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Resource Allocation in Backscatter-Assisted

Wireless Powered MEC Networks with Limited

MEC Computation Capacity
Yinghui Ye, Liqin Shi, Xiaoli Chu, Senior Member, IEEE, Rose Qingyang Hu, Fellow, IEEE, and Guangyue Lu

Abstract—In this paper, we consider a backscatter-assisted
wireless powered mobile edge computing (MEC) network, where
multiple Internet-of-Things (IoT) nodes harvest energy from the
energy signals transmitted by a power beacon (PB) and utilize
the harvested energy for local computing and task offloading
via hybrid backscatter communication (BackCom) and active
transmission (AT). Considering the limited computation capacity
of the MEC server and the quality-of-service (QoS) and energy-
causality constraints per IoT node, we propose two resource
allocation schemes to maximize the total computation bits of
all the IoT nodes and the system computation energy efficien-
cy (EE), respectively, by jointly optimizing the computation
frequency and time of the MEC server and each IoT node,
the transmit power of the PB and each IoT node, and the
BackCom power reflection coefficient and the time for energy
harvesting (EH), BackCom, and AT of each IoT node. The non-
convex computation bits maximization problem is transformed
to a convex one by introducing a series of auxiliary variables
and proof by contradiction, and then solved by the existing
convex tools. The system computation EE maximization is a
non-convex nonlinear programming problem. We propose a two-
layer iterative algorithm to solve it optimally and devise a
reduced-complexity iterative algorithm to solve it sub-optimally
by leveraging the block coordinate decent technique. Computer
simulations validate the convergence of the proposed iterative
algorithms and their superior performance over the benchmark
schemes in terms of the computation bits or EE.

Index Terms—Backscatter communications, computation bits,
computation energy efficiency, energy harvesting, mobile edge
computing.

I. INTRODUCTION

THE Internet of Things (IoT) will play an important role

in future intelligent services. However, owing to the cost

limitation, IoT devices are usually energy- and computation-

constrained, making it very challenging for them to timely han-
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dle computation-intensive tasks [1]. To address this challenge,

wireless powered mobile edge computing (WPMEC), which

integrates wireless power transfer (WPT) [2] with mobile edge

computing (MEC) [3]–[5], has been proposed as a promising

solution. The key idea of WPMEC is to let IoT devices harvest

energy from radio frequency (RF) signals transmitted by a

dedicated energy source, e.g., a power beacon (PB), and then

utilize the harvested energy to support the local processing

and/or task offloading of tasks [1], [6].

Resource allocation schemes based on binary or partial

computation offloading have been proposed for WPMEC. In

binary computation offloading, an IoT node’s task is either

executed locally or completely offloaded to an MEC server

[3], while in partial computation offloading, a portion of the

IoT node’s task is offloaded to the MEC server and the

rest is computed locally [5]. In [6], the authors maximized

the computation success probability by jointly optimizing the

binary computation offloading decision, the user’s computation

frequency and the time allocation for energy harvesting (EH)

and task offloading under the energy-causality and delay

constraints. In [7], the total computation rate of all the users

in a multi-user WPMEC network was maximized by joint-

ly optimizing user’s binary computation offloading decision,

computation frequency and time allocation for EH and task

offloading. In [8], an online algorithm, which jointly selects

the binary computation offloading mode and adjusts the time

resource for WPT and task offloading according to the time-

varying channel, was proposed to maximize the weighted

sum-computation rate of all the IoT nodes in a multi-user

WPMEC network. Under partial computation offloading, the

weighted sum-computation bits of all the IoT nodes were

maximized and the PB’s energy consumption was minimized

respectively in [9] and [10], by jointly optimizing the PB’s

beamforming and the IoT nodes’ computation frequency, task

bits for offloading, and offloading time. In [11], the authors

maximized the computation energy efficiency (EE) of all the

IoT nodes in a WPMEC network by jointly optimizing the

transmit power of the PB and each IoT node, and each IoT

node’s computation frequency and time for task offloading and

EH. In [12], a resource allocation scheme was proposed for

cooperation-assisted WPMEC, where the IoT node close to the

AP servers as relay, to minimize the PB’s energy consumption

by jointly optimizing the time for EH and cooperative data

offloading, and the transmit power of each IoT node.

In the above works [6]–[12], the IoT nodes offload task

bits to the MEC server following the harvest-then-transmit
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protocol via active transmission (AT), which enjoys a high

transmission rate for data offloading but at the cost of a

high power consumption [13]. Under the energy-causality

constraint, each IoT node has to be allocated with a long

period for harvesting sufficient energy to support AT, leaving

only a short period for AT offloading within each time block.

This will limit their task offloading performance. Different

from AT, backscatter communication (BackCom) allows an

IoT node to modulate and reflect the incident signals by

adjusting the antenna load impedance instead of generating RF

signals by itself [14]. Such an approach avoids the use of active

components, resulting in a much lower power consumption as

well as a lower offloading rate than AT. Accordingly, AT and

BackCom have different tradeoffs1 between data transmission

and power consumption [15], [16], which can be exploited

to achieve efficient task offloading in WPMEC. Driven by

this, hybrid BackCom-AT has been employed for computation

offloading in WPMEC [17].

Hybrid BackCom-AT offloading brings new challenges in

resource allocation as AT offloading and BackCom offloading

share the same pool of resources within each time block and

the optimization of resource allocation needs to consider the

tradeoff between them. In [18], under a complete offloading

strategy that offloads all task bits of an IoT node to the MEC

server, the authors minimized the energy consumption of the

PB by jointly optimizing the IoT nodes’ transmit power for

AT, and their time for BackCom offloading and AT offloading.

Under partial computation offloading, the total computation

bits of all the IoT nodes were maximized by jointly optimizing

the BackCom power reflection coefficient, transmit power for

AT, BackCom and AT offloading time, local computation

frequency and computation time of each IoT node [19]. Under

the same setting as in [19], a max-min computation EE

problem and a computation EE maximization problem were

studied in [20] and [21], respectively. In [22], to minimize the

total delay for tasks offloading and computing of all the IoT

nodes, the authors jointly optimized the transmission time of

the PB, and each IoT node’s transmit power for AT, and their

portions of task bits for BackCom offloading, AT offloading

and local computing.

