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19 ABSTRACT

20 Estimates of quantities needed to plan invasive species control, such as population size, are 

21 always uncertain; this is an issue that can become a problem when mishandled in ecological 

22 science and its communication. The complexities of incorporating uncertainty into sophisticated 

23 decision-support tools may be a barrier to their use by decision-makers, leading to decisions being 

24 made without due regard to uncertainty and risking mis-placed certainty of predicted outcomes. 

25 We summarise ways in which uncertainty has been incorporated into and used to advise decisions 

26 on the management of invasive non-native species and other problem species, and offer a simple 

Page 1 of 30 Mammal Review



27 conceptual model for accommodating and using uncertainty at the planning stage. We also 

28 demonstrate how frequently uncertainty has been mis-used and mis-communicated in the wildlife 

29 management literature. We contend that uncertainty in estimates of natural quantities must be 

30 acknowledged, can inform decisions and can be made to derive decisions, and should not be 

31 ignored if invasive species policy is to be delivered effectively.  Uncertainty must be 

32 communicated thoroughly and correctly by scientists if decision-makers are to understand its 

33 consequences for planning and resourcing control programmes. 

34
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44 INTRODUCTION

45 Decisions regarding responses to invasive non-native species (hereafter referred to as invasives) are 

46 fraught with uncertainty. During the early stages of invasion, detection probability is likely to be low 

47 due to the species’ very limited spatial range and low abundance (Mehta et al. 2007), leading to highly 

48 uncertain estimates of these quantities (Wenger & Freeman 2008). As the range expands and the 

49 population grows, the species may be detected more frequently. However, estimates remain uncertain, 

50 as evinced by the broad confidence intervals that typically define population estimates of new 

51 invaders and other low-density populations (Miller et al. 2005), with consequent uncertainty regarding 

52 the effort required to control them (Johnson et al. 2017). Even when widely established and highly 

53 abundant, estimation of a species’ range, population size, and population growth to magnitudes of 
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54 accuracy and precision that can be accommodated by traditional approaches to management planning 

55 can be challenging due to large uncertainties associated with limited sampling (Mackenzie 2005). 

56 This is problematic because comprehensive information on populations is required to improve the 

57 likelihood of success of management campaigns against invasives (Simberloff 2003). Policy-makers 

58 often seek certainty and simplicity from those experts chosen to provide policy-relevant evidence 

59 (Hammersely 2013). However, uncertainty in natural quantities, such as range and abundance, which 

60 can be used to inform management decisions can present significant challenges for decision-makers, 

61 because uncertainty makes the prediction of the outcomes, for a given investment, uncertain and 

62 imprecise (Nair & Howlett 2017). In consequence, decision-makers may ignore uncertainty, 

63 dismissing it as an inconvenient impediment to necessary action (Hammersely 2013), choosing 

64 instead to rely on subjective judgement (Regan et al. 2005). Many experts, including applied 

65 ecologists, who may advise decision-makers also have a history of mishandling uncertainty (Milner-

66 Gulland & Shea 2017), which may compound this problem. A wide range of quantitative tools has 

67 been developed to incorporate uncertainty into decisions, including those pertaining to the control of 

68 invasives, yet uptake of these has typically been very low (Addison et al. 2013). A substantial number 

69 of campaigns against invasives have either failed (Pluess et al. 2012, Capizzi et al. 2020) or cost much 

70 more than originally anticipated (see Parkes et al. 2010, Mill et al. 2020), possibly due to a failure to 

71 incorporate uncertainty into management decisions adequately. While decision-makers may view 

72 uncertainty and complexity in estimates of natural quantities as unhelpful and indicative of the low 

73 quality or incredibility of available information (Hammersely 2013), we contend that the appropriate 

74 management of uncertainty can help inform campaigns against invasives better than if uncertainty was 

75 ignored (Funtowicz & Ravetz 1990). 

76

77 AIMS

78 In this article, we sought to summarise what uncertainty is with respect to estimates of natural 

79 populations and processes, evaluate how uncertainty has been used and communicated in the wildlife 

80 management literature, and synthesise some simple principles for using and reporting uncertainty 
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81 during the planning stage of campaigns against invasives and other wildlife species that people wish 

82 to control. There are many ways in which uncertainty can be incorporated into decision-making; the 

83 list of approaches described below is not exhaustive, and those that are advocated are simply those 

84 that we have found helpful when planning wildlife management programmes and communicating 

85 those plans with decision-makers and other stakeholders.

