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In contrast with extended Bloch waves, a single particle can become spatially localized due to
the so-called skin effect originating from non-Hermitian pumping. Here we show that in kinetically-
constrained many-body systems, the skin effect can instead manifest as dynamical amplification
within the Fock space, beyond the intuitively expected and previously studied particle localization
and clustering. We exemplify this non-Hermitian Fock skin effect in an asymmetric version of
the PXP model and show that it gives rise to ergodicity-breaking eigenstates – the non-Hermitian
analogs of quantum many-body scars. A distinguishing feature of these non-Hermitian scars is
their enhanced robustness against external disorders. We propose an experimental realization of
the non-Hermitian scar enhancement in a tilted Bose-Hubbard optical lattice with laser-induced
loss. Additionally, we implement digital simulations of such scar enhancement on the IBM quantum
processor. Our results show that the Fock skin effect provides a powerful tool for creating robust
non-ergodic states in generic open quantum systems.

Introduction.—The physics of quantum thermaliza-
tion, which describes how a system reaches an equilib-
rium state, has garnered substantial attention in recent
years [1–8]. A key concept – the eigenstate thermaliza-
tion hypothesis [1, 7, 9, 10] – indicates that closed sys-
tems with unbroken ergodicity invariably reach an equi-
librium state at late times. However, not all systems
behave this way, a notable exception being the observa-
tion of persistent oscillations in a 51 Rydberg atom quan-
tum simulator [11]. This form of ergodicity breaking has
been attributed to non-thermalizing eigenstates known
as quantum many-body scars (QMBSs) [12, 13] (see also
the reviews [14–16]). In contrast to integrable models [17]
or strongly disordered systems displaying many-body lo-
calization [18, 19], typical QMBS systems weakly break
ergodicity due to the non-thermal eigenstates forming a
small-dimensional representation of a “restricted spec-
trum generating algebra” [20–24], although more general
mechanisms continue to be explored [25–28].

The experimental observations of QMBSs in synthetic
platforms ranging from ultracold atoms to superconduct-
ing circuits [11, 29–34] have revealed the intrinsic fragility
of QMBS dynamical revivals. In some cases, this has
been mitigated by periodic driving, which can extend
the lifetime of QMBS oscillations [29, 32, 35–37]. Never-
theless, thermalization or decay to a steady state, due to
inherent decoherence from atom loss or thermal fluctua-
tions, ultimately sets in. Thus, achieving stable QMBSs
in real-world settings, with unavoidable non-unitarity, re-
mains a challenge [38–42].

In this paper, we show that non-Hermiticity presents
a new route for enhancing ergodicity breaking and
many-body scarring. Borrowing inspiration from non-
Hermitian pumping, which breaks the conventional bulk-
edge correspondence [43–56], we demonstrate that a class
of many-body systems with kinetic constraints admit a

form of “Fock skin effect” that amplifies the revivals of
special initial states and makes them resilient against
spatial disorder. Unlike the conventional non-Hermitian
skin effect (NHSE), which can induce nontrivial edge lo-
calization in real space, the Fock skin effect is charac-
terized by persistent dynamical recurrences in the Fock
space of a many-body system. We demonstrate this
mechanism of QMBS enhancement in a non-Hermitian
variant of the PXP model, which can be realized in a
Bose–Hubbard optical lattice with laser-induced loss [57–
61]. Connection with conventional non-Hermitian pump-
ing is made through the “forward scattering approxima-
tion” [12, 22, 62], which effectively maps the many-body
system to a spatially-inhomogeneous tight-binding chain
with non-reciprocal hopping amplitudes. Such QMBS
enhancement is further demonstrated in the digital sim-
ulation conducted on the IBM Q device without deliber-
ate error mitigation. Our results offer a new perspective
on obtaining stable many-body revivals through dissipa-
tive perturbations, extending beyond recent approaches
based on decoherence-free subspaces [63, 64].
Fock skin effect.—We consider the following non-

Hermitian generalization of the one-dimensional (1D)
PXP model [65, 66], a paradigmatic model of QMBSs [12,
13]:

Ĥ=
∑

j∈even

P̂j−1X̂
′
jP̂j+1+

∑

j∈odd

P̂j−1X̂jP̂j+1, (1)

where X̂, Ŷ , Ẑ denote the standard Pauli matrices,
with P̂=(1−Ẑ)/2 projecting onto the spin-↓ state, j =
0, 1, . . . , L − 1 and L is the number of spins. Non-
Hermiticity enters through the asymmetric spin flip op-
erator, X̂ ′=X̂+iuŶ , acting on the even sites, FIG. 1,
where u controls the strength of non-Hermiticity. Each
X̂ or X̂ ′ spin flip acts only when its neighboring spins
are both spin-↓. To distinguish our Fock skin effect from
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FIG. 1. The directed Fock-space graph of the non-Hermitian
PXP model in Eq. (1) with L=6 sites under PBCs. Each
vertex represents a Fock state, organized into layers by the
Hamming distance x from the state |Z2⟩ on the left. The
translated

∣

∣Z̄2

〉

state is on the opposite end. Edges represent
the transitions allowed by the Hamiltonian in Eq. (1). Red

links represent the symmetric coupling P̂j−1X̂jP̂j+1 (example
of P0X1P2 shown). Blue directed arrows label the asymmetric

couplings P̂j−1X̂
′
jP̂j+1 (example of P3X

′
4P5 shown), with the

arrow denoting enhanced spin flipping (1+u)X̂+
j . All directed

edges point towards x=0, denoting asymmetric pumping from
the Fock skin effect.

conventional skin effects with spatial boundary accumu-
lation, we use periodic boundary conditions (PBCs). We
also restrict 0<u<1 to keep the energy spectrum real and
avoid wavefunction decay. More results on the irrelevance
of physical boundaries and level spacing distribution are
given in Supplementary Material (SM) [67].

To provide insight behind the non-Hermitian scar
enhancement, we analyze the wavefunction dynamics
within the Fock space. The latter can be visualized as a
quasi-1D network structure by grouping Fock states ac-
cording to their Hamming distance, which measures the
length of the shortest path from any Fock state and the
Néel state, |Z2⟩ = |↑↓↑↓ · · ·⟩, see an example in FIG. 1.
Note that the |Z2⟩ state is the one that exhibits QMBS
revivals in the Hermitian PXP model [12]. The Hamming
distance indicates how many applications of the Hamil-
tonian are needed to reach the states in a given layer
starting from the |Z2⟩ state. This is because the Hamil-
tonian only connects layer x with x ± 1, as shown by
edges in FIG. 1, making apparent the connection with
a tight-binding chain. Crucially, this picture reveals a
consistent direction in the asymmetry of the transitions
between Fock states. As illustrated, the blue directional
transitions are all directed towards the |Z2⟩ state at x=0,
reminiscent of a conventional NHSE chain but with Fock
states instead of physical sites. However, with multi-
ple Fock states in each layer instead of a single site, the
“boundary” skin localization would be weak [67], and we
instead expect more pronounced QMBS revivals, rather
than the directional bulk current in conventional NHSE
systems [44, 47, 68, 69].