We note that the MEC server’s energy consumption and

computation time and practically limited computation capacity

have not been considered in the existing works on hybrid

BackCom-AT WPMEC networks [18]–[22]. However, the

computation time of the MEC server may not be negligible

for ultra-delay-sensitive applications [5]. Besides, assuming a

sufficiently high computation frequency of the MEC server,

thus ignoring its computation time, makes it impossible to

determine the computation energy consumption of the MEC

server, which however should be considered when design-

ing energy efficient resource allocation schemes for MEC

networks [5], [23]. Please note that considering the limited

computation capacity for the MEC server introduces additional

variables, e.g., the MEC server’s computation frequency and

time, which are potentially coupled in the optimization of

1The offloading rate of AT is higher than that of BackCom, but the energy
consumption of BackCom is much lower than that of AT [15].

resource, thus, bringing new challenges in resource allocation.

In this paper, we design two resource allocation schemes

for a hybrid BackCom-AT WPMEC network, where a PB

and an MEC server are deployed close to multiple IoT nodes

to provide them with energy and computational services on

demand, in order to maximize the total computation bits of all

the IoT nodes and the system computation EE, respectively,

while considering the MEC server’s energy consumption and

computation time and capacity. The main contributions are

summarized as follows.

• Considering the computation resource allocation at the

MEC server and partial computation offloading at each

IoT node, we maximize the sum computation bits of all

the IoT nodes by jointly optimizing the transmit power

of the PB, the MEC server’s computation frequency and

time, and each IoT node’s local computation frequency

and time, EH time, BackCom time, AT time, BackCom

power reflection coefficient and AT transmit power, sub-

ject to the quality-of-service (QoS) and other necessary

constraints. This joint optimization is formulated into a

non-convex problem. By using the proof by contradiction

and introducing a series of auxiliary variables, the original

problem is transformed into a convex one and is then

solved by the convex tools.

• The system computation EE is defined as the ratio of

the total computation bits of all the IoT nodes to the

total energy consumption of the PB, MEC server and all

the IoT nodes in the system. The system computation

EE maximization problem is a non-convex fractional

programming problem of the same optimization variables

as in the sum computation bits maximization problem.

To solve it, based on the Dinkelbach’s method and the

bisection method, we first propose a two-layer itera-

tive algorithm to obtain the optimal resource alloca-

tion scheme. By leveraging the block coordinate decent

(BCD) technique, we decompose the original problem

into two subproblems, i.e., 1) given the transmit power

of the PB, jointly optimizing all the other optimization

variables, and 2) optimizing the transmit power of the PB

while all the other variables are given. We further develop

a reduced-complexity iterative algorithm to a suboptimal

resource allocation.

• Our analytical and numerical results show that under the

limited computation capacity of the MEC server, each IoT

node should always perform local computing throughout

each time block in order to achieve the maximum total

computation bits or system computation EE; the total

computation bits are maximized when the MEC server

always uses the maximum allowed computing frequency

to complete their computing tasks; the system computa-

tion EE maximization is maximized when the available

time in each time block is used up for BackCom/AT

offloading, tasks computing at the IoT node and the

MEC server, while the computing frequency of the MEC

server is jointly optimized with its computing time and

the offloaded task bits; the proposed total computation

bits/EE maximization schemes outperform the bench-
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mark schemes in terms of computation bits/EE and the

proposed reduced-complexity iterative algorithm achieves

the suboptimal performance.

The rest of the paper is organized as follows. In Section II,

we introduce the system model and analyze the working flow.

Section III studies the computation bits maximization problem.

In Section IV, the system computation EE maximization

problem is studied and two iterative algorithms are developed

to obtain the optimal and suboptimal solutions, respectively.

Simulation results and the conclusion are given in Sections V

and VI, respectively.

In the existing works on backscatter-assisted wireless pow-

ered networks, the sum throughput [16], [24] and the EE [25],

[26] have been maximized by optimizing the allocation of

communication resources between the BackCom and AT under

the energy-causality constraint of each IoT node. Our work is

different in that we consider not only the tradeoff between the

BackCom and AT for task offloading, but also that between

the different computation capacities of the IoT nodes and the

MEC server.

II. SYSTEM MODEL AND WORKING FLOW

As shown in Fig. 1, we consider a hybrid BackCom-AT

WPMEC network that consists of one PB, K IoT nodes and

one MEC server. Each node is equipped with a single antenna

and works in the half-duplex mode. The K IoT nodes harvest

energy from the RF signals emitted by the PB and use the

harvested energy to offload their tasks to the MEC server as

well as compute tasks locally. In order to avoid consuming

the battery power and thereby to prolong the operation time

of each IoT node, the energy consumed at each IoT node for

computing and offloading their tasks is assumed to be less

than or equal to its harvested energy in each time block T .

Following [19]–[22], we assume that the bits of each task are

bit-wise independent so that the partial offloading scheme can

be applied at each IoT node. Each IoT node is equipped with

separate circuits for backscattering, AT, EH, and computing,

respectively, and thus can perform local computation when

offloading tasks or harvesting energy. A quasi-static fading

channel model is assumed, that is, all the channels remain

static within one time block but may vary across adjacent time

blocks. We also assume that perfect channel state information

(CSI) is available at the MEC server for obtaining the perfor-

mance bound. The MEC server can obtain the CSI of all links

at the beginning of each transmission block by using channel

estimation methods such as the least-square estimation [27],

and exploiting the channel reciprocity, as detailed in Section

II-E of [28].

Each time block T is divided into five phases, which are

the EH phase, the BackCom phase, the AT phase, the task

execution phase, and the downloading phase. In the EH phase,

the PB broadcasts energy signals and each IoT node harvests

energy from the received signals. In the BackCom phase and

the AT phase, the K IoT nodes offload parts of their tasks

to the MEC server following the time division multiple access

(TDMA) protocol. Specifically, in the BackCom phase, the PB

keeps broadcasting energy signals and the K IoT nodes take
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Fig. 1. Hybrid BackCom-AT WPMEC and its frame structure.

turns to offload task bits by modulating and backscattering

the energy signals to the MEC server. In the AT phase, the

PB keeps silent2 [18]–[22] and the K IoT nodes take turns

to transmit task bits to the MEC server using the harvested

energy. In the task execution phase, the PB and all the

IoT nodes keep silent, while the MEC server executes all

the received computation tasks. The MEC server sends the

computation results to the IoT nodes in the downloading

phase. In this work, we consider the scenarios where the

computation result bits are much less than the task bits,

e.g., automatic manufacturing systems. Thus, the downloading

phase is significantly shorter than the other four phases, and

is ignored hereafter for simplicity.