86

87 DEFINING UNCERTAINTY

88 The many sources of uncertainty in biological systems and models of them have long been recognised 

89 and incorporated into decision-making processes by fisheries scientists (see Hilborn & Walters 1992), 

90 and are increasingly considered within literature on the management of terrestrial vertebrates (Milner-

91 Gulland & Shea 2017, Nichols 2019). In their seminal review, Regan et al. (2002) classified two main 

92 branches in the taxonomy of uncertainty as it arises in ecology and conservation biology: epistemic 

93 and linguistic uncertainty. 

94 Epistemic uncertainty refers to the state of a system, and is due to the limitations of measuring 

95 instruments, natural variability within the system, inadequate sampling, and extrapolation and 

96 interpolation. Thus, epistemic uncertainty encompasses the accuracy and precision of inputs or 

97 measurements, and outputs or estimates (Nichols 2019). It can be characterised by describing 

98 measurement precision and sample size, quantifying measurement variability (see Box), stating and 

99 evaluating the assumptions underpinning calculations, interpolations or extrapolations, and by bias-

100 correction when appropriate. It can be quantified (e.g. as confidence intervals) or described as a 

101 probability (i.e. of the null hypothesis being incorrect; Regan et al. 2002). The former is perhaps the 

102 most traditional approach employed widely in ecology, whereas uptake of the latter has perhaps been 

103 more recent, increasing particularly with the incorporation of Bayesian statistics into ecological 

104 studies.

105 Linguistic uncertainty arises from poor communication; language can be unspecific, ambiguous, 

106 vague and context-dependent. Borrowing from Regan et al. (2002), the importance of good 
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107 communication for the minimisation of uncertainty is evident when considering the aim of an 

108 invasives control programme. If we wish to eradicate all invasives from an area, we must define 

109 precisely a) what invasives are so that we can determine which species to focus on, and b) what the 

110 area is. 

111 Epistemic and linguistic uncertainty, alone and acting together, can result in model or outcome 

112 uncertainty, whereby the consequences of an action can be quite different to what was predicted due 

113 to complexities within the system (Regan et al 2002, Artelle et al. 2013). 

114

115 COMMUNICATING UNCERTAINTY

116 It is important that uncertainty is communicated well by scientists to decision-makers so that 

117 management decisions can be more fully informed, but its reporting in the applied ecology literature 

118 is inconsistent. This failure to report uncertainty correctly is an important additional aspect of 

119 linguistic uncertainty to those described by Regan et al. (2002). Standard statistical terms used to 

120 evaluate different components or characteristics of uncertainty, such as the standard deviation of a 

121 sample mean and the standard error of a parameter estimate, may be reported in ways that are 

122 inconsistent with definitions given in basic statistical text books. To test this statement we evaluated 

123 the reporting of uncertainty in 98 published scientific papers on adaptive wildlife management (see 

124 Appendices S1 and S2). Among 65 articles reporting estimates, 17% did not report averages and 35% 

125 did not report measurement variability or estimate uncertainty. Instead of averages, other less useful 

126 metrics, such as minimum count, which does not account for detection probability, were reported. 

127 Among 63 of these articles, 35% should have used an average descriptor other than the mean because 

128 data were not normally distributed or sample sizes were small. Among these 63 articles, 43% reported 

129 the correct descriptor of measurement variability or estimate uncertainty, but only 17% sought to 

130 interpret the effect of estimated uncertainty quantitatively, and 29% qualitatively. Milner-Gulland and 

131 Shea (2017) stated that applied ecologists have often been guilty of ignorance, disregard and hubris in 

132 relation to uncertainty, and our results are consistent with this view. It should be no surprise that 

Page 5 of 30 Mammal Review



133 policy-makers, politicians and other decision-makers misunderstand and miscommunicate uncertainty 

134 when their expert advisors are equally guilty. We recommend that applied ecologists should adhere to 

135 the definitions of measures of uncertainty described in standard statistical text books (see Box), and 

136 should use them correctly in all communications. 

137

138 UNCERTAINTY IN DECISION-MAKING

139 Many approaches exist for incorporating uncertainty into model outputs in applied ecology (Nichols 

140 2019), and yet its importance for decision-making can be over-looked (Milner-Gulland & Shea 2017). 

141 For example, Wäber et al. (2013) estimated that, despite culling, a mean of 1103 Reeves’ muntjac 

142 Muntiacus reevesi was recruited to an English plantation forest during 2008/2009 and 1287 during 

143 2009/2010. A traditional approach to cull target setting might therefore have recommended removal 

144 of approximately 1100-1300 extra muntjac per year in order to halt population growth and prevent 

145 emigration. However, the 95% confidence interval for estimated recruitment was 21 to 2284 and 238 

146 to 1783 muntjac in each year, respectively. Consequently, and accepting the validity of the 

147 assumptions underpinning the calculations, forest managers would have had to remove somewhere 

148 between these ranges of values to achieve their objective. The immediate problem is understanding 

149 where, within those ranges, the true number of muntjac that needed to be removed lies. The simple 

150 and unsatisfactory answer is that it is impossible to know. However, appropriate handling of estimate 

151 uncertainty can enable such decisions by reducing the risk of objective failure. 