The stratification of the Fock space into Hamming lay-
ers can be formally expressed by generalizing the for-
ward scattering approximation (FSA) [12, 62], which al-

lowed to understand the origin of QMBSs in the Hermi-
tian case [22]. Here, we demonstrate that this method
can approximate the behavior of scar states in our non-
Hermitian setup. We first decompose our non-Hermitian
PXP Hamiltonian in Eq. (1) as Ĥ=Ĥ++Ĥ−, where

Ĥ+ =
∑

j∈even

P̂j−1X̂
′−
j P̂j+1+

∑

j∈odd

P̂j−1X̂
+
j P̂j+1,

Ĥ− =
∑

j∈even

P̂j−1X̂
′+
j P̂j+1+

∑

j∈odd

P̂j−1X̂
−
j P̂j+1,

(2)

with X̂±≡(X̂ ± iŶ )/2 and X̂ ′±≡(1 ± u)(X̂ ± iŶ )/2. By
successively acting with Ĥ+ on the |Z2⟩ state, which we
label as |0⟩FSA, we can generate a tower of L+1 FSA basis
states |n⟩FSA ∝(H+)n |0⟩FSA, with n = 0, 1, 2, . . . , L [62].
These states span the Fock-space layers in FIG. 1. In the
FSA basis, the projected Hamiltonian (1) is given by

ĤFSA=
L∑

x=0

t−x |x⟩FSA⟨x+1|FSA+t+x |x+1⟩FSA⟨x|FSA, (3)

with the non-uniform and asymmetric hopping am-
plitudes t+x = ⟨x+1|FSAĤ+|x⟩FSA and t−x =

⟨x|FSAĤ−|x+1⟩FSA. Despite a formal analogy between
the model (3) and a tight-binding chain, each FSA basis
state |x⟩FSA represents a superposition of all Fock states
in the Hamming layer x. Moreover, both the basis states
and the effective hoppings t± intricately depend on the
non-hermiticity u of the Hamiltonian, as we show below.
QMBS enhancement due to Fock skin effect.—

QMBSs manifest as pronounced revivals in the fi-
delity, F (t) ≡ |⟨ψ(0)|ψ(t)⟩|2/⟨ψ(t)|ψ(t)⟩ with |ψ(t)⟩ =

exp
(

−iĤt
)

|ψ(0)⟩, from the |ψ(0)⟩ = |Z2⟩ state for PXP-

type models [11, 12]. Strong revivals in F (t) indicate
broken ergodicity since the fidelity should decay rapidly
under thermalizing dynamics [12, 13]. In FIG. 2(a), the
fidelity F (t) is plotted for the PXP model (1) with var-
ious degrees of non-Hermiticity u. The decay of peaks
in F (t) is noticeably slower for u=0.2 (blue) compared
to the Hermitian u=0 case (red). With much larger
non-Hermiticity u=0.7 (green dashed), both frequency
and magnitude of the revivals are significantly enhanced,
showing no significant decay even after t=10.

To explicitly attribute this non-Hermitian scar en-
hancement to the Fock skin effect, we plot the hopping
amplitudes t±x in FIG. 2(b). Saliently, the FSA hoppings
are asymmetric, with the disparity between t+x (round
markers) and t−x (triangle markers) becoming more pro-
nounced with greater non-Hermiticity u. This asymme-
try is markedly different from that in the physical Hamil-
tonian (1), since x is the Hamming distance from the
|Z2⟩ state in Fock space and not a spatial coordinate.
Importantly, these hopping amplitudes are non-trivially
dependent on x but consistently asymmetric (t+x ≥ t−x )
along the FSA chain. This property is not generic, see
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FIG. 2. (a) Normalized fidelity F (t) for the initial state |Z2⟩ in the non-Hermitian PXP model (1). Moderate non-Hermiticity
u ̸= 0 significantly enhances the return probability to the initial state. For large u (dashed green curve), robust but irregular
revivals occur due to multiple frequencies in the dynamics. (b) Amplitudes of effective hoppings t±x . The asymmetry between
t±x for u>0 (circles vs. triangles) leads to the non-Hermitian Fock skin effect in our model. (c) The concentration of eigenstates
in the Hamming layer x, Eq. (4). A sharp Fock skin mode emerges under strong non-Hermiticity (green curve), corresponding
to the persistent revivals in (a). (d) Comparison between the FSA left-boundary localization, | ⟨Z2|φj⟩FSA

|, and overlaps of
|Z2⟩ with all eigenstates of the Hamiltonian in Eq.(1). From u=0.0 to u=0.2, the FSA boundary localization closely matches
the overlap of Z2 state with the equally-spaced QMBS states. All data is for a chain of size L=16 with PBCs.

SM [67] for the discussion of a related model where this
is not the case, with crucial implications on the existence
of Fock skin accumulation.

The FSA non-uniformity and the large dimensionality
of each layer x lead to a unique Fock skin effect, dis-
tinct from typical skin localization. This is elucidated
through the Hamming distance-resolved Fock space den-
sity ΠFock(x) which quantifies the total weight of all
eigenstates at a Hamming distance x from the |Z2⟩ state:

ΠFock(x) =
1

D
∑

|ϕ⟩∈L(x)

∑

i

| ⟨ϕ|φi⟩ |2, (4)

with L(x) denoting the set of all Fock states in the Ham-
ming layer x [70], |φi⟩ is the i-th eigenstate, and D is the
dimension of the Hilbert space.

As seen in FIG. 2(c), the Fock skin pumping of u=0.2
shifts the symmetric ΠFock(x) profile of u=0 slightly left-
ward, yet without pronounced “boundary” localization.
Nevertheless, this increased proximity to the |Z2⟩ state
is sufficient to noticeably enhance the scarred revivals
[FIG. 2(a), blue]. Stronger non-Hermiticity u=0.7 results
in a more skewed ΠFock(x), but less localized than con-
ventional skin states with t+x /t

−
x ≈3 [FIG. 2 (b), green],

with localization lengths around [log 3]−1≈1 site. Cru-
cially, this lack of conventional exponential boundary
skin localization allows for significant state diffusion in
the Hilbert space, but with enhanced return probability
to the |Z2⟩ state.

We next explore how shifted Fock skin profiles amplify
QMBS revivals. Within the FSA framework, FIG. 1,
scarred revivals oscillate from the left FSA boundary
|0⟩FSA ≡ |Z2⟩ to the opposite end, |L⟩FSA ≡

∣
∣Z̄2

〉
. The

revivals are driven by a branch of eigenstates |φ⟩ with
approximately equally spaced eigenenergies E and high
overlaps | ⟨Z2|φ⟩FSA |, as depicted in FIG. 2(d). These
FSA overlaps (hollow markers) closely align with the

overlaps of |Z2⟩ with the eigenstates of our original PXP
Hamiltonian (1) (solid markers), demonstrating the ac-
curacy of the FSA description. In particular, the Fock
skin effect boosts the |Z2⟩ overlap of the FSA branch at
u=0.2, consequently enhancing revivals over the Hermi-
tian case at u=0.0. Greater non-Hermiticity, e.g., u=0.7,
enhances the |Z2⟩ overlap even more but also introduces
other non-thermal states with high overlaps, such that
additional frequencies appear in the revival dynamics –
see the green curve in FIG. 2(a).