A. EH Phase

Let te denote the duration of the EH phase and Pt denote

the transmit power of the PB, where 0 < Pt ≤ Pmax and Pmax

is the maximum allowed transmission power at the PB. Then,

the harvested energy of the k-th (k ∈ K = {1, 2, ...,K}) IoT

node during the EH phase can be computed as Eh
k = teηPtgk,

where gk is the channel power gain between the k-th IoT node

and the PB, η (0 < η < 1) denotes the energy conversion

efficiency3.

B. BackCom Phase

The BackCom phase is divided into K sub-phases. In the

k-th sub-phase of duration tbk, the k-th IoT node offloads its

task bits to the MEC server via BackCom while the others

perform EH. The task bits offloaded by the k-th IoT node via

BackCom are given by

Rb
k = tbkB log2

(

1 +
ξρkPtgkhk

Bσ2

)

, (1)

2Please note that our work can be extended to the scenario where the PB
continues to broadcast energy signal in the AT phase, in which case, the
IoT nodes can harvest more energy in each time block but the PB consumes
more energy and the MEC server needs to remove the PB energy signal as
interference.

3For analytical tractability, this paper considers the linear EH model. Please
note that this work can be extended to the scenarios with a non-linear EH
model by using the approach adopted in [15] or [29].
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where B is the channel bandwidth, ρk (0 ≤ ρk ≤ 1) denotes

the power reflection coefficient of the k-th IoT node, hk

represents the channel power gain between the k-th IoT node

and the MEC server, σ2 is the noise power spectral density,

and ξ denotes the performance gap4 between the BackCom

capacity and the Shannon capacity.

From (1), we can see that the portion ρkPtgk of the received

power is used for backscattering the k-th IoT node’s task bits

to the MEC server; while the rest of the received power, (1−
ρk)Ptgk, is flowed into the EH circuit. During the sub-phase

tbk, the harvested energy of the k-th IoT node and the i-th

(i ∈ K\k) IoT node can be, respectively, computed as

Eb
k = tbkη (1− ρk)Ptgk, (2)

Eb
k,i = tbkηPtgi. (3)

Accordingly, at the end of the BackCom phase, the total

harvested energy of the k-th IoT node is determined by

Etotal
k = Eh

k + Eb
k +

∑

i∈K,i 6=k
Eb

i,k

= ηPtgk

(

te +
∑

i∈K,i 6=k
tbi

)

+ηPtgkt
b
k (1− ρk)

= ηPtgk

(

te +
∑K

i=1
tbi

)

− ηPtgkρkt
b
k. (4)

The energy consumption of the k-th IoT node for Back-

Com is given by Pct
b
k, where Pc denotes the circuit power

consumption for BackCom [19]–[21].

C. AT Phase

The AT phase is also divided into K subphases. In the k-th

subphase of duration tak, the k-th IoT node transmits its task

bits to the MEC server. Letting pk denote the transmit power

of the k-th IoT node, the task bits offloaded by the k-th IoT

node during tak can be calculated as

Ra
k = takBlog2

(

1 +
pkhk

Bσ2

)

. (5)

Note that the value of pk is limited by the total energy

harvested by the k-th IoT node during the EH and BackCom

phases minus the energy consumed for offloading and local

computing so far.

The energy consumption of the k-th IoT node for offloading

via AT can be calculated as (pk + pc) t
a
k, where pc denotes the

constant circuit power consumption for AT.

4During tb
k

, the received signal at the MEC server is given by√
ρkPtgkhkxex

b
k
+

√
P0gTRxe + n, where xe, xb

k
and n are the energy

signal transmitted by the PB, the offloaded data via BackCom and the additive
Gaussian noise at the MEC server, respectively. Assuming that the signal
received from the PB,

√
P0gTRxe, is removed by performing successive

interference cancellation, as the PB’s energy signal can be predefined and
known by the MEC server [13]. The remaining signal for decoding xb

k
can

be written as
√
ρkPtgkhkxex

b
k
+ n. The Shannon capacity is for Gaussian

inputs, but for BackCom, the multiplicative signal xex
b
k

does not necessarily
follow the Gaussian distribution and thus a performance gap exists between
the Shannon and BackCom capacities. In this work, we use ξ (0 < ξ < 0)
to represent this performance gap following [15], [16], [19].

At the end of the AT phase, the total task bits offloaded by

all the IoT nodes are given as

Ro
sum =

∑K

k=1

(
Rb

k +Ra
k

)

=

K∑

k=1

(

tbkBlog2

(

1+
ξρkPtgkhk

Bσ2

)

+takBlog2

(

1+
pkhk

Bσ2

))

. (6)

D. Task Execution Phase

After successfully receiving the task bits offloaded by the

IoT nodes, the MEC server starts to execute the received tasks.

Let fm (in Hz unit) and tc (in s unit) denote the computa-

tion frequency and time of the MEC server, respectively. The

MEC server’s computation capacity can be computed as

Rm =
tcfm

Ccpu
, (7)

where Ccpu represents the number of CPU cycles required for

computing one bit at the MEC server.

The number of task bits computed by the MEC server is

determined by the minimum between the received task bits

and the computation capacity of the MEC server, i.e.,

Re
m = min {Ro

sum, Rm}

= min

{
∑K

k=1

(

tbkBlog2

(

1+
ξρkPtgkhk

Bσ2

)

+takBlog2

(

1+
pkhk

Bσ2

))

,
tcfm

Ccpu

}

. (8)

Letting εm denote the effective capacitance coefficient of the

processor chip at the MEC server, the energy consumption of

the MEC server for task executing is given by [30]

Ee
m = εmf

3
mtc. (9)

E. Local Computation

At any time during a time block, each IoT node can compute

its own tasks locally. Letting fk (in Hz unit) and τk (in s unit)

denote the computation frequency and time of the k-th IoT

node, respectively, the task bits computed locally by the k-th

IoT node are given by

Re
k =

τkfk

Ccpu,k
, (10)

where Ccpu,k denotes the number of CPU cycles required for

computing one bit at the k-th IoT node.