152 Milner Gulland and Shea (2017) and Nichols (2019) summarised a range of methodological options 

153 for minimising and incorporating uncertainty in scientific and modelling exercises, and reviewed a 

154 number of approaches to including uncertainty in management and decision-making. These included 

155 stochastic dynamic programming and partially observable Markov decision processes. We do not 

156 dispute the suitability of the solutions described by these authors, who provided examples of 

157 conservation and wildlife management interventions where they have usefully been employed, but we 

158 do question the extent of their utility. Artelle et al. (2018) found that the hallmarks of quality science 

159 were absent from the majority of 667 wildlife management approaches adopted in North America. 
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160 This is likely to be due to the complexity of biological systems and the way in which scientists 

161 describe them, resulting in decision-makers avoiding the use of robust scientific approaches for 

162 decision-making (Addison et al. 2013, Hammersley 2013). Indeed, the approach adopted by the UK 

163 government for the prioritisation of invasives for eradication under uncertainty is intuitive, qualitative 

164 and based on expert opinion (Booy et al. 2017), and does not incorporate quantitative models of 

165 ecological processes. Consequently, while we endorse the recommendations of Addison et al. (2013) 

166 for improving the uptake of ecological models for applied decision-making (see also Richardson et al. 

167 2020, Bertolino et al. 2020), we nevertheless recommend simpler approaches for the inclusion, 

168 reporting and use of uncertainty to address perhaps the most simple and, in our experience, most 

169 frequently asked questions at the outset of invasives control programmes: how should we prioritise 

170 potential invasives prior to their arrival, is a priority species present, how is it distributed, how 

171 abundant is it, how many must be removed to control it and how much will a control programme cost?  

172 These questions, unsurprisingly, relate directly to the established approaches to controlling invasives, 

173 which are, in order of priority: prevention of invasion, rapid response to prevent establishment, 

174 eradication to reverse an invasion, and ongoing control of established populations (Simberloff 2003; 

175 Table 1). 

176

177 Uncertainty in species prioritisation prior to invasion

178 In advance of invasion, knowledge of the risks that might be posed to anthropocentric or biodiversity 

179 interests will be limited to that available for a species’ existing range. Consequently, extrapolation of 

180 the likely risks to the country to be invaded will result in uncertainty in outputs for that country. The 

181 requirement for horizon-scanning to enable evaluation of the likely risks posed (Roy et al. 2014) has 

182 led to the use of expert elicitation to populate risk assessments, with uncertainty characterised 

183 subjectively as an uncertainty score (Mumford et al. 2010). This can result in bias and mis-

184 representation of uncertainty (Kynn 2008), but has been used to prioritise potential invaders according 

185 to the relative risks they may pose (Mumford et al. 2010) and the relative feasibility of control 

186 methods for eradicating them should they invade (Booy et al. 2017).
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187

188 Uncertainty in species presence and distribution

189 Once prioritised for action, early detection of an invasive is necessary in order to prevent its 

190 establishment (Simberloff 2003). However, surveys designed to detect an invasion with a high 

191 probability have hitherto been extremely costly, since the invasives are likely to be highly 

192 geographically constrained and at low density during the early stages, leading to the conundrum of 

193 whether to invest more in detection or control (Mehta et al. 2007). The advent of novel detection 

194 techniques such as environmental DNA metabarcoding may reduce these costs substantially (Browett 

195 et al. 2020). Nevertheless, while the detection of a single individual or population may confirm that an 

196 invasion is underway, it does not explain the geographical extent of the invasion, and hence the area 

197 over which control is required. In contrast, the failure to detect an individual or population makes the 

198 conclusion of presence or absence highly uncertain, since surveys may suffer an inadequate detection 

199 probability (Christy et al. 2010). Occupancy estimation and modelling, which adopts the probabilistic 

200 approach to uncertainty characterisation (Mackenzie et al. 2017) can be used to address some of these 

201 problems. The underlying principles of occupancy estimation are that the probability of detecting a 

202 species increases with survey effort, and the detection probability for a single survey can be estimated. 

203 The probability of failing to detect a species, if it is present, decreases as the number of surveys 

204 increases such that, with sufficient surveys, this probability crosses a threshold (traditionally 0.95) 

205 that can be set by the user according to their attitude towards risk. Thus, with sufficient surveys (as 

206 defined by the detection probability and the threshold), failure to detect a species can be interpreted as 

207 likely absence, with a given probability defining the uncertainty. The same approach can be used in 

208 multiple locations to estimate the proportion of sites likely to be occupied and hence the area over 

209 which control may be required (Mackenzie et al. 2017). The concept of occupancy estimation is 

210 straight-forward, and the principle of characterising uncertainty probabilistically is intuitive, and 

211 hence may be easy to convey to decision-makers. However, the calculations are rather more 

212 complicated and so employment of this approach may be best suited to technical specialists.