Robustness to disorder.— We have established
that the Fock skin effect can significantly enhance
QMBSs. Given that the real-space skin effect can re-
sult in robust, directed dynamical currents, we posit that
the non-Hermiticity in our system can not only amplify
the quantum scar but also protect it against external
(Hermitian) perturbations. To check this, we investigate
the robustness of quantum scar under spatial disorder,

(a) (b)

FIG. 3. (a) Fidelity dynamics for the |Z2⟩ initial state evolv-

ing under the disordered Hamiltonian Ĥdis at several values
of u. At u=0, scarring signatures swiftly collapse at moderate
disorders, while the Fock skin effect leads to prolonged and ro-
bust scarring recurrences up to u=0.35. (b) The first fidelity
peak F1 within t ∈ [2.5, 7.5], which is significantly shifted by
non-Hermiticity u. Error bars represent the standard devia-
tion over 200 realizations. All data is for system size L=14
and uniform disorder strength of W = 0.8.
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Ĥdis = Ĥ +
∑

j wjẐj , where wj denotes the strength of
on-site random potential drawn from a uniform distri-
bution within the range [−W/2,W/2]. It was previously
shown that Hermitian QMBS revivals decay with increas-
ing disorder strength [71]. For our model with the Fock
skin effect at up to u=0.35, this resilience under mod-
erate disorders is remarkably highlighted by the fidelity
shown in FIG. 3(a), where robust scarring signatures are
still present, in contrast to the rapid collapse at Hermi-
tian u=0 without the Fock skin effect. The enhanced
stability is demonstrated through the first fidelity peak,
F1 = Max[F (t)] with t ∈ [2.5, 7.5], as shown in FIG. 3
(b). F1 as well as subsequent peaks are markedly en-
hanced with increasing u.

Optical lattice proposal.—The Fock skin effect
and non-Hermitian QMBSs can be observed in a Bose-
Hubbard (BH) quantum simulator with additional laser-
induced loss [32, 72–74]. The setup is illustrated in FIG. 4
(a) and it corresponds to the Hamiltonian

ĤBH=−
L/2−1
∑

j=0

[(J+γ̃) b̂†2j b̂2j+1+(J−γ̃) b̂†2j+1b̂2j+Jb̂
†
2j+2b̂2j+1

+ Jb̂†2j+1b̂2j+2] +

L−1∑

j=0

[∆jn̂j+
U

2
n̂j (n̂j−1)],

(5)

where b̂†j (b̂j) denotes the boson creation (annihilation)

operator on site j, the occupation number n̂j = b̂†j b̂j , and
we use open boundary conditions (OBCs), see SM [67] for
a derivation. The nonreciprocity J ± γ̃ results from cou-
pling a dissipative excited state (wavy arrow in FIG. 4 for
laser-induced atom loss) to its nearest ground states [60].

The tilt ∆ and on-site repulsion U induce kinetic con-
straints under the condition U = ∆ ≫ J, γ̃ and with
the boson filling factor set to ν = N/L = 1, where N is
the total number of bosons [32, 67]. In this regime, the
three-boson occupancy of any site is forbidden and the
only allowed dynamical processes consist of local hops
· · · 20 · · · ↔ · · · 11 · · · . The latter can be mapped to the
Pauli X̂ operator [75, 76], as shown by the red box in
Fig. 4 (a). In the resulting effective non-Hermitian PXP
model (1), the |Z2⟩ state simply maps to a product state
of doublons separated by empty sites, |2020 . . .⟩.

In FIG. 4(b) we numerically compute the dynamics
of boson imbalance, I(t) = (1/N)

∑

i (n2i(t)−n2i+1(t)),
when the system is prepared in the |2020 . . .⟩
state, with the normalized occupations ni(t) =
⟨ψ(t)| n̂i |ψ(t)⟩ / ⟨ψ(t)|ψ(t)⟩. I(t) is proportional to the
|Z2⟩ echo of the effective spins. The results in FIG. 4(b)
with U = ∆ = 10J show that the non-Hermitian case
with γ̃ = 0.3J (red) exhibits stronger revivals of I(t)
than the Hermitian case with vanishing γ̃ (blue).
Digital simulation.—Quantum computers emerge

as a promising platform due to their great programma-
bility [77, 78], allowing for the design of sophisticated

Δ ...    ...

loss

...    ...
U

(a) (b)

(d)(c)

Optical lattice

Quantum circuit

Post-selectionAncilla 

Physical

Non-unitary

evolution

Extended unitary

FIG. 4. (a) Schematics of the non-Hermitian Bose-Hubbard
model (5) in a tilted optical lattice. The non-reciprocal hop-
ping J ± γ̃ (black arrow) is realized by coupling (blue and
violet double arrows) two nearest ground states with an ex-
cited state with the laser-induced loss (wavy arrow) on the
excited state. The on-site interaction U and tilt potential ∆
lead to kinetic constraints under U = ∆ ≫ J, γ̃ [32]. This
results in the effective non-Hermitian PXP model in Eq.(1),
and boson hopping is mapped to spin flipping (red block) [67].
(b) Classical simulations of population imbalance I(t) for the
non-Hermitian Bose-Hubbard model (5). The initial state
is |20202020201⟩ with N = L = 11. Other parameters are
V = ∆ = 10J , and γ̃/J = 0.0 (blue) and 0.3 (red). The red
curve exhibits pronounced revivals due to enhanced quantum
scars. (c) Quantum circuit for simulating the model Eq. (6).
The non-unitary operation e−itH (pink block) is embedded in
an extended unitary (blue block), with physical qubits (green)
coupled to the yellow ancilla qubit. The post-selection of |↑⟩
on this ancilla qubit gives the final normalization. (d) Dig-
ital simulations of normalized fidelity F (t) using the circuit
in (c). We use the IBM Q Brisbane device, with noise condi-
tions shown in SM [67]. The initial state is |↑↓↑↓↑↓↑↓⟩. Both
numerical results (solid curves) and simulation data (circles)
show excellent agreement. Notably, the blue squares (u = 0.4)
demonstrate the robustness of enhanced scars under device
noise.

models. As such, utilizing the IBM quantum processor
[79], we implement the digital simulation of the dynamics
of the following Ising model under:

ĤV = V
L−2∑

j=0

(1−P̂j)(1−P̂j+1)+
∑

j∈even

X̂ ′
j+

∑

j∈odd

X̂j , (6)

where a strong interaction V = 10 is chosen to sup-
press neighboring ↑-spins, allowing us to recover the
non-Hermitian PXP model. We use non-unitary post-

selection to embed non-unitary evolution eitĤV in an
extended unitary with an additional ancilla qubit [80–
82], see FIG. 4 (c) and SM [67] for further details. The
circuit comprises 8 physical qubits prepared in the |Z2⟩
state and one ancilla qubit, decomposed through vari-
ational optimization [81–85] . The final post-selection
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on the ancilla |↑⟩ lead to the normalization |ψ(t)⟩ =
e−itH |ψ0⟩ /

∥
∥e−itH |ψ0⟩

∥
∥. The signature of scars can be

measured through the overlap between |ψ(t)⟩ and |Z2⟩.
The simulation results, shown in FIG. 4 (d), demon-
strate excellent agreement between exact, noiseless re-
sults (solid curves) and noisy simulation data (circles).
Importantly, the results in blue (u = 0.4) highlight the
robustness of enhanced scars, showing pronounced re-
vivals throughout this period despite the inherent noise
in quantum hardware. Such simulations, without any
deliberate effort in error mitigation, demonstrate the ca-
pability of the Fock skin effect in improving robustness.