The consumed energy for local computation at the k-th IoT

node is given by

Ee
k = εkf

3
k τk, (11)

where εk is the effective capacitance coefficient of the pro-

cessor chip at the k-th IoT node. Note that the values of Ee
k

and τk are limited by the harvested energy minus the energy

consumed for offloading by the k-th IoT node.
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III. COMPUTATION BITS MAXIMIZATION

In this section, we design an optimal resource allocation

scheme to maximize the total computation bits for the hybrid

BackCom-AT WPMEC network by jointly optimizing the

transmit power of the PB Pt, the EH time te, the MEC

server’s computation frequency fm and time tc, and the IoT

nodes’ BackCom time vector tb =
[
tb1 , . . . , t

b
K

]
, AT time

vector ta = [ta1, . . . , t
a
K ], power reflection coefficient vector

ρ = [ρ1, . . . , ρK ], transmit power vector p = [p1, . . . , pK ],
local computation frequency vector f = [f1, . . . , fK ] and

time vector τ = [τ1, . . . , τK ]. Specifically, we formulate a

computation bits maximization problem subject to the QoS,

energy causality, latency, computational budget and transmit

power constraints. Then, we transform the formulated problem

into a convex one and obtain the optimal solution using the

existing convex optimization tools.

A. Problem Formulation

The total computation bits include the task bits computed

by both the MEC server and the IoT nodes, and are given by

Rtotal

(
Pt, te, t

b, ta,ρ,p, f , τ , tc, fm
)
= Re

m +

K∑

k=1

Re
k, (12)

where tb =
[
tb1 , . . . , t

b
K

]
, ta = [ta1, . . . , t

a
K ], ρ = [ρ1, . . . , ρK ],

p = [p1, . . . , pK ], f = [f1, . . . , fK ] and τ = [τ1, . . . , τK ]. The

maximization of the total computation bits should consider the

following constraints.

1) QoS Constraint: Letting Lmin,k and βk (0 ≤ βk ≤ 1),

∀k ∈ K, denote the minimum required task bits and the portion

of task bits offloaded to the MEC server for the k-th IoT node,

respectively, the following three inequalities should be satisfied

for each IoT node to guarantee that the minimum required task

bits of each IoT node are computed successfully,

Rb
k +Ra

k ≥ βkLmin,k, ∀k, (13)
∑K

k=1
βkLmin,k ≤ Rm, (14)

Re
k ≥ (1− βk)Lmin,k, ∀k, (15)

where (13) and (14) jointly ensure that at least βkLmin,k task

bits are offloaded to and computed successfully by the MEC

server, while (15) ensures that at least (1− βk)Lmin,k task

bits are computed successfully at the k-th IoT node.

2) Energy-Causality Constraint: To ensure that the con-

sumed energy of each IoT node for offloading and computing

is less than its harvested energy within each time block, the

energy-causality constraint is expressed as

Pct
b
k + (pk + pc) t

a
k + εkf

3
k τk ≤ Etotal

k , ∀k. (16)

Based on (12)-(16), the computation bits maximization

problem can be formulated as

P0 : max
Pt,te,tb,ta,ρ,p,f ,τ ,tc,fm,β

Rtotal

(
Pt, te, t

b, ta,ρ,p, f , τ , tc, fm
)

s.t. C1 : (13)− (15),
C2 : (16),
C3 : 0 ≤ fm ≤ fmax, 0 ≤ fk ≤ fmax

k , ∀k,

C4 : te +
∑K

k=1

(
tbk + tak

)
+ tc ≤ T, te, t

b
k, t

a
k, tc ≥ 0, ∀k,

C5 : 0 ≤ τk ≤ T, ∀k,
C6 : 0 < Pt ≤ Pmax, pk ≥ 0, ∀k,
C7 : 0 ≤ ρk ≤ 1, ∀k,
C8 : 0 ≤ βk ≤ 1, ∀k,

where β = [β1, . . . , βK ], and fmax
k and fmax are the max-

imum computing frequencies for the k-th IoT node and the

MEC server, respectively.

In P0, C1 is the QoS constraint, C2 is the energy-causality

constraint. C3 constrains the maximum computing frequencies

at the MEC server and IoT nodes, C4 and C5 are the

latency constraints, which ensure that all the task bits should

be executed within T , C6 and C7 are the constraints on

the transmit power of the PB and the IoT nodes and the

power reflection coefficient of each IoT node, respectively,

and C8 constrains the portion of task bits offloaded to the

MEC server for each IoT node. The transmit power and

computation capacity constraints together with the minimum

QoS requirement Lmin,k may cause an infeasibility issue, i.e.,

it may be impossible to find a solution to the formulated total

computation bits maximization problem (as well as the system

computation EE maximization problem in Section IV) under

certain values of those constraints and Lmin,k. It is reasonable

to assume that the probability of an infeasibility event is very

low for practical settings of the maximum PB transmit power

Pmax or the maximum computing frequencies of the IoT nodes

and the MEC server.

It is observed that P0 is a typical non-convex optimization

problem since there are coupling relationships among several

optimization variables (i.e., Pt, te, ρk and tbk, fk and τk, fm
and tc, etc.) in the objective function and constraints. We note

that directly introducing auxiliary variables into P0 may not

decouple all the coupling optimization variables. Because there

will always be at least one non-convex constraint remaining. In

order to solve P0, we first derive the closed-form expressions

for parts of the optimal solutions and then transform P0 into

a convex one by introducing auxiliary variables.

B. Solution

In order to remove the min function in the objective, we

introduce a slack variable λ and let λ = min {Ro
sum, Rm}.

Accordingly, the optimization problem P0 can be reformulated

as

P1 : max
Pt,te,tb,ta,ρ,p,f ,τ ,tc,fm,β,λ

λ+
∑K

k=1 R
e
k

s.t. C1− C8,
C9 : Ro

sum ≥ λ,

C10 : Rm ≥ λ.

As for P1, we provide the following proposition to deter-

mine the optimal transmit power of the PB P ∗
t , the optimal
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computation frequency of the MEC server f∗
m and the optimal

computing time of the k-th IoT node τ∗k .

Proposition 1: For the considered network, the maximum

total computation bits are achieved when the PB transmits

energy signals with the maximum transmit power, the MEC

server executes all the received tasks with its maximum

computation frequency and each IoT node performs local

computation throughout a time block, namely P ∗
t = Pmax,

f∗
m = fmax and τ∗k = T .

Proof. Please see Appendix A. �

Substituting Pt = Pmax, fm = fmax and τk = T into P1,

we have

P2 : max
te,tb,ta,ρ,p,f ,tc,β,λ

λ+
∑K

k=1
fkT

Ccpu,k

s.t.C1′ :tbkBlog2

(

1 + ξρkPmaxgkhk

Bσ2

)

+Ra
k ≥ βkLmin,k, ∀k,

∑K
k=1 βkLmin,k ≤ tcfmax

Ccpu
,

fkT
Ccpu,k

≥ (1− βk)Lmin,k, ∀k,

C2′ : Pct
b
k + (pk + pc) t

a
k + εkf

3
kT

≤ ηPmaxgk

(

te +
∑K

i=1 t
b
i

)

− tbkηρkPmaxgk, ∀k,

C3′ : 0 ≤ fk ≤ fmax
k , ∀k,

C4,C7,C8,

C9′ :
∑K

k=1

(

tbkBlog2

(

1 + ξρkPmaxgkhk

Bσ2

)

+Ra
k

)

≥ λ,

C10′ : tcfmax

Ccpu
≥ λ.