213
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214 Uncertainty in species abundance

215 Where eradication or ongoing management of populations are the selected approaches, estimates of 

216 management effort are usually required (McCann & Garcelon 2008); for medium to large mammals, 

217 these often require estimates of the number of animals to be removed and the proportion of the 

218 population that this target represents. Numerous methods for abundance estimation are available (for 

219 carnivores, see Wilson & Delahay 2001), but particularly for an eradication campaign during a single 

220 year, total population size should be estimated, since it equates to the number that must be removed in 

221 advance of the birthing season.  

222 Regardless of the method chosen, and in addition to the assumptions on which calculations are based, 

223 uncertainty in population size can be quantified probabilistically or as a range of values. The 

224 probabilistic approach can be followed to evaluate whether uncertainty is tolerable. For example, if a 

225 requirement is to be 90% certain that a species’ population is above a certain size, then a probability 

226 of 0.9 or more that the population estimate is correct, or conversely, a probability of 0.1 or less that it 

227 is incorrect, is sufficient to evaluate whether a policy objective is likely to be met. However, this 

228 approach cannot inform us how to use the uncertainty to set targets. To use uncertainty to reduce the 

229 risk of failing to achieve a management objective for invasives at the planning stage, uncertainty is 

230 best described as the confidence interval defining the estimated outputs (see below).

231

232 Uncertainty in cost of species control

233 Arguably, the most important component of an invasives management plan is an estimate of the likely 

234 financial cost of control, since this facilitates evaluation of the cost-effectiveness of the options 

235 available (Buhle et al. 2004). The costs of control relate to the size of the population, the species’ life 

236 history (particularly as it relates to the population growth rate), the proportion of the population 

237 removed per unit effort and the cost per unit effort (Buhle et al. 2004, Ward & Lees 2011).

238
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239 Uncertainty in the number to remove

240 Assuming that doing nothing is not an option if the objective is control of an invasive, the remaining 

241 options are to prevent population growth and spread, to reduce the population size, or to eradicate the 

242 species. The containment or eradication of an invasive (or any species) requires the removal of at least 

243 the number of females that is recruited to the population each year (Fryxell et al. 2014). For animals, 

244 the number to be removed has been calculated as the product of female population size at a point in 

245 time and female recruitment rate (the number of female offspring produced per female during the 

246 season), assuming that the mean of each of these values (the thin dashed lines A and B respectively in 

247 Fig. 1) offers an approximate estimate of the minimum number that must be taken (Buckland et al. 

248 1996, Wäber et al. 2013). However, this approach suffers a high risk of failure because it ignores 

249 uncertainty in parameter estimates. Estimates of both quantities are uncertain, characterised as 

250 confidence intervals (the range between the thick dashed lines either side of A and B, Fig. 1). Line C 

251 is midway among the combined uncertainties; products of population size and recruitment rate point 

252 estimates along this line are equal to the value derived from the means of these variables (point d). 

253 Assuming an unbiased distribution of values around the mean, it should be clear that very nearly 50% 

254 of credible values of the number of females recruited lie to the left of line C, nearly 50% lie to the 

255 right of it and very few lie along it. Removal of the mean number of females recruited as a 

256 management objective has an approximately 50% chance of being too few, and a vanishingly small 

257 chance of being correct. Consequently, to be confident of removing at least the number of females 

258 recruited to the population, minimum cull targets should be set conceptually at point e, the product of 

259 the upper confidence limits of female population size and female recruitment rate estimates. The 

260 degree of confidence that must be afforded to the calculation of this value, i.e. the proportion of 

261 values likely to be contained within the interval, must be determined by the decision-maker’s 

262 acceptance of the risk of failing to at least prevent population growth. For example, using 80% 

263 confidence intervals, and assuming an unbiased distribution, 10% of credible values will be to the left 

264 of the lower limit, and 10% will be to the right of the upper limit. Thus, risk-accepting decision-

265 makers may choose a smaller confidence interval and risk-averse decision-makers may choose a 
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266 larger one. This approach does not guarantee that the population will decline if the target is achieved, 

267 but, as long as the assumptions underpinning the calculations are correct, it substantially reduces the 

268 risk of under-culling from 50:50.

