

P(Em) 〈En| e−iĤ f t |Em〉 〈Em| eiĤf t Ĥi |En〉

=
∑
n,m

P(Em)Ẽn| 〈En| e−iĤ f t |Em〉 |2, (B8)

with P(En) = e−βEn/Z and Ẽn = En/N . For t = kτ , we can
use the assumption made in Eq. (B7) to get

〈ĥ〉 (kτ ) ≈ P(E0)Ẽ0 +
∑
n �=0

∑
m �=0

P(En)Ẽm

D − 1

= P(E0)Ẽ0+
⎛
⎝∑

m �=0

P(Em)

⎞
⎠(∑

n �=0 Ẽn

D − 1

)
. (B9)

Using
∑

m �=0 P(Em)=1 − P(E0) and
∑

n Ẽn = D 〈ĥ〉β=0,
we finally arrive at

〈ĥ〉 (kτ ) ≈ P(E0)Ẽ0+[1−P(E0)]

(
D 〈ĥ〉β=0 −Ẽ0

D−1

)
. (B10)

In the limit of large system sizes, we can take D
D−1 → 1 and

Ẽ0
D−1 → 0, since Ẽ0 = E0/N is O(1). This leads to

〈ĥ〉 (kτ ) = P(E0)Ẽ0 + [1 − P(E0)] 〈ĥ〉β=0

= 〈ĥ〉β=0 + P(E0)(Ẽ0 − 〈ĥ〉β=0)

= 〈ĥ〉β=0 + 1

Z
(Ẽ0 − 〈ĥ〉β=0). (B11)

For sufficiently large system sizes, we expect both E0 and
〈ĥ〉β=0 to converge towards a finite value, and so in the
infinite-temperature limit where Z = D, we recover 〈ĥ〉β=0.
On the other hand, at zero temperature, we have that Z = 1
and and we simply get Ẽ0 = 〈ĥ〉β=∞.

If we are now interested in the deviation from the infinite-
temperature value, we find the simple expression

〈δĥ〉 (kτ ) = 1

Z

(
Ẽ0

〈ĥ〉β=0

− 1

)
. (B12)

In the simple case that we consider here, we also have that
E0 = 0, leading to an even simpler formula,

〈δĥ〉 (kτ ) = − 1

Z
. (B13)

If the revivals are not perfect, after one revival the ground-
state wave function does not lead to the value Ẽ0 = 0. Instead,
it will go to a finite value that we denote by h∞

k , where the
superscript ∞ denotes that this is the value at β = ∞ and
the subscript k that is the value at the t = kτ . In general, if
scarring is not exact, there no known analytical value for this
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quantity and we compute it numerically. So we simply replace
Ẽ0 by h∞

k in the formula to get

〈δĥ〉 (kτ ) = 1

Z

(
h∞

k

〈ĥ〉β=0

− 1

)
. (B14)

APPENDIX C: ALTERNATIVE PREPARATION
HAMILTONIAN FOR THE XY MODEL

In order to more directly compare our results of the spin-1
XY model with those of the PXP model, here we use an
alternative preparation Hamiltonian than holds a closer rela-
tion with the algebraic structure of the scarred states. This
will have the effect of enhancing the overlap of states in the
low-energy spectrum with scarred eigenstates. We now use the
prequench Hamiltonian,

Ĥ (2)
i,XY =

N∑
j=1

(−1) j
[(

Ŝx
j

)2−(
Ŝy

j

)2
]
+V

N∏
j=1

[
1̂ j−

(
Ŝz

j

)2
]
. (C1)

Note that with respect to the preparation Hamiltonian in
Eq. (8), the additional term ∝ V has been added. This has
no effect on the ground state. However, if we choose V � 1,
this heavily penalizes any occurrence of the |0〉 state. As a
consequence, the first excited states have a single (|+1〉 ±
|−1〉)/

√
2 turned into (|+1〉 ∓ |−1〉)/

√
2. The additional ex-

citation will follow the same scheme, and the states with
|0〉 sites—which are orthogonal to scarred states—will only
contribute at large temperature. In practice, this means that
the scarred subspace will only have overlap on the ground
state and on the N first excited states, as is the case in the
PXP model.