Discussion.—We have shown that asymmetric Fock-
state transitions can significantly enhance quantum
many-body scarring. Unlike the conventional NHSE,
which leads to robust localizations at physical bound-
aries, our Fock skin effect leads to many-body state re-
vivals with periodic pumping through delocalized Fock
skin accumulation. This is enabled by asymmetric tran-
sitions across Hamming layers from a specific initial state.
Compared to the periodic driving method, the Fock skin
effect enables tunable enhancement. We have argued
that the non-Hermitian scar enhancement can be realized
in existing Bose-Hubbard quantum simulators [32, 74],
and further confirmed its robustness with digital simula-
tions on IBMQ hardware.

The mechanisms for stabilizing scar states in dis-
ordered systems have recently attracted much atten-
tion [86–93]. The robustness of QMBSs in our model
is protected by the Fock skin effect, absent in other
non-Hermitian deformations of the PXP model [94], see
SM [67]. Moreover, compared to previous works on dis-
ordered scarred systems [87], the non-Hermiticity in our
case can “shield” all characteristic QMBS signatures, in-
cluding wavefunction revivals, from disorder. Finally, ex-
ploring the impact of Fock skin effect on entanglement
phase transitions [95, 96] in various non-Hermitian many-
body systems [82, 97–102] would be also intriguing.
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This supplementary material contains: (SI) a detailed description of the experimental setup for realizing an effective

non-Hermitian PXP model using ultracold atoms in optical lattices; (SII) details of the quantum simulation of the

non-Hermitian PXP model on IBM Q device; (SIII) further characterization of the Fock skin accumulation in three

variations of the model with different types of non-Hermiticity; (SIV) analysis of the energy spectrum as a function

of non-Hermiticity; (SV) additional evidence for the enhancement of scarring by the non-Hermiticity in the fidelity

dynamics and entanglement entropy of eigenstates; SVI. statistic behaviors of the non-Hermitian PXP model.

SI. Effective non-Hermitian PXP model from a non-Hermitian Bose-Hubbard model

In the main text, we introduced a non-Hermitian generalization of the PXP model and showed that its non-
Hermiticity enhances the quantum-many body scars (QMBSs). Here we show how that model can effectively emerge
in a Bose-Hubbard quantum simulator in the presence of laser-induced loss. Below we provide details of our proposed
experimental setup and measurement, building upon previous work in the Hermitian setting [32].

We consider 87Rb atoms in a one-dimensional (1D) optical lattice, FIG. S1(a), described by a Bose-Hubbard type

Hamiltonian defined in terms of standard boson annihilation and creation operators, b̂j and b̂†j :

ĤBH = Ĥhopping +

L−1∑

j=0

∆jn̂j +
U

2

L−1∑

j=0

n̂j (n̂j − 1) , (S1)

where n̂j = b̂†j b̂j is the local boson number on site j. The three terms in the Hamiltonian stand for, respectively, the
kinetic energy due to bosons hopping between lattice sites, the linear tilt potential of the optical lattice parametrized
by ∆, and the on-site interaction strength U that penalizes the multiple occupancy of any site.

The hopping term in the BH model in Eq. (S1) is of non-Hermitian form, reminsiscent of the Su-Schrieffer-Heeger
model:

Ĥhopping = −
∑

j

{

(J + γ̃) b̂†2j b̂2j+1 + (J − γ̃) b̂†2j+1b̂2j + Jb̂†2j+2b̂2j+1 + Jb̂†2j+1b̂2j+2

}

+
∑

j

γ̃b̂†j b̂j , (S2)

where J is the hopping amplitude and the asymmetry characterized by γ̄ is induced by atom loss, see FIG S1. The
non-Hermitian asymmetric hoppings of strength J ± γ̃ can be engineered as follows [59, 60]. For each unit cell shown
in FIG. S1(a), we couple two nearest ground-state levels (denoted by A and B) via an excited state (e state) with
Rabi frequency Ω0 (dashed arrows). The excitation towards state e serves as atomic loss in the ground state manifold,
which we quantify phenomenologically as γ. As sketched in FIG. S1(b), this leads to effective non-reciprocal hoppings
in Eq.(S2) between atoms on the nearest ground states, which can be rigorously shown by adiabatically eliminating
the excited state (see details in Ref. [60]). The strength of γ̃ in Eq. (S2) is given in terms of the Rabi frequency Ω0

by

γ̃ =
Ω2

0

γ + iδ
≈ Ω2

0

γ
, (S3)

where δ is the detuning on the excited state and we assumed γ ≫ δ [60].
In experiments, dynamics is conveniently described by measuring the total occupation imbalance between odd and

even sites:

I(t) =

∑

i (n2i(t) − n2i+1(t))
∑

i (n2i(t) + n2i+1(t))
, (S4)

where nj = ⟨ψ(t)| b̂†j b̂j |ψ(t)⟩ / ⟨ψ(t)|ψ(t)⟩ is the occupation density on site j. For this quantity, we can drop the

global loss
∑

j γb̂
†
j b̂j in Eq.(S2) [105]. This is justified as any loss that affects all sites similarly does not impact the

imbalance.
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FIG. S1. (a) Schematic of the non-Hermitian Bose-Hubbard model in Eq. (S1). The atoms are trapped in a tilted optical
lattice with an alternating chain of local ground states “A” and “B” (yellow and blue dots). U is the strength of the on-site
interaction, γ is the laser-induced loss rate on the excited state “e”, and δ denotes the strength of detuning on the excited
state [59, 60]. (b) Adiabatic elimination of the excited state “e” (red box in (a)) results in the model in Eq. (S5) [60]. Effective
non-reciprocal hoppings J ± γ̃ are realized by coupling the two nearest ground states “A” and “B” via an excited state “e”
with Rabi frequency Ω0 (black dashed arrows), with γ̃ = Ω2

0/(γ + iδ).

Effective non-Hermitian PXP model

To induce kinetic constraints in the Bose-Hubbard model in Eq. (S1), we tune the system to a resonance U = ∆ ≫
J, γ̃ and assume the total number of bosons is equal to the number of lattice sites, corresponding to filling factor
ν = N/L = 1. In the absence of atomic loss (γ̃ = 0), Ref. [32] observed that under this resonance condition, the
two-body repulsion U and linear potential ∆ interplay in such a way that any triple occupancy on a single site is
heavily suppressed, leaving only the transitions of the type“11” ↔ “20”, i.e., between two singly occupied adjacent
sites and a doubly occupied site. This allows to map the dynamics onto a simpler PXP spin model. Below we will
generalize this to the case where atomic loss is present. In terms of experimental implementation, the effective model
derived below is expected to hold in the regime U = ∆ = 10J ≈ 2.0 kHz. The tilt potential ∆ can be realized either
with gravity or external magnetic fields; for instance, in the setup of Ref. [32] ∆g = 1632 Hz from gravity (tilting
degree 4◦ and 767 nm spacing for 87Rb atoms), and ∆B = 368 Hz from external magnetic fields, resulting in the
quoted value ∆ = ∆g + ∆B ≈ 2 kHz.