269 The opposite application of this approach is for the sustainable harvesting of a species. To ensure that 

270 populations persist, the maximum number of females that should be harvested is conceptually set at 

271 point f, i.e. the product of the lower confidence limits of female population size and female 

272 recruitment rate. This should ensure that no more than the number of females recruited to the 

273 population is removed during a single harvesting season (see Artelle et al. 2013).

274 Estimate uncertainties cannot simply be multiplied in the way implied by this concept since it will 

275 lead to over-estimation of uncertainty, instead they must be combined into a single estimate. This can 

276 be achieved by a number of methods (Nichols 2019) including Monte Carlo simulation: a single value 

277 is drawn at random from the confidence interval of female population size, and multiplied by a single 

278 value drawn at random from the confidence interval of the female recruitment rate, and the process is 

279 repeated a large number of times. The mean and standard deviation of the large number of outputs are 

280 used to calculate the confidence interval in the normal way. The upper limit of this interval 

281 corresponds to point e and the lower limit to point f on Fig. 1.

282 Johnson et al. (2017) developed a multi-step modelling approach to estimate the effort and hence 

283 costs of invasive non-native tegu lizard Salvator merianae control in Florida, USA.  Demographic 

284 rates were summarised by repeatedly sampling point estimates derived by expert elicitation, to build 

285 population matrices that were scenario-tested for the likely cost and effectiveness of different control 

286 strategies. Scenario planning is an informative way of planning control campaigns against invasives at 

287 the outset, when planners are information-poor, and can help improve prioritisation of parameters for 

288 uncertainty reduction (Peterson et al. 2003). Moreover, the utility of this approach can be 

289 complemented by including consideration of uncertainty, not just when deriving parameter estimates, 

290 but when interpreting model outputs too. 
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291 An example is provided by the ongoing control of feral wild boar Sus scrofa in western England, for 

292 which the objective has been the prevention of population growth. Boar density, total abundance and 

293 population growth rate have been estimated annually since 2013, in order to advise single-year cull 

294 targets to prevent population growth (Table 2). A cull of 56.5% of the population was estimated to be 

295 required to prevent growth during 2015 and 2016 (Gill & Ferryman 2015, Gill & Waeber 2016). The 

296 method for calculating this cull target was not reported, but targets can be calculated from the average 

297 of the estimated female recruitment rate and female population size during each year. As argued 

298 above, we suggest that this approach has a high risk of under-culling during a given year, and hence 

299 might have contributed to the sustained trend of population growth. 

300 Following the approach that we have advocated (Fig. 1), and accepting all assumptions underpinning 

301 calculations of wild boar population size, structure and productivity as correct, we combined estimates 

302 of female population sizes (values in Table 2 divided by two, to reflect the reasonable assumption of a 

303 1:1 sex ratio; Keuling et al. 2003) with estimates of female recruitment rates (which were not reported 

304 for this population, and hence were summarised from other European populations as varying from 

305 0.85 to 1.63; Bieber & Ruff 2005). Assuming a uniform distribution for both parameters, and with 

306 1000 iterations in the Monte Carlo simulation, we estimate that female cull targets should have been 

307 much higher. During 2014, the number of females recruited was between 560 and 585 (95% 

308 confidence interval), so a risk-averse minimum cull target would have been 585 female wild boar. 

309 During 2015, recruitment of 657-680 required a minimum target of 680, and during 2016 and 2018, 

310 recruitment of 1040-1073 during both years required a minimum target of 1073. Of course, these 

311 values might be biased high or low if the assumption of a 1:1 sex ratio was incorrect or if any of the 

312 other assumptions underpinning the calculations were violated. These cull targets either exceed or are 

313 very close to the lower confidence limit of the population size estimate, and so might be impossible or 

314 extremely challenging to achieve. Achievement of our revised target during 2014 might have caused 

315 the eradication of the population. This would not be a problem if sufficient resources had been made 

316 available to remove those numbers from a population of invasives; it may in fact have been a benefit. 

317
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318 Uncertainty in the costs of removal

319 Estimating the costs of control according to worst-case scenarios should ensure that management 

320 campaigns are not under-resourced. In a modelling study of a range of hypothetical population sizes, 

321 Ward and Lees (2011) estimated that the eradication of populations of 200 Reeves’ muntjac from 

322 Scotland, should they become established (which they are not, despite being widely established in 

323 England and Wales; Ward 2005), was likely to cost an average of GB£24050, but might cost as much 

324 as GB£60625, and advocated budgeting according to the latter figure. While this might be viewed as 

325 inefficient and risking resource not be available for other campaigns, it is likely to be more cost-

326 effective than budgeting on averages, which, all else being equal, should result in their main objective 

327 not being met approximately 50% of the time, and may require additional resource to respond to 

328 population growth during subsequent years (see Parkes et al. 2010; Mill et al 2020). Indeed, under-

329 resourcing has been one of the main factors associated with the failure of invasives control in New 

330 Zealand (Brown et al. 2015). However, risks associated with this approach include forecasting such 

331 high estimated costs that decision-makers decide that doing nothing or some lesser intervention is 

332 preferable, undermining the morale of operatives controlling populations of invasives as they toil 

333 towards an unattainable target. 