One of the main consequences of the discussion above is
that the symmetric superposition of the first set of excited
states is entirely contained in the scarred subspace. Thus, one
state among the N first-excited states plays a role in the re-
vivals. This is similar to the situation in the PXP model, where
one state out of the N/2 in the first set of excitations belongs
to the scarred subspace. In comparison, for the simpler Ĥi

in Eq. (8), only every other set of low-energy excited states
has a nonzero overlap on the scarred subspace, meaning that
the first set of excited states is orthogonal to it. In addition,
even when this overlap is nonzero (like for the second set of
excited states), it is smaller as there are many states with |0〉
that are thus orthogonal to the scarred eigenstates. However,
in all cases, the contribution of the scarred subspace in excited
states still vanishes as N → ∞.

In the rest of this section, we set V = 50. In order to adapt
our analytic expectation to this change, we change Z to

Z = (1+e−2β )N + e−βV [(1+e−β+e−2β )N − (1+e−2β )N ],
(C2)

which is very close to simply (1+e−2β )N for β > 10−1. In-
deed, while away from the β 	 1 regime, the initial state has
essentially no overlap with any state with a |0〉 site.

The results for quenches using the preparation Hamiltonian
in Eq. (C1) are shown in Fig. 10. While we see a good fidelity
compared to the original prequench Hamiltonian in Eq. (8),
this is due to the difference of the weight on the ground state

0.0

0.5

1.0

F 1

(a)

Ĥi,XY

Ĥ
(2)
i,XY

10−2 10−1 100 101 102

β

−1.0

−0.5

0.0

f 1

(b)

N = 6

N = 8

N = 10

FIG. 10. Maximum interferometric amplitude after a finite-T
quench in the spin-1 XY model for various values of inverse tempera-
ture. The dashed lines indicate the expected scaling for the data of the
same color. (a) Comparison between the preparation Hamiltonians in
Eqs. (8) and (C1) for N = 10. (b) Quenches using the preparation
Hamiltonian in Eq. (C1) for various system sizes. While there are
some deviations from the expected behavior, they decay with system
size and only happen for very low values of the fidelity density.

as captured by the analytic prediction. There are also some
small deviations with respect to the theoretical prediction for
β ≈ 0.1, but they decay rapidly with system size. They also
happen in a regime where the observed fidelity is effectively
zero, meaning that traces of scarring in the system will be ex-
tremely difficult to measure. This showcases that, as seen with
the previous preparation Hamiltonian, only the ground state of
Ĥi is expected to contribute to the nonergodic dynamics in the
thermodynamic limit. This is confirmed by quenches where
the contribution of the ground state is artificially removed by
setting an energy penalty on it; see Fig. 11. While the peak in
the middle panel is slightly larger than in Fig. 2, the difference
is small and expected to decay with system size.

APPENDIX D: PERTURBED PXP MODEL

While the QMBS phenomenology in the spin-1 XY model
resemble that of the PXP model discussed in the main text,
one obvious difference is that the former hosts exact QMBS

0 2 4 6 8 10
t

0.0

0.5

1.0

F(
t)

All E E > E0 E > E1

FIG. 11. Interferometric amplitude after a finite-T quench in the
spin-1 XY model with N = 10 using the preparation Hamiltonian
in Eq. (C1). Various energy penalties on the low-energy spectrum
are compared. The only visible difference with Fig. 2 is the slightly
larger amplitude of the fluctuations around t = 2τ .
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FIG. 12. Fidelity, fidelity density, and deviation of observable
density for various values of the temperature in the perturbed PXP
model. All quantities show strong deviation from the naive expecta-
tion, denoted by the dashed black lines.

and perfect revivals. Thus, in order to be able to compare the
two models on the same footing, we consider the perturbed
version of the PXP model, ĤPXP

f + δĤ , in which scarring is
essentially perfect. This perturbation was devised in Ref. [70]
and takes the form

δĤ = −
N∑

j=1

N/2∑
d=2

hd P̂j−1σ̂
x
j P̂j+1

(
σ̂ z

j−d + σ̂ z
j+d

)
, (D1)

with

hd = h0(φd−1 − φ1−d )−2, (D2)

h0 = 0.051, and φ = (1 + √
5)/2 the golden ratio. The first-

order term in this expansion was also considered in Ref. [69].
Low-order terms of an expansion such as Eq. (D1) can be
iteratively derived in a process of “correcting” the structure
constants of the su(2) algebra representation, furnished by
QMBS eigenstates [71]. Thus, the perturbation in Eq. (D1)
makes the revivals from the Néel state essentially perfect and
the associated algebra in the QMBS subspace nearly su(2),
allowing for a much closer comparison with the spin-1 XY
model.