Working at the resonance U = ∆ ≫ J, γ̃ and weak dissipation, the dynamics governed by the model in Eq. S1 can
be described by the following effective Hamiltonian [32]

Ĥeff = −
∑

j∈even

((J + γ̃) b̂†j b̂j+1δn̂j ,1δn̂j+1,1
︸ ︷︷ ︸

√
2P̂j−1X̂

+

j
P̂j+1

+ (J − γ̃) b̂†j+1b̂jδn̂j ,2δn̂j+1,0
︸ ︷︷ ︸

√
2P̂j−1X̂

−

j
P̂j+1

)

−
∑

j∈odd

(J b̂†j b̂j+1δn̂j ,1δn̂j+1,1
︸ ︷︷ ︸

√
2P̂j−1X̂

+

j
P̂j+1

+J b̂†j+1b̂jδn̂j ,2δn̂j+1,0
︸ ︷︷ ︸

√
2P̂j−1X̂

−

j
P̂j+1

).
(S5)

As indicated below each term in the effective Hamiltonian, different processes have a simple spin-1/2 representation
with the Fock states mapped to spin product states as follows:

“...20...” → “... ↓ ↑ ↓ ...”,
“...11...” → “... ↓ ↓ ↓ ...”. (S6)

Here, we map the occupation configuration “20” to the spin configuration “↓ ↑ ↓” in the spin-1/2 basis, with the left-
and right-most spins pointing down. In this case, the hopping from “20” to “11” in Eq.(S5) is represented by the
spin flip “↑” to “↓”. Then, as labeled in Eq.(S5), the effective hoppings under kinetic constraints can be expressed in
terms of operators X̂±:

X̂+ =

[
0 1
0 0

]

, X̂− =

[
0 0
1 0

]

. (S7)
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Finally, the effective Hamiltonian in Eq. (S5) can be written as the following non-Hermitian PXP Hamiltonian

Ĥ ′
NHPXP = Ω

∑

j∈even

P̂j−1X̂
′
jP̂j+1 + Ω

∑

j∈odd

P̂j−1X̂jP̂j+1 (S8)

where P̂ = (1 − Ẑ)/2, and we have introduced

X̂ =

[
0 1
1 0

]

, (S9)

X̂ ′ =

[
0 1 + u

1 − u 0

]

= X̂ + iuŶ , (S10)

Ω =
√

2J, u = γ̃/J. (S11)

For the quench dynamics, we are primarily interested in the |Z2⟩ = |↑↓↑↓↑↓↑↓↑↓ ......⟩ product state of spins, which
corresponds to the product state of doublons, |202020......⟩, in the Bose-Hubbard model. The latter can be experi-
mentally prepared using an optical superlattice [32]. Similarly, the occupation imbalance in the initial |202020......⟩
state in the Bose-Hubbard model maps to the staggered magnetization in the effective PXP model:

Z̄(t) =
∑

i

(−1)i
〈

Ẑi(t)
〉

. (S12)

FIG.S2 shows a comparison of the imbalance dynamics in the Bose-Hubbard model (with OBCs) and its effective
PXP counterpart (both PBCs and OBCs). Under the weak non-Hermitian condition γ̃/J = 0.3, both models manifest
pronounced revivals (red curves), a signature of enhanced scars. Importantly, these enhanced revivals occur at similar
timescales in the natural unit ℏ/J .

FIG. S2. (a) The imbalance dynamics [Eq. (S4)] for the Bose-Hubbard model described by Eq. (S1). (b) and (c) show the
staggered magnetization dynamics [Eq. (S12)] for the effective PXP model described by Eq. (S8), with PBCs (b) and OBCs
(c). The initial states are |20202020201⟩ for (a) and |↑↓↑↓↑↓↑↓↑↓↑↓⟩ for (b) and (c). For all results, we set J (Ω =

√
2J) as

the unit for dynamics. For the two models, the enhanced revivals, induced by the Fock skin effect, emerge under the same
condition of γ̃/J = 0.3, and exhibit similar profiles.

Coherence time

In our experimental proposal, we set the coupling strength to J = 0.2 kHz. This results in an observation duration

of t = 10/t = 50 ms for the results shown in FIG. S2. Additionally, the non-Hermitian term is given by
Ω2

0

γ ≈ 0.3J = 60

Hz for Eq. (S3), with Ω0 = 30 Hz and atom loss γ = 15 Hz.
The cold atom experiment in Ref. [59] suggests the coherence time of t′ = 1 ms under the atom loss of γ′ = 1.3 kHz,

which is significantly stronger than our proposed value. Consequently, the condition γt < γ′t′ in our setup implies
that robust measurements and intrinsic physics of the scar enhancement can be observed in our framework. Generally,
87Rb atoms are known to have a long coherence time, exceeding 100 ms [106]. Therefore, our proposed time scale of
50 ms is well within the reasonable range, ensuring that the enhanced scar we predict should be observable.
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SII. Digital quantum simulation of enhanced scars on the IBM Q processor

Quantum computers can efficiently simulate the dynamics of many-body systems by representing quantum states
using qubits [77, 78]. By applying a series of quantum gates, one can then simulate the evolution of complex quantum
states. We use the IBM Q platform [79] to demonstrate enhanced scarring on a quantum device. We consider the
following model

ĤQ = V

L−2∑

j=0

(1− P̂j)(1− P̂j+1) +
∑

j∈even

X̂ ′
j +

∑

j∈odd

X̂j , (S13)

where we assume open boundary conditions and focus on the regime V ≫ 1, which restricts the dynamics to the
sector of the Hilbert space described by Eq. (S8). This can be shown formally by applying the Schrieffer-Wolff

transformation [107] at the leading order in 1/V , which results in the effective model P
(
∑

j∈even X̂
′
j +

∑

j∈odd X̂j

)

P,

where we have defined the global projector P =
∏

j(1−|↑↑⟩ ⟨↑↑|j,j+1). The action of P can be equivalently expressed

in terms of local projectors P̂j , resulting in the desired non-Hermitian PXP model from the main text. Thus, we
expect enhanced scars to be present in the above model (S13), which is easier to implement in terms of native gates
on the IBM Q device.