It can be observed that P2 is still non-convex due to the non-

convex constraints, C1′, C2′ and C9′, which contain coupled

variables, e.g., tbk and ρk. To overcome the non-convexity, we

introduce the auxiliary variables, xk = ρkt
b
k and yk = takpk,

and use xk

tb
k

and yk

ta
k

to replace ρk and pk, respectively. Thus,

P2 is equivalently transformed into P3, as follows,

P3 : max
te,tb,ta,x,y,f ,tc,β,λ

λ+
∑K

k=1
fkT

Ccpu,k

s.t.C1′′ : tbkBlog2

(

1 + ξxkPmaxgkhk

tb
k
Bσ2

)

+takBlog2

(

1 + ykhk

ta
k
Bσ2

)

≥ βkLmin,k, ∀k,
∑K

k=1 βkLmin,k ≤ tcfmax

Ccpu
,

fkT
Ccpu,k

≥ (1− βk)Lmin,k, ∀k,

C2′′ : Pct
b
k + yk + pct

a
k + εkf

3
kT

≤ ηPmaxgk

(

te +
∑K

i=1 t
b
i

)

− ηxkPmaxgk, ∀k,

C3′,C4,C8,C10′,
C7′ : 0 ≤ xk ≤ tbk , yk ≥ 0, ∀k,

C9′′ :
∑K

k=1

(

tbkBlog2

(

1 + ξxkPmaxgkhk

tb
k
Bσ2

)

+takBlog2

(

1 + ykhk

ta
k
Bσ2

))

≥ λ,

where x = [x1, . . . , xK ] and y = [y1, . . . , yK ].
Proposition 2: P3 is convex and can be efficiently solved

by using the convex optimization tool, e.g., CVX.

Proof. Please see Appendix B. �

IV. SYSTEM COMPUTATION EE MAXIMIZATION

In this section, we maximize the system computation EE

maximization for the hybrid BackCom-AT WPMEC system

under the QoS, energy causality, latency, computational budget

and transmit power constraints, by jointly optimizing the same

variables as of the computation bits maximization problem

P0. The formulated joint optimization problem is highly

non-convex and difficult to solve. We devise two iterative

algorithms to solve it optimally and sub-optimally (with a

reduced complexity), respectively.

A. Problem Formulation

Following [31], [32], the system computation EE for the

considered network is defined as the ratio of the total compu-

tation bits of all the IoT nodes to the total energy consumption

of the PB, MEC server and all the IoT nodes in the system. The

total consumed energy consists of three parts: the consumed

energy of the PB for wireless energy transfer, the energy

consumption of all the IoT nodes for task offloading and

computing, and the energy consumed at the MEC server.

Accordingly, the total energy consumption can be computed

as

Etotal = (Pt + Psc)

(

te +
∑K

k=1
tbk

)

−
∑K

k=1
Etotal

k

︸ ︷︷ ︸

Part 1

+ Ee
m

︸︷︷︸

Part 3

+
∑K

k=1

(
Pct

b
k + (pk + pc) t

a
k + εkf

3
k τk
)

︸ ︷︷ ︸

Part 2

, (17)

where Psc denotes the constant circuit power consumption at

the PB.

The computation EE of the system is given by

qs
(
Pt, te, t

b, ta,ρ,p, f , τ , tc, fm
)
=

Rtotal

Etotal
. (18)

Based on (18) and the QoS and energy-causality constraints

in (13)-(16), the system computation EE maximization prob-

lem can be formulated as

P4 : max
Pt,te,tb,ta,ρ,p,f ,τ ,tc,fm,β

qs
(
Pt, te, t

b, ta,ρ,p, f , τ , tc, fm
)

s.t. C1− C8.

Similar to P1, P4 is also highly non-convex and difficult

to solve due to multiple coupled optimization variables in

both the objective function and constraints, which can not be

tackled by means of variable substitution. Besides, P4 is more

complicated than P1 since the objective function of P4 is a

ratio of two functions. The following section is devoted to

solving P4.

B. Solution and Iterative Algorithms

We provide the following proposition to determine the

optimal computation time of each IoT node, as part of the

optimal solution to P4.

Proposition 3: In order to achieve the maximum compu-

tation EE for the considered system, each IoT node performs

local computation throughout a time block, i.e., τ∗k = T .

Proof. Proposition 3 can be proven by using contradiction

and the detailed process is similar to Appendix A. Thus, the

proof is omitted here for brevity. �
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By substituting τk = T into P4, we have

P5 : max
Pt,te,tb,ta,ρ,p,f ,tc,fm,β

qs
(
Pt, te, t

b, ta,ρ,p, f , T, tc, fm
)

s.t.C1† : (13), (14), fkT
Ccpu,k

≥ (1− βk)Lmin,k, ∀k,

C2† : Pct
b
k + (pk + pc) t

a
k + εkf

3
kT

≤ ηPtgk

(

te +
∑K

i=1 t
b
i

)

− tbkηρkPtgk, ∀k,

C3,C4,C6− C8.

We can see that P5 is still non-convex mainly because Pt

is coupled with ρk, tbk and te. In the following, we first solve

P5 for given Pt.

1) Solving P5 for given Pt: To remove the min function in

(8) from the objective function of P5, we introduce the slack

variable λ = min {Ro
sum, Rm} into P5 and have

P6 : max
te,tb,ta,ρ,p,f ,tc,fm,β,λ

λ+
∑K

k=1

fkT

Ccpu,k

Etotal(Pt,te,tb,ta,ρ,p,f ,T,tc,fm)

s.t. C1†,C2†,C3,C4,C7− C10.

Next, we use the following lemma from the Dinkelbach’s

method to transform the objective function of P6 from a

fractional form into a subtractive form.