Using the perturbed PXP model in Eq. (D1), we repeat the
computations for the pure PXP model given in the main text,
in order to check to what extent the exactness of the QMBS
structure impacts our conclusions. The dynamics of Fk , fk ,
and hk for the perturbed PXP model are shown in Fig. 12. For
all metrics, we see strong deviations from the naive thermal
predictions. In Fig. 13, we compute the fidelity in the case
where the ground state is artificially brought to infinite energy.
Not only are clear revivals visible when the ground state is
excluded, the same is true when the first set of excitations is

0 5 10 15
t

0.0

0.5

1.0

F(
t)

All E E > E0 E > E1

FIG. 13. Interferometric amplitude after a quench in the per-
turbed PXP model for N = 28 with energy penalties placed on the
low-energy spectrum. Clear revivals can be seen even when the
ground state and the first set of excited states are removed.

excluded as well. The symmetric superposition of all states
with one defect on top of the Néel state should have over-
lap exclusively on scarred eigenstates. However, the other
N/2 − 1 superpositions will be orthogonal to it and should
theoretically not contribute to the revivals. Thus, as only one
state out of N/2 contributes, we expect its contribution to be
similar to what was seen in the XY model. The next set of
excitations is then made of the Néel state with two defects. As,
once again, only the symmetric superposition is in the scarred
subspace, this concerns one state in N (N/2 − 1)/2. Overall,
one would expect the behavior to be the same as in the XY
model, but it clearly is not.

We emphasize that what we witness in the PXP model
is not a finite-size effect. Actually, the Hilbert space sizes
explored in this model are larger than the ones in the XY
model. Indeed, in the latter, we saw good agreement with
the theoretical predictions already for N = 8 and N = 10,
corresponding to D = 39 = 19 683 and D = 310 = 59 049,
respectively. Meanwhile, in the PXP model, we still see strong

−0.4

−0.2

0.0

f k

k = 1

k = 2

10−1 100 101

β

−1

0

1

δh
k

k = 1/2

k = 1

12 14 16 18 20 22 24 26 28
N

FIG. 14. Scaling of fidelity density and deviation of Ĥi/N after a
quench in the perturbed PXP model. The dashed lines correspond to
the theoretical expectations. Both metrics are well converged in sys-
tem size and show robustness to finite temperature when compared
to the expected behavior.
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FIG. 15. Quantum circuit that implements the PXP operation.

deviations in fk and Fk for N = 28 where D = 710 647, an
order of magnitude larger. For hk , we probed system sizes
up to N = 22 where D = 39 603. Furthermore, we provide
the scaling of fk and δhk with system size in Fig. 14. Our
results show that both quantities are well converged already
at N ≈ 20. As such, we expect the same special behavior in
larger systems. This includes the higher-than-expected fidelity
density near infinite temperature.

APPENDIX E: DETAILS OF THE QUANTUM ALGORITHM

To simulate the PXP model, we have employed the IBM
quantum processor, Kolkata, which uses a heavy hex topology
and has quantum volume 128 [26]. The IBM processors use a
cross-resonance gate to generate the CNOT entangling opera-
tion. On this hardware, we simulated the time dependence of
the staggered magnetization, M̂S , in Eq. (12). We simulate the
evolution of the system under the Hamiltonian in Eq. (11) but
now, for convenience, assuming open boundary conditions.
The boundary terms in the Hamiltonian are taken to be σ̂ x

1 P̂2

and P̂N−1σ̂
x
N .