334

335 SOLUTIONS TO UNCERTAINTY FOR THE CONTROL OF INVASIVES

336 Solutions to the issue of uncertainty in ecological science and decision-making have been summarised 

337 by several authors (including Regan et al. 2002, Milner-Gulland & Shea 2017, Nichols 2019), but 

338 have rarely been adopted for the control of invasives. We should accept that all of our estimates and 

339 hence predicted management outcomes are, under nearly all circumstances and particularly at the start 

340 of a management campaign, highly uncertain, and should respond accordingly. This requires working 

341 with uncertainty at all levels:
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342 1) Researchers who estimate quantities should calculate, interpret and communicate uncertainty 

343 as fully and as simply as possible, and always accurately, so that decision-makers can respond 

344 appropriately.

345 2) Decision-makers should understand uncertainty, how to ensure it is included in decision-

346 making processes, and how to work with it or use it to define desirable (and undesirable) 

347 outcomes.

348 3) Managers should incorporate uncertainty into management objectives, including targets, and 

349 should communicate this uncertainty to operatives, in order to manage expectations with 

350 regards to delivery. 

351 4) Finally, operatives need to understand what uncertainty is and what its implications are for 

352 management, so that they can help managers evaluate outcomes, and so that they can manage 

353 their own expectations with regards to target achievement.

354 There is no single approach for incorporating uncertainty into decision-making that is universally 

355 applicable to all stages of the invasion process, and different approaches may be demanded to inform 

356 effective action at each stage. We advocate the following:

357 1) Prior to invasions, existing information can be used to inform risk assessments (Mumford et 

358 al. 2010) and risk management evaluations (Booy et al 2017), and uncertainty should be semi-

359 quantified into confidence scores by expert opinion in order to prioritise potential invasives 

360 for eradication. These processes have been specifically designed to facilitate decision-making 

361 by non-specialists.

362 2) When an invasion is suspected, or if confirmation of the likely absence of a potential invader 

363 is required, occupancy estimation can be used to quantify the probability of absence and 

364 likely geographic range of the invasive, with uncertainty estimated probabilistically 

365 (Mackenzie et al. 2017). The principles of this approach are intuitive, but the complexities of 

366 its deployment mean that its use is probably best-suited to specialists who advise decision-

367 makers.
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368 3) To inform plans to eradicate an invasive, estimates of population size and geographical range 

369 will be required to estimate the management effort required and hence the total cost of 

370 control. We recommend a precautionary approach such that the upper limits of population 

371 size and range are used to estimate costs, with the limits defined by the decision-maker’s 

372 attitude to risk. 

373 4) For the ongoing control of established invasives, we recommend combining the upper limits 

374 of estimated female population size and female recruitment rate to derive minimum female 

375 cull targets, with limits defined by the decision-maker’s attitude to risk. This precautionary 

376 approach is simple and intuitive, but it risks over-budgeting and hence culling more than is 

377 strictly necessary to prevent population growth or spread.

378

379 CONCLUSION

380 There has been a tendency for applied ecologists to mis-handle uncertainty when advocating or 

381 planning management action, and uncertainty has rarely been incorporated adequately into 

382 management campaigns against invasives. It is clear that point estimates, including averages of 

383 estimates, are very nearly always wrong, and using average point estimates to set management 

384 objectives for the control of invasives poses a high risk of failure. It is also clear that the approach that 

385 we recommend for using uncertainty to plan campaigns against invasives assumes the worst case, and 

386 hence is likely to produce targets that might be unattainable. Nevertheless, we argue that this approach 

387 offers a helpful first step for planning management campaigns, because it should ensure that sufficient 

388 resource is available at the outset to deliver the management objective. However, funding sources are 

389 always finite (Mill et al. 2020), and pressure is likely to be exerted on campaign managers to find cost 

390 savings as campaigns progress (Carrion et al. 2011); such cost savings could be driven by reducing 

391 the uncertainty of the scale of the problem being addressed (Milner-Gulland & Shea 2017). 