Lemma 1. The optimal solution to P6 is achieved if and

only if the following equation holds.

max
te,tb,ta,ρ,p,f ,tc,fm,β,λ

λ+
∑K

k=1

fkT

Ccpu,k

−q+Etotal

(
Pt, te, t

b, ta,ρ,p, f , T, tc, fm
)
=λ++

K∑

k=1

f+
k T

Ccpu,k

−q+Etotal

(
Pt, t

+
e , t

b+, ta+,ρ+,p+, f+, T, t+c , f
+
m

)
=0,(19)

where q+ denotes the maximum objective function value of

P6 and the superscript + indicates the optimal solution to

P6. The proof of Lemma 1 can be readily obtained based on

the generalized fractional programming theory [33] and the

detailed proof is omitted here for brevity.

Based on Lemma 1, we propose a Dinkelbach-based iter-

ative algorithm to solve P6 as summarized in Algorithm 1.

Denoting the given value of the system computation EE by q,

in each iteration of Algorithm 1, the following problem P7

is solved for the given q and the obtained optimal solution is

used to update the value of q, which is used as the given q

for the next iteration until the value of q converges.

P7 : max
te,tb,ta,ρ,p,f ,tc,fm,β,λ

λ+
∑K

k=1
fkT

Ccpu,k

−qEtotal

(
Pt, te, t

b, ta,ρ,p, f , T, tc, fm
)

s.t. C1†,C2†,C3,C4,C7− C10.

Note that P7 is still a non-convex optimization problem due

to the existence of coupling relationships between multiple

variables, i.e., ρk and tbk, etc. In order to tackle P7, we

Algorithm 1 Dinkelbach-based Iterative Algorithm for P6

1: Set the maximum error tolerance ǫ;

2: Set the iteration index l = 1 and q = 0;

3: repeat

4: Solve P8 with a given q, and ob-

tain the optimal solution, denoted by
{
t♦e , t

b♦, ta♦,ρ♦,p♦, f♦, t♦c , f
♦
m , λ♦

}
;

5: Compute the computation EE of the system as q♦ =

λ♦+
∑K

k=1

f
♦
k

T

Ccpu,k

Etotal(Pt,t
♦
e ,tb♦,ta♦,ρ♦,p♦,f♦,T,t♦c ,f♦

m )
;

6: if |q♦ − q| ≤ ǫ then

7: Set q+ = q, Flag = 1 and the obtained solution is

the optimal solution to P6;

8: else

9: Set q = q♦, Flag = 0 and l = l + 1;

10: end if

11: until Flag = 1.

introduce the auxiliary variables xk, yk, φ = fmtc and

ϕ = f3
mtc into P7 and transform it into

P8 : max
te,tb,ta,x,y,f ,tc,fm,β,λ

λ+
∑K

k=1
fkT

Ccpu,k
− q

((

te +
∑K

k=1 t
b
k

)

×
(

Pt + Psc − ηPt

∑K
k=1 gk

)

+ ηPt

∑K
k=1 xkgk + εmϕ

+
∑K

k=1

(
Pct

b
k + yk + pct

a
k + εkf

3
kT
)
)

s.t. C1†† : tbkBlog2

(

1 + ξxkPtgkhk

tb
k
Bσ2

)

+takBlog2

(

1 + ykhk

ta
k
Bσ2

)

≥ βkLmin,k, ∀k,
∑K

k=1 βkLmin,k ≤ φ
Ccpu

,
fkT

Ccpu,k
≥ (1− βk)Lmin,k, ∀k,

C2†† : Pct
b
k + yk + pct

a
k + εkf

3
kT

≤ ηPtgk

(

te +
∑K

i=1 t
b
i

)

− ηxkPtgk, ∀k,

C3†: 0 ≤ ϕ ≤ φf2
max, 0 ≤ fk ≤ fmax

k , ∀k,

C4† : te +
∑K

k=1

(
tbk + tak

)
+
√

φ3

ϕ
≤ T, te, t

b
k, t

a
k ≥ 0, ∀k,

C7†: 0 ≤ xk ≤ tbk , yk ≥ 0, ∀k,C8,

C9† :
∑K

k=1

(

tbkBlog2

(

1 + ξxkPtgkhk

tb
k
Bσ2

)

+takBlog2

(

1 + ykhk

ta
k
Bσ2

))

≥ λ,

C10† : φ
Ccpu

≥ λ,

where fm =
√

ϕ
φ

and tc =
√

φ3

ϕ
.

It is easy to prove that P8 is convex and can be solved by

using existing convex methods (e.g., interior point method,

Lagrange duality, etc.) efficiently. The proof is similar to

Appendix B and is omitted here for brevity.

In order to gain more insights into the optimal solutions,

we use the Lagrange duality method to solve P8 and obtain

the following proposition.

Proposition 4: The system computation EE is maximized

when the MEC server uses the maximum allowable time for

task computing, i.e., t+c = T −
(

t+e +
∑K

k=1

(
tb+k + ta+k

))

.

Proof. Please see Appendix C. �
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Algorithm 2 Bisection-based Iterative Algorithm for Pmin

1: Initialize the maximum tolerance ǫ;

2: Set Plow = 0, Pup = Pmax;

3: repeat

4: Set Pt = (Plow + Pup)/2;
5: Solve (20) with a given Pt, and obtain A;

6: if A is an nonempty set then

7: Set Pup = Pt;

8: else

9: Set Plow = Pt;

10: end if

11: until Pup − Plow < ǫ;

12: Pmin is given by
Pup+Plow

2 .

2) Optimal solution to P5: After P6 is solved in its feasible

range [Pmin, Pmax] via Algorithm 1, the optimal solution to P5

can be obtained by identifying the P6 solution that returns the

largest objective function value of P5 among all the solutions

obtained by Algorithm 1 together with the corresponding value

of Pt. This indicates that limiting the search scope of Pt

can reduce the complexity of solving P5. Due to the energy-

causality and QoS constraints in (13)-(16), there exists a lower

bound of Pt, denoted by Pmin, which can be determined by

minimizing Pt while satisfying all the constraints of P5. The

obtained Pmin can be used to limit the search scope of Pt. Let

[Pmin, Pmax] denote the range of Pt that makes P5 feasible,

and Pmin can be obtained by solving

P9 : min
Pt,te,tb,ta,ρ,p,f ,tc,fm,β

Pt

s.t.C1††,C2††,C3†,C4†,C6,C7†,C8.

P9 is a non-convex problem due to the non-convex constraints

C1†† and C2††, where each IoT node has unique ρk and tbk but

they share the same Pt. Fortunately, we find that the objective

function of P9 is a monotonous function of Pt and when Pt

is fixed, P9 reduces to

find A =
{
te, t

b, ta,ρ,p, f , tc, fm,β
}

s.t.C1††,C2††,C3†,C4†,C7†,C8,
(20)

which is convex and can be solved using the existing convex

tools. Based on (20), the minimum Pt that satisfies all the

constraints of P9 can be obtained by the bisection method.