As in all the classical simulations in this work, our goal is
to simulate evolution for an initial Gibbs state at temperature
β, as defined in Eq. (1). This must be done in the constrained
Hilbert space where there are no neighboring |↑〉, and thus we
only consider states in this subspace for our initial state. The
time dependence of M̂S can be explicitly written as

〈M̂S(t )〉=
∑
Ek

e−βEk

Z
〈Ek|Û †(t )M̂SÛ (t )|Ek〉, (E1)

where we recall that the |Ek〉 are the eigenstates of Ĥi in the
constrained Hilbert space. At this point, we can see that it is
sufficient to perform the simulation for all states in ρ̂, and
perform a weighted average using their Boltzmann weights,
e−βEk /Z .

We prepare the thermal state from Eq. (1) using the EρOq
method [27–29]. This method involves sampling states from
the density matrix using traditional Markov chain Monte
Carlo (MCMC) methods rather than preparing the thermal
state explicitly on the quantum computer.

We generate configurations from the Hamiltonian in
Eq. (12) as follows. Because that Hamiltonian is diagonal, the
density matrix can be written as a diagonal operator,

ρ̂i(β ) = 1

Z

∑
{S j}

e−βES j |S j〉〈S j |, (E2)

where the sum over {S j} includes only the allowed spin
configurations. We can now identify a corresponding action

S = Ĥi. The system is prepared in a valid spin configuration
and spin changes are proposed randomly in MCMC sweeps,
with a given probability weighted by the change in total en-
ergy: e−β(ES′ −ES ). If a proposed change would take the system
to an invalid subspace, the proposed change is discarded. After
generating Nc configurations of the form |S j〉〈S j | from the
density matrix, we then simulate the time dependence of M̂S

for each unique spin configuration. The thermal average is
then the weighted average,

〈M̂S(t )〉 =
∑
{Si}

pi

Nc
〈Si|Û †(t )M̂SÛ (t )|Si〉, (E3)

where pi is the number of times the configuration appeared
in the simulation. If an nondiagonal Hamiltonian is used for
state preparation, then linear combinations of the bra and ket
vectors in the density matrix need to be used. In principle, the
accuracy of this method encounters an exponential signal-to-
noise problem that is slightly lessened by the use of a diagonal
Hamiltonian [29,80].

We used the suite of error mitigation techniques provided
by QISKIT RUNTIME [31], which include dynamic decoupling
[31–38], randomized compiling [39–45], and readout mitiga-
tion (specifically T-REx) [46–63]. Dynamic decoupling is a
method which aims to tackle dephasing errors that a quan-
tum state accumulates by frequent applications of quantum
gates on idling qubits which act to cancel accumulated phase
errors. Randomized compiling is used to transform the uni-
tary errors from the CNOT gate being imperfect into random
stochastic Pauli errors, which are typically less catastrophic.
Readout mitigation is a tool which takes the output proba-
bility distribution measured from the quantum computer and
changes the relative bit-string outputs using a priori knowl-
edge determined when the quantum computer is calibrated
on the likelihood of misidentifying a |0〉 or |1〉 state. We also
used a rescaling procedure to counteract the signal loss from
the effective depolarizing channel caused by the randomized
compiling [64–66]. This method works by running a circuit
which contains only Clifford gates and has a known classical
output and using the discrepancy between the measured and
expected values to renormalize the observed value. To help
with reproducibility, we include the circuit decomposition in
terms of CNOTs and native two-qubit gates in Fig. 15. This
operator is then tessellated across the lattice of spins using a
Trotter decomposition, where the operator is decomposed as

Û (δt ) = eiδt
∑

i=0 P3iX3i+1P3i+2

× eiδt
∑

i=0 P3i+1X3i+2P3i+3

× eiδt
∑

i=0 P3i+2X3i+3P3i+4 . (E4)
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Pappalardi, Extensive multipartite entanglement from SU(2)
quantum many-body scars, Phys. Rev. Lett. 129, 020601
(2022).

[14] S. Dooley, S. Pappalardi, and J. Goold, Entanglement enhanced
metrology with quantum many-body scars, Phys. Rev. B 107,
035123 (2023).

[15] P. Fendley, K. Sengupta, and S. Sachdev, Competing density-
wave orders in a one-dimensional hard-boson model, Phys. Rev.
B 69, 075106 (2004).

[16] I. Lesanovsky and H. Katsura, Interacting Fibonacci anyons in
a Rydberg gas, Phys. Rev. A 86, 041601(R) (2012).

[17] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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