392 Uncertainty can be reduced by collecting information on management inputs and outcomes as a 

393 campaign progresses, such that estimates of resource requirements and hence definitions of objectives 

394 can be refined. The cyclical process of setting objectives, predicting outcomes, delivering 

395 management action, simultaneously undertaking monitoring, evaluating inputs and outputs, learning 
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396 about the system under management and hence refining objectives and actions sequentially is termed 

397 adaptive natural resource management (Williams 2011). This approach has been adopted by many 

398 people intending to manage invasives, with varying degrees of diligence (Richardson et al. 2020). The 

399 concept of acknowledging and using uncertainty that we advocate for decision-making, applied to the 

400 principles of incorporating uncertainty into estimates of natural quantities summarised by Regan et al. 

401 (2002) and Nichols (2019) offers the ability to set clear, unambiguous, evidence-based management 

402 targets at the very start of campaigns against invasives, and at every stage at which new information 

403 arises and hence at which uncertainty is reduced.
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533 Table 1. Some major sources of uncertainty and ways in which they can be incorporated into decisions regarding the control of invasive non-native species 

534 during each stage of the invasion process.

Stage Input uncertainties Output uncertainties References

Source How to incorporate How to report How to use

Prior to 

invasion

List of risks.

Factors contributing 

to likelihood and 

severity of risk.

Feasibility of control.

Synthesis of existing 

information.

Risk score.

Qualitative assessment of 

confidence in risk score.

Prioritisation of species by risk and 

feasibility of control.

Identification of areas for further 

research to reduce uncertainty.

Mumford et al. 2010

Booy et al. 2017

Suspected 

invasion

Presence/absence. Occupancy analysis of 

surveillance data.

Presence (if detected) or 

probability of absence.

Confirmation of presence.

Acceptance of absence probability.

Confirmation of requirement for further 

surveillance if probability of absence is 

below the acceptable threshold.

Mackenzie et al. 2017

Confirmed 

invasion 

(early)

Distribution.

Population size.

Number to remove.

Occupancy analysis of 

surveillance data.

Sampling error (mean 

and standard deviation 

of sample).

Combine abundance 

with recruitment rate.

Proportion of locations 

likely to be occupied with a 

given probability.

Confidence interval of 

population size estimate.

Confidence interval of 

number of recruits.

Map likely distribution to prioritise 

surveillance and control.

Assume worst case: population defined 

by upper confidence limits.

Set cull target according to worst case: 

Minimum target = upper limit of number 

of recruits.

Mackenzie et al. 2017

Ward & Lees 2011

Established 

population

Population size.

Number to remove.

Sampling error (mean 

and standard deviation 

of sample).

Combine abundance 

with recruitment rate.

Confidence interval of 

population size estimate.

Confidence interval of 

number of recruits.

Assume worst case: population defined 

by upper confidence limit.

Set cull target according to worst case: 

Minimum target = upper limit of number 

of recruits.

Ward & Lees 2011

535
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536 Table 2. Feral wild boar population size estimates, cull targets and cull returns for the Forest of Dean, 

537 western England.

Year Mean 

population 

estimate

95% 

confidence 

interval

Advised cull 

target

Cull 

achieved

Sources

2014 819 506-1325 361 Gill 2014 *

2015 1081 696-1486 460 543 Gill & Ferryman 

2015, Gill & 

Waeber 2016 *

2016 1562 1095-2296 712 492 Gill & Waeber 

2016 *

2017 477 *

2018 1635 1200-2228 Gill & Waeber 

2018

538

539 * In 2014-2017, sources also included: https://www.forestryengland.uk/article/more-information-

540 about-wild-boar 

541
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542 Fig. 1. Conceptual model of female cull target setting given estimates of female population size and 

543 female recruitment rate. A is the mean of the female population size estimate, B is the mean of the 

544 female recruitment rate estimate. Heavy dashed lines are the confidence limits of these estimates. Line 

545 C describes products of values for population size and recruitment rate that yield the same value as the 

546 product of the means (d). Point e is the intersection of upper confidence limits, which conceptually 

547 defines the lowest cull target to be sufficiently confident that at least the number of females recruited 

548 to the population will be removed, if it is achieved. Point f is the intersection of the lower confidence 

549 limits, which conceptually defines the highest cull target to be sufficiently confident that no more than 

550 the number of females recruited to the population will be removed, if it is achieved.

551
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552 Box. Measures of quantities and uncertainty

553 Box. Measures of quantities and uncertainty 

554 Fowler et al. (1998), in their standard undergraduate text book on statistics for biologists, describe the 

555 following measures of uncertainty that have commonly been used in applied ecology for normally 

556 distributed data. Our interpretation is included in italics:

557 Arithmetic mean or mean – the sum of a set of observations divided by the number of observations. 

558 Standard deviation – a measure of the degree of variability within a sample. 

559 Standard error – the standard deviation of a set of sample means. The standard error is an indication 

560 of how close the sample mean is likely to be to the population mean. Thus, the standard error is an 

561 appropriate measure of uncertainty of an estimated parameter, but should not be used to describe 

562 variability in a sample. 