In general, simulating quantum many-body models requires the design of a quantum circuit that represents the
Hamiltonian. This setup involves choosing and arranging quantum gates which mimic coupling. However, most native
gates on the IBM Q processor are unitary, so we can not directly decompose arbitrary non-unitary operations using
these unitary gates. Therefore, to implement the dynamics of the model (S13), we employ the ancilla-based method,
demonstrated in Refs. [81, 82]. The idea behind this method is to use additional ancilla qubits that will be measured
at the end of the time evolution. While the evolution of the full system (physical and ancilla qubits) is unitary, the
evolution of the physical subsystem does not have to be, since it is not a closed system but interacts with the ancilla

qubits. The desired time evolution U(t) = e−itĤQ is embedded in an extended unitary:

U ′ =

[
zU(t) B
C D

]

as U ′ =

[
physical → physical ancilla → physical
physical → ancilla ancilla → ancilla

]

, (S14)

where z = 1/
√
λmax, with λmax representing the maximum eigenvalue of U †(t)U(t). This extended unitary U ′

represents the blue block shown in FIG. 4 (c) of the main text, which couples the physical and ancilla qubits.
Here, the component C is given by C = A

√
I − z2Σ2E, where A, Σ and E are obtained through the singular value

decomposition U†U = AΣE† [80]. The components B and C can then be determined by numerically solving for the
QR decomposition

[
zU I
C I

]

= U ′R, (S15)

where R is the upper triangular matrix of the QR decomposition. In this process, the block zU and C will not be
modified, and the solved B and D can ensure the unitary nature of U ′

We set the first site to be the ancilla qubit, which requires post-selection on |↑⟩, and the rest are for the physical
system. In this subspace of the ancilla qubit, this initial state can be expressed as (|ψPhysical⟩ , 0)T, with the ancilla
|↑⟩ = (1, 0)T. The extended unitary leads to the result:

U ′ |ψPhysical⟩ |↑⟩ =

[
zU B
C D

] [
|ψPhysical⟩

0

]

=

[
zU |ψPhysical⟩
C |ψPhysical⟩

]

. (S16)

The post-selection of |↑⟩ on the ancilla qubit leads to the normalization as follows

(I ⊗ |↑⟩ ⟨↑|)(U ′ |ψPhysical⟩ |↑⟩) → U(t) |ψPhysical⟩ / ∥U(t) |ψPhysical⟩∥ . (S17)

For measurements on quantum computers, we discard the string with the ↓ ancilla outcome to achieve the above
post-selection. In order to implement this unitary on quantum circuits, we prepare a trainable circuit M , as shown
in FIG. S3 (a), and minimize the following cost function to precisely replicate the target dynamics

Cost = 1 − | ⟨ψ0|M†Utar |ψ0⟩ |, (S18)
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FIG. S3. (a) The structure of the trainable circuit for Eq. (S18). Each blue block represents a circuit layer. The trainable part
is the U3 gate described by Eq. (S19). The two-qubit gate is the Echoed Cross-Resonance (ECR) gate. (b) Noise conditions of
the IBM Q Brisbane device on 2024/05/08. We present the error rates of measurement and ECR gates. The simulation in this
work was conducted on the chain of 0-8 qubits.

where |ψ0⟩ is the initial state. Here, we use the initial state |ψ0⟩ = |ψPhysical⟩ |ψAncilla⟩ = |↑↓↑↓↑↓↑↓⟩ |↑⟩ for a 9-qubit
system. This state can be prepared through applying X gates on an initial state |↑↑↑↑↑↑↑↑⟩ |↑⟩.

The circuit M is parameterized through U3 gates

U3(θ, φ, λ) =

[
cos

(
θ
2

)
−eiλ sin

(
θ
2

)

eiφ sin
(
θ
2

)
ei(φ+λ) cos

(
θ
2

)

]

. (S19)

The training process involves optimizing the angles θ, φ, and λ. The trainable circuits for simulations are optimized
through the L-BFGS-B method, that can efficiently handle large-scale problems with bounds on the parameter range.
The L-BFGS-B method iteratively adjusts the parameters to minimize the cost function towards zero, ensuring that
the circuit can reach proper convergence.

In general, deeper trainable circuits can lead to faster convergence in optimization tasks, but they can also be more
significantly impacted by noise. Therefore, in designing our trainable circuits, we aimed to reach a balance between
achieving efficient convergence and maintaining a manageable circuit depth (i.e., the number of circuit layers).

Through empirical testing, we found that the optimal trainable circuits could be constructed within 8 layers, shown
in FIG. S3 (a). This ensures that the cost function can reach the convergence below 1%, and simulations are robust
to noise. Each circuit layer is built by 16 U3 gates and 8 ECR gates. The ECR gate is defined by the matrix:

ECR =
1√
2







0 1 0 i
1 0 −i 0
0 i 0 1
−i 0 1 0







(S20)

This specific gate is chosen to optimize the noise resilience of circuits. Our simulation results are shown in FIG. 4
(d) (main text), conducted on the IBM Q Brisbane device. For these simulations, we used the chain of 0-8 qubits on
this device. These results demonstrate that our approach successfully balances the circuit depth with the practical
constraints imposed by noise and decoherence, ensuring robust performance on current quantum hardware.

SIII. Fock skin accumulation and hopping inhomogeneity in the FSA chain

As discussed in the main text, the origin of the enhanced scar in our model is the non-Hermitian skin accumulation
occurring within the Fock space, which can be understood as the accumulation in the FSA chain. Contrary to the
uniform non-reciprocity of the physical hoppings, the hopping asymmetry in the effective FSA chain is highly non-
uniform, potentially even flipping at different parts of the chain. This is because the chain is along the Hamming
distance x from the |Z2⟩ state, and each “site” actually represents an extensively large number of Fock basis states.

To better understand the nature of the Fock skin effect in our model, Eq. (S8), we compare three different variations
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of it, labeled by a, b, and c:

Ĥa =
∑

j

P̂j−1X̂
′
jP̂j+1, (S21)

Primary model :Ĥb =
∑

j∈even

P̂j−1X̂
′
jP̂j+1 +

∑

j∈odd

P̂j−1X̂jP̂j+1, (S22)

Ĥc =
∑

j∈even

P̂j−1X̂
′
jP̂j+1 +

∑

j∈odd

P̂j−1(X̂ ′
j)

†P̂j+1. (S23)

Note that this model b describes our experimental setup in Eq. S8 with unit Ω = 1.
The Hamiltonian Ĥa describes the model considered in Ref. [94], which is invariant under translation. Model b is

the one we investigate in the main text, as Ĥb is equivalent to Eq. (S8) with Ω = 1. Finally, we introduce the model c
as a more extreme version of the model b. Indeed, in the model c the non-Hermitian elements are staggered to mimic
the structure of the Néel state. This means that, in the graph representation of FIG. 1 in the main text, not only are
all couplings asymmetric (unlike in our model b) but they all point towards the Néel state (unlike in model a). This
is expected to make the scarring more prominently linked to the Fock skin effect. However, the presence of (X̂ ′

j)
† in

Ĥc makes it much more complicated to implement in a Bose-Hubbard quantum simulator. For that reason, in the
main text, we only consider model b.

(a) (b)Model a Model b Model c(c)

�F
o
c
k
(x
)

FIG. S4. Fock skin accumulation in various models, Eqs. (S21)-(S23). All the panels show the Fock-space density, defined by
Eq. (S24), for the system size L = 12. In the Hermitian case u = 0, ΠFock(x) is perfectly symmetric and there is no Fock skin
accumulation. For the model a, there is still no accumulation even with non-zero u. On the other hand, as expected, models b
and c show a strong bias towards x = 0 when u > 0.