Hence, we propose a bisection-based iterative algorithm in

Algorithm 2 to search for Pmin. For a certain error tolerance ǫ,

the bisection method in Algorithm 2 is guaranteed to converge.

Based on Algorithm 1 and Algorithm 2, a two-layer iterative

algorithm is devised in Algorithm 3 to obtain the optimal

solution to P5. In the outer loop (lines 7, 9 and 10), the

value of Pt increases by a sufficiently small step size ǫ0 from

Pmin to Pmax and P5’s objective function values obtained

from the current and previous runs of the inner loop are

compared to identify the largest objective function value (and

the corresponding solution to P6 and Pt value); while in the

inner loop (line 8), the optimal solution of P6 for a given Pt

is obtained.

Remark 1: It is worth noting that our proposed two-layer

iterative algorithm in Algorithm 3 can serve the following

Algorithm 3 Two-layer Iterative Algorithm for P5

1: Initialize a sufficiently small step size ǫ0;

2: Obtain Pmin by using Algorithm 2;

3: Set Pt = Pmin;

4: Solve P6 with a given Pt via Algorithm 1;

5: Compute the computation EE of the system q∗

and obtain the corresponding solution, denoted by
{
Pt, t

∗
e , t

b∗, ta∗,ρ∗,p∗, f∗, t∗c , f
∗
m, λ

∗
}

;

6: repeat

7: Set Pt = Pt + ǫ0;
8: Solve P6 with a given Pt to obtain the system com-

putation EE q+ and the corresponding solution using

Algorithm 1;

9: If q+ > q∗

10: Set q∗ = q+ and update the optimal solution;

11: End

12: until Pt > Pmax.

two purposes. Firstly, compared with the exhaustive search

method, Algorithm 3 enjoys a much lower complexity while

achieving the optimal resource allocation because the optimal

local computation time of each IoT node has been analytically

derived and Algorithm 2 narrows the searching range for Pt

by identifying its lower bound Pmin. Secondly, in addition to

the considered hybrid BackCom-AT and partial computation

offloading, Algorithm 3 can also be used to achieve the optimal

resource allocation under the complete offloading mode (i.e.,

all the IoT nodes offload all their task bits to the MEC server

via hybrid BackCom-AT) or the pure BackCom mode, (i.e.,

all the IoT nodes only use BackCom to offload their task bits)

by letting fk = 0, ∀k or pk = 0, tak = 0, ∀k, respectively.

Note that in the fully local computing mode or the pure

AT mode where all the IoT nodes perform local computing

only or only use AT to offload their task bits, respectively, the

proposed Dinkelbach-based iterative algorithm in Algorithm

1 can be applicable by letting making a few variable substi-

tutions because in these two modes, Pt is only coupled with

te.

3) A reduced-complexity iterative algorithm for solving P5:

The computational complexity of Algorithm 3 may be high

for some special cases, e.g., the case with a large value of

Pmax − Pmin, because the number of feasible values of Pt

and thus the times of calling Algorithm 1 can be vary large.

Instead, we devise a suboptimal, reduced-complexity iterative

algorithm to solve P5 via BCD.

When Pt is fixed, P5 reduces to P6 and Algorithm 1 can

be used to achieve the optimal solution to P6, which can be

solved optimally by Algorithm 1.

When all the other optimization variables except for Pt are

given, P5 reduces to

P10 : max
Pt

min{
∑K

k=1(t
b
kBlog2(1+CkPt)+Ra

k),Rm}+D0

PtA0+B0

s.t.C1†,C2†,C6,

where A0 = te +
∑K

k=1 t
b
k −

η
∑K

k=1

(

gk

(

te +
∑K

i=1 t
b
i

)

− tbkρkgk

)

, B0 =
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∑K
k=1

(
Pct

b
k + (pk + pc) t

a
k + εkf

3
k τk
)

+ Ee
m +

Psc

(

te +
∑K

k=1 t
b
k

)

, Ck = ξρkgkhk

Bσ2 and D0 =
∑K

k=1 R
e
m.

Combining C1†,C2† and C6, we can obtain the range of

Pt as PL ≤ Pt ≤ Pmax, where

PL =max

{

0,
2

βkLmin,k−Ra
k

tb
k
B − 1

Ck

,

Pct
b
k + (pk + pc) t

a
k + εkf

3
kT

ηgk

(

te +
∑K

i=1 t
b
i

)

− tbkηρkgk

, ∀k

}

. (21)

In order to handle the min function in the objective function

of P10, we consider the following two cases, which are Case

I:
∑K

k=1

(
tbkBlog2 (1 + CkPt) +Ra

k

)
≥ Rm, and Case II:

∑K
k=1

(
tbkBlog2 (1 + CkPt) +Ra

k

)
≤ Rm.

In Case I, P10 can be rewritten as

P11 : max
Pt

Rm+D0

PtA0+B0

s.t.max (0, PL, PL2) ≤ Pt ≤ Pmax,

where PL2 is the unique solution5 to
∑K

k=1

(
tbkBlog2 (1 + CkPt) +Ra

k

)
= Rm with respect

to Pt. Since the objective function is a monotonically

decreasing function of Pt, the optimal solution to P11 is

given by max (0, PL, PL2).
In Case II, P10 can be rewritten as

P12 : max
Pt

∑K
k=1 (t

b
kBlog2(1+CkPt)+Ra

k)+D0

PtA0+B0

s.t.max (0, PL) ≤ Pt ≤ min (PL2, Pmax) .

Proposition 5: Let P ⋆
t denote the optimal solution to P12.

P ⋆
t can be computed as

P ⋆
t =







min (PL2, Pmax) , if
K∑

k=1

tbkBfk (min (PL2, Pmax))

≥ A0

(
∑K

k=1 R
a
k +D0

)

,

max (0, PL) , if
∑K

k=1 t
b
kBfk (max (0, PL))

≤ A0

(
K∑

k=1

Ra
k +D0

)

,

P0, otherwise,

(22)

where fk (Pt) = Ck(PtA0+B0)
(1+CkPt) ln 2 − A0

∑K
k=1 log2 (1 + CkPt)

and P0 is the unique solution to
∑K

k=1 t
b
kBfk (Pt)−A0

(
∑K

k=1 R
a
k +D0

)

= 0.