563 Relative standard error (also known as the relative standard deviation, relative standard 

564 uncertainty or coefficient of variation) – the ratio of the standard deviation to the mean.

565 Confidence interval – The likely interval for the true population mean. If all possible 95% 

566 confidence intervals are calculated from un-biased samples taken from a population, the true value of 

567 the mean will be within the interval of 95% of them (Neyman 1937). 

568 The corresponding values reported for non-normally distributed data are the median and some 

569 proportion of the range (typically the 2.5th and 97.5th percentiles, or the full range of values 

570 measured).

571

572 References

573 Fowler J, Cohen L, Jarvis P (1998, 2nd ed.) Practical Statistics for Field Biology. John Wiley and Sons 
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575 Neyman J (1937) Outline of a theory of statistical estimation based on the classical theory of 

576 probability. Philosophical Transactions of the Royal Society A 236: 333–380.
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579 SUPPORTING INFORMATION

580

581 Additional supporting information may be found in the online version of this article at the publisher’s 

582 website.

583

584 Appendix S1. Methods for the review of adaptive management literature.

585

586 Appendix S2. Data from the review of adaptive management literature.
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1 Text box 1. Measures of quantities and uncertainty

2 Fowler et al. (1998), in their standard undergraduate text book on statistics for biologists described the 

3 following measures of uncertainty that have commonly been used in applied ecology. Our 

4 interpretation is included in italics:

5 Arithmetic mean or mean – the sum of a set of observations divided by the number of observations. 

6 Standard deviation – a measure of the degree of variability within a sample. 

7 Standard error – the standard deviation of a set of sample means. The standard error is an indication 

8 of how close the sample mean is likely to be to the population mean. Thus, the standard error is an 

9 appropriate measure of uncertainty of an estimated parameter, but should not be used to describe 

10 variability in a sample. 

11 Relative standard error (also known as the Relative Standard Deviation, Relative Standard 

12 Uncertainty or Coefficient of Variation) – the ratio of the standard deviation to the mean.

13 Confidence interval – The likely interval for the true population mean. 

14 If all possible 95% confidence intervals are calculated from un-biased samples taken from a 

15 population, the true value of the mean will be within the interval of 95% of them (Neyman 1937). 

16

17 The corresponding values reported for non-normally distributed data are the median and some 

18 proportion of the range (typically the 2.5th and 97.5th percentiles or the full range of values 

19 measured).

20 References

21 Fowler J, Cohen L, Jarvis P (1998) Practical statistics for field biology, 2nd ed. John Wiley and Sons 

22 Ltd., Chichester, UK.

23 Neyman J (1937) Outline of a theory of statistical estimation based on the classical theory of 

24 probability. Philosophical Transactions of the Royal Society A 236: 333–380.
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1  

2 Fig. 1. Conceptual model of female cull target setting given estimates of female population size and 

3 female recruitment rate. A is the mean of the female population size estimate, B is the mean of the 

4 female recruitment rate estimate. Heavy dashed lines are the confidence limits of these estimates. 

5 Line C describes products of values for population size and recruitment rate that yield the same 

6 value as the product of the means (d). Point e is the intersection of upper confidence limits, which 

7 conceptually defines the lowest cull target to be sufficiently confident that at least the number of 

8 females recruited to the population will be removed, if it is achieved. Point f is the intersection of 

9 the lower confidence limits, which conceptually defines the highest cull target to be sufficiently 

10 confident that no more than the number of females recruited to the population will be removed, if it 

11 is achieved.
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Reliableinformationiskeytoevidence-baseddecision-makingandgood
decisionsrelyonahighdegreeofcertainty.Inadvanceofaninvasionbya
non-nativespecies,weareveryuncertainabouttheirlikelyfuturedistribution,
abundance,impactsandcostsofcontrol,sowemayneedtorelyonthe
structuredevaluationofexpertopiniontoprioritiseinvasivespeciesforaction.
Asaninvasionprogresses(invasionstagesarerepresentedhereinblue
boxes),moreinformationisgenerated,reducinguncertainty,soitispossible
tomakebetter-informeddecisionsaboutcontrol(planningactions
correspondingtoeachstagearerepresentedinorangestars,withinformation
flows[purplearrows]anddecisionpoints[bluearrows]).Thesedecisionsand
predictionsoftheirlikelyoutcomescanbeimprovedbyincludingevaluations
ofuncertaintyintothedecision-makingprocess(methodsforcapturingand
characterizinguncertaintyateachinvasionstagearerepresentedingreen
ovals).Ultimately,uncertaintycannotbecompletelyeliminated,butitcanbe
reducedviaaprocessoflearning-by-doing,termedadaptivewildlife
management.
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