In the main text, we have introduced the density in Fock space

ΠFock(x) =
1

D
∑

i

∑

|ϕ⟩∈L(x)

| ⟨ϕ|φi⟩ |2, (S24)

where L(x) denotes the set of states in the Hamming layer x [70], |φi⟩ is the ith eigenstate, and D is the total number
of Fock states. The Fock-space density for the above three models is shown in FIG. S4. For our proposed improvement
of QMBS through the Fock skin effect, a key criterion is that the non-Hermiticity must generate an overall asymmetric
flow in the entire Fock space with respect to the scarred trajectory. However, here we find that the Fock skin modes
only appear in models b and c, as revealed by the asymmetric profiles in FIGs. S4(b)-(c).

To understand why no Fock skin accumulation appears in the model a, we examine the symmetrized transition
amplitudes between Hamming layers, as given by

T+
x = ⟨x̃|H |x̃+ 1⟩ and T−

x = ⟨x̃+ 1|H |x̃⟩ , (S25)

where |x̃⟩ =
∑

|ϕ⟩∈L(x) |ϕ⟩ is a symmetric superposition of all the states in the Hamming layer x. It is important to

note that T±
x differ from the t±x FSA hoppings used in the main text. While t±x are meant to capture the scarred

dynamics, T±
x give a more general idea of a state flow between the Hamming layers. Note that T±

x only meaningfully
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(a) (b)Model a Model b Model c(c)

FIG. S5. Symmetrized transition amplitudes T±
x , Eq. (S25), between the Hamming layers for the models in Eqs. (S21)-(S23).

The system size is L = 12 in all the plots. Note that for the model a, T+
x is larger than T−

x on the right, and vice versa on the
left, hence leading to no consistent Fock skin pumping.

represent the individual physical Fock state transitions when −1 ≤ u ≤ 1, where all non-zero matrix elements of the
physical Hamiltonian are positive in the Fock basis, and hence there can be no cancellation between different terms.

To have the Fock skin effect for scar enhancement, instead of merely strong boundary localization, two conditions
must be met: (i) consistent asymmetry of the transitions T−

x > T+
x , and (ii) T±

0 → 0 which prevents strong skin accu-
mulation at the x = 0 boundary. The latter condition is necessary to prevent outright exponential skin accumulation
at x = 0, which will largely prevent the dynamical state from exploring the other Hamming layers. In light of these
conditions, we first examine the hopping amplitudes of Fock-space Hamiltonians in FIG. S5. The model a in Eq. (S21)
fails to meet the condition T−

x > T+
x , as it has opposite asymmetry in the left/right parts of the chain. This accounts

for the previous lack of any Fock-space NHSE in FIG. S4(a). Conversely, for models b and c, the non-reciprocity, as
demonstrated by blue and green curves in FIGs. S5(b)-(c), generates an overall non-Hermitian pumping in the Fock
space. Indeed, the model c, with greater T±

x hopping asymmetry at some x, gives rise to a very slightly stronger
Fock skin accumulation than model b. Importantly, the condition T±

0 → 0 ensures that there is no robust boundary
localization.

As discussed in the main text, the resilience to perturbations stands out as a hallmark of the Fock skin effect. Thus,
we examine the behavior of our models a, b and c, subject to spatial disorder:

Ĥdef = Ĥ +
∑

j

wjẐj , (S26)

where wj ∈ [−W/2,W/2] is the strength of an on-site random potential [71]. As shown in FIG. S6 (a), models b
and c exhibit relatively robust QMBS revivals even at strong disorder. This is attributed to the Fock skin effect. In
contrast, model a shows a rapid decay, akin to the behavior observed in the unitary scenario shown in the main text.
Moreover, the first fidelity peak F1 across system sizes L, as depicted in FIG. S6 (b), reveals that models b and c
exhibit slower decay rates, compared to model a. Importantly, this shows the robustness of our enhanced scars, which
are expected to be pronounced in physical experiments involving larger system sizes.

To quantify the extent of Fock skin accumulation, and also to clarify that there is no boundary localization compared
to the conventional NHSE, we define the mean position of the Fock-space density as follows

Π′
Fock =

1

L

∑

x

xΠFock(x). (S27)

This quantity reveals which Hamming layers the state mostly resides in. As illustrated in FIG. S4, a key factor linked
to enhanced scar dynamics is the leftward shift of this density, due to the Fock skin effect. This leads to a shift of Π′

towards x = 0 for the models in Eq. (S22) and Eq. (S23), as shown in FIG. S7. However, importantly Π′
Fock does not

tend towards zero as u increases to 0.6. This is further supported by the effective hopping depicted in FIG. S5.
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(a) (b)

FIG. S6. (a) Fidelity dynamics for the models in Eqs. (S21)-(S23), under the disorder of W = 1.0 in Eq. (S26). We set L = 14,
u = 0.35 and the |Z2⟩ initial state. Due to the absence of the Fock skin effect, the QMBS revivals for the model a (blue curve)
rapidly collapse. (b) The scaling behavior of the first fidelity peak F1 within t ∈ [2.5, 7.5], obtained by 200 realizations. We set
W = 0.8 and u = 0.4 for (b).

�’
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o
c
k

FIG. S7. The center of Fock-space density, as defined in Eq. (S27) for L = 12, compared across three models in Eqs. (S21)-(S23).
Due to the absence of the Fock skin effect, the model a does not exhibit a leftward shift. For models b and c, the mean distance
does not reach zero, indicating a lack of strong localization at the boundary of the Fock space.

SIV. Real-complex transition in the spectrum of the non-Hermitian PXP model

Our PXP Hamiltonian can be expressed as follows

Ĥ =
N∑

i=1

PX̂iP, (S28)

where the global projector is P =
∏

i

[

1 −
(

1 + Ẑi

)(

1 + Ẑi+1

)

/4
]

. Applying this global projector on the full Hilbert

space, we can extract effective vectors, which lead to the following form

HP =

N∑

i=1

X̂i, (S29)

Similarly, we can also express our non-Hermitian PXP in this sector

ĤP
NHPXP =

∑

j=2n

X̂ ′
j +

∑

j=2n+1

X̂j . (S30)

As such, the PT symmetry breaking in our non-Hermitian setup appears at u = 1 with the emergence of complex
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spectra, see FIG. S8 [108–117]. Given the following form of X̂ ′

X̂ ′ =

[
0 1 + u

1 − u 0

]

, (S31)

its singularity appears at u = 1, and complex eigenvalues emerge under u > 1. In the main text, we thus only consider
the case u < 1, where the spectrum of our non-Hermitian PXP model is purely real.

FIG. S8. The real-complex transition at u = 1 in our non-Hermitian PXP model in Eq.(S22) under PBCs.

SV. Entanglement entropy

In this section, we study the entanglement entropy of eigenstates of our non-Hermitian PXP model. As the focus of
our work is state dynamics [95, 118] (of the Z2 Néel state), we will consider the entanglement of the right eigenvectors,
rather than the biorthogonal entanglement entropy [114, 119–123].