Proof. Please see Appendix D. �

Combining the above two cases, the optimal solution to

P10 is given by max (0, PL, PL2) or P ⋆
t depending on which

of them achieves a higher system computation EE.

By exploiting the BCD technique based on Algorithm 1

and the above obtained optimal solution to P10, we propose

a reduced-complexity iterative algorithm for solving P5 is

shown in Algorithm 4.

Note that in Algorithm 4, the value of PL2 in the ii-

th iteration is determined by the PB’s transmit power ob-

tained in the ii-th iteration, namely P ii
t . The reasons are as

follows. On the one hand, the following Lemma indicates

5In line 7 of Algorithm 4, we provide a way to determine PL2 and the
detailed reasons are provided in the last three paragraphs of this subsection.

Algorithm 4 Reduced-complexity Iterative Algorithm for P5

1: Initialize the maximum iterations Imax and the maximum

tolerance ǫ;

2: Obtain Pmin by using Algorithm 2;

3: Set P 1
t = Pmin+Pmax

2 and iteration index ii = 1;

4: repeat

5: Solve P6 for a given P ii
t via Algorithm 1 and obtain{

tii+1
e ,

{

t
b(ii+1)
k

}K

k=1
,
{

t
a(ii+1)
k

}K

k=1
,
{
ρii+1
k

}K

k=1
, tii+1

c ,

f ii+1
m ,

{
pii+1
k

}K

k=1
,
{
f ii+1
k

}K

k=1

}

;

6: Compute the corresponding computation EE, denoted

by qii+1
1 ;

7: Compute PL based on (21) and set PL2 = P ii
t ;

8: Obtain P0 by means of the bisection method and

determine P ⋆
t based on Proposition 5;

9: if Rm+D0

max(0,PL,PL2)A0+B0
≥

K∑

k=1

(tbkBlog2(1+CkP
⋆
t )+Ra

k)+D0

P⋆
t A0+B0

then

10: Set P ii+1
t = max (0, PL, PL2) and qii+1

2 =
Rm+D0

max(0,PL,PL2)A0+B0
;

11: else

12: Set P ii+1
t = P ⋆

t and qii+1
2 =

∑K
k=1 (t

b
kBlog2(1+CkP

⋆
t )+Ra

k)+D0

P⋆
t A0+B0

;

13: end if

14: if |qii+1
2 − qii+1

1 | < ǫ then

15: Set P ∗
t = P ii+1

t , t∗e = tii+1
e , t∗c = tii+1

c , f∗
m =

f ii+1
m , p∗k = pii+1

k , f∗
k = f ii+1

k , ρ∗k = ρii+1
k , tb∗k =

t
b(ii+1)
k , ta∗k = t

a(ii+1)
k , ∀k, Flag = 1 and return;

16: else

17: Set ii = ii+ 1 and Flag = 0;

18: end if

19: until Flag = 1 or ii = Imax

that by using the obtained solution of P6 in each itera-

tion, the given PB’s transmit power can make the equation
∑K

k=1

(
tbkBlog2 (1 + CkPt) +Ra

k

)
= Rm hold.

Lemma 2. When P6 is optimally solved to a

given Pt, the total task bits offloaded by all the IoT

nodes should equal the MEC server’s computation

capacity during the task execution phase, i.e.,
∑K

k=1

(

tb+k Blog2

(

1 +
ξρ+

k
Ptgkhk

Bσ2

)

+ ta+k Blog2

(

1 +
p+

k
hk

Bσ2

))

=
t+c f+

m

Ccpu
, and PL2 is equal the given Pt.

Proof. Please see Appendix E. �

On the other hand, according to the definition of PL2

below P11, PL2 is also a solution for the equation
∑K

k=1

(
tbkBlog2 (1 + CkPt) +Ra

k

)
= Rm with respect to Pt.

Substituting the obtained solution of P6 into the equation
∑K

k=1

(
tbkBlog2 (1 + CkPt) +Ra

k

)
= Rm, we know that the

left side of this equation is an increasing function with respect

to Pt and Rm is a constant. As only one solution exists for

the above equation, PL2 equals the given Pt.

V. NUMERICAL RESULTS

In this section, we verify the effectiveness and the supe-

riority of the proposed schemes via computer simulations.
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Tabel 1: Key Simulation Settings

Parameters Notation Value

The entire time block T 1 Second

The communication bandwidth B 100 kHz

The number of cycles for one bit at the k-th IoT node Ccpu,k 1000 Cycles/bit

The number of cycles for one bit at the MEC server Ccpu 1000 Cycles/bit

The constant circuit power consumption for BackCom at the k-th IoT node Pc 10 µW

The constant circuit power consumption for AT at the k-th IoT node pc 1 mW

The constant circuit power consumption at the PB Psc 10 mW

The maximum transmit power at the PB Pmax 1 W

The fixed energy conversion efficiency at each IoT node η 0.7

The performance gap reflecting the real modulation for BackCom ξ -15dB

The noise power spectral density σ2 -120dBm/Hz

The number of IoT nodes K 4

The effective capacitance coefficient of the k-th IoT node εk 10−26

The effective capacitance coefficient of the MEC server εm 10−28

The maximum CPU frequency at the k-th IoT node fmax
k

5× 108 Hz

The maximum CPU frequency at the MEC server fmax 1010 Hz

The minimum computation bits of the k-th IoT node Lmin,k 10 kbits

Unless otherwise specified, the basic simulation parameters are

provided as shown in Table I [5], [11], as shown at the top of

the next page. We consider a standard channel fading model,

where the channel gain between the PB and the k-th IoT node

is modeled by gk = g′kd
−α
0k with the small-scale fading g′k,

distance d0k, and path loss exponent α. The channel gain from

the MEC server to the k-th IoT node is given by hk = h′
kd

−α
1k

with the small-scale fading h′
k and distance d1k. Here we let

α = 3, d01 = 12m, d02 = 10m, d03 = 15m, d04 = 13m,

d11 = 60m, d12 = 65m, d13 = 50m and d14 = 55m.

In order to illustrate the advantages of the proposed com-

putation bits/EE maximization scheme, we compare the per-

formance under the proposed schemes with the following four

benchmark schemes:

• Complete offloading scheme: All the tasks at all the

IoT nodes can only be offloaded to the MEC server for

computation and each IoT node can choose BackCom,

AT, or hybrid BackCom and AT to transmit its task bits.

For maximizing the total computation bits of all the IoT

nodes, this scheme is obtained by solving P3 with fk =
0, while for maximizing the system computation EE, this

scheme is