The evolution of a wavefunction can be expressed using only the right eigenstates |Ri⟩ with eigenvalues Ei as

|ψ(t)⟩ =
∑

i

Cie
−itEi |Ri⟩ . (S32)

Moreover, there is no significant skin effect along physical spaces. Thus, to characterize such dynamics through
entanglement entropy, here we express the density matrix of our non-Hermitan model in terms of right eigenstates.
We consider the half-chain entanglement entropy given by

S
(
ρRR

)
= −Tr[ρRR log ρRR], (S33)

where ρRR is the reduced density matrix of the left-half chain. The half-chain entanglement entropy S is presented
in FIG. S9. This allows us to identify and further characterize the scar eigenstates. Due to their large projection
on a single product state |Z2⟩, the entanglement entropy of scarred eigenstates is expected to be significantly lower
compared to typical thermalizing eigenstates at the same energy density. This is confirmed in FIG. S9 which shows
the entanglement entropy of scarred eigenstates to be smaller and more separated from that of the thermal states for
u = 0.2 (blue) compared to u = 0 (red), as highlighted by the dashed boxes. As these marked scar eigenstates are
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the main states underpinning the dynamics studied in the main text, the entanglement suppression can be related to
the enhancement in the scarring dynamics.

Finally, we consider the entanglement entropy under different values of u. As shown in FIG. S10, each eigenstate is
identified through the overlap log(| ⟨ψ|Z2⟩ |). It is evident that more low-entropy states emerge when u > 0.4. When
u reaches 0.99, these states accumulate near S = 0. These results indicate a significant enhancement under large u,
which is further supported by the results in FIG. S11.

FIG. S9. Half-chain entanglement entropy in Eq. (S22) . We set u = 0.0 for red dots and u = 0.2 for blue dots. Note the
significantly separated branch of low S for the non-Hermitian case u = 0.2 (blue). The system size is L = 16.

E E E

E E E

log(|‹Ψ|Z2›)

FIG. S10. Half-chain entanglement entropy in Eq. (S22) under different values of u. The states with high Z2 overlap
(log(| ⟨ψ|Z2⟩ |)) are colored in violet. Under the increasing values of u, the intrinsic scarred states show lower entropy, and there
emerge more low-entropy states. The system size is L = 14.
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Structure of scarred revivals

To further characterize the QMBS revivals discussed in the main text, we plot the following echoes in FIG. S11 (a)

E(t) = | ⟨φ|ψ(t)⟩ |2/⟨ψ(t)|ψ(t)⟩, (S34)

with ⟨ψ(t)| = exp
(

−iĤt
)

|ψ(0)⟩, states |φ⟩ = |Z2⟩ and |φ⟩ = |Z′
2⟩ =

∏

i X̂i |Z2⟩. For u = 0.0, we find that many-body

revivals act as an oscillation between |Z⟩ and |Z′
2⟩, with the fidelity decaying with each state in-step. Meanwhile, for

the non-Hermitian case u = 0.2, these oscillations become unbalanced, with echoes to |Z2⟩ being stronger than for
the Hermitian u = 0.0 case. This is further exemplified for u = 0.5 and u = 0.8, where the dynamics and revivals
predominantly occur only for the |Z2⟩ state. This leads to the more complex oscillations observed in our model.
Nonetheless, we emphasize that the lifetime of the echoes to the |Z2⟩ state are already greatly improved for u = 0.2,
where the dynamics still explore most of the Hilbert space. This can be extended to the long-time dynamics shown in
FIG. S11 (b). These results indicate that the improvement is not merely due to the wave function localizing around
the |Z2⟩ state.

As previously demonstrated in the main text and FIG. S11(a), there is a strong scar enhancement under large
values of u, Building on this, we further investigated the dynamics in the presence of disorder

∑

j wjẐj . Compared
to the dynamics under u = 0.2 [blue curve in FIG. S11 (b)], the green curve for u = 0.7 in FIG. S11(c) shows robust
revivals, while the red curve for u = 0.0 decays rapidly. These results highlight the significant protection and stability
of the enhanced scarred states.

E
(t
)

E
(t
)

E
(t
) E
(t
)

(a)

(b) (c)

FIG. S11. (a) Echoes in Eq. (S34), with |φ⟩ = |Z2⟩ for red curves and |φ⟩ = |Z′
2⟩ =

∏

i
X̂i |Z2⟩ for blue curves. For the Hermitian

case with u = 0.0, the dynamics exhibits balanced oscillation between states |Z2⟩ and |Z′
2⟩. Under the weak non-Hermiticity

with u = 0.2, the echo from |Z2⟩ state exhibits higher peaks, showing enhanced quantum scarring in our model. For the
cases under strong non-Hermiticity under u = 0.5 and u = 0.8, more complicated oscillations emerge, and the echo of |Z′

2⟩
vanishes. (b) Normalized fidelity F (t) over long-time dynamics. Compared to the conventional scarring revivals (red curve),
the non-Hermiticity of u = 0.2 (dashed green curve) gives rise to robust enhanced revivals over an extended period of t = 120.

(c) Normalized fidelity F (t) under the disorder
∑

j
wjẐj , with wj ∈ [−0.5, 0.5]. The green curve in (c) demonstrates the strong

protection under disorders. System size is L = 14 for all panels.
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FIG. S12. Left: The mean ratio of adjacent energy gaps ⟨r⟩. Right: The level spacing distribution. All data is for the fixed
system size L = 28. The red and violet dashed curves represent the the Gaussian orthogonal ensemble (GOE) and Gaussian
unitary ensemble (GUE), respectively, while the black line is for the Poisson distribution of spacings, typical of integrable
systems.

SVI. Level spacing distribution

As a probe of ergodicity, we compute the average ratio of consecutive level spacings

rn = Min[δn, δn+1]/Max[δn, δn+1], (S35)

where δn = En+1 −En is the energy difference between two adjacent energy levels in ascending order. We recall that
for |u| < 1 the eigenvalues of the Hamiltonian are all real, therefore they can be sorted without ambiguity. To avoid
degeneracies (or near degeneracies) between different symmetry sectors, we always restrict our study to the maximally
symmetric sector. For u = 0, this is the sector symmetric under translation and spatial inversion. For u > 0, it is
instead the sector symmetric under translation by two sites (due to odd and even terms of the Hamiltonian being
different) and under the combination of spatial inversion and translation by one site. As shown in Fig. S12, while for
u = 0 the average gap ratio is not yet at the expected value for a chaotic system due to the slow convergence with
system size of the PXP model [124], ⟨r⟩ quickly approaches 0.53 upon increasing u. This matches the prediction for
the Gaussian Orthogonal Ensemble (GOE). As expected, the gap ratio value then starts to dip again near the singular
point u = 1. We note that the dip of ⟨r⟩ shortly after u = 0 is due to the translation symmetry being only weakly
broken and is expected to disappear in the thermodynamic limit.

In addition to the level spacing ratio, we also show the full distribution of level spacings after unfolding for u = 0.8 in
Fig. S12, which again aligns well with the GOE expectation. In both panels of Fig. S12, we also show the prediction
for an integrable system (Poisson) and for the Gaussian unitary ensemble (GUE), neither aligning with our data.
Overall, the data is strongly suggestive that our model is robustly chaotic in the non-Hermitian regime as long as u is
not close to 1. The match with the GOE prediction also indicates that the Hermitian matrix with the same spectrum
as our non-Hermitian one is invariant under time-reversal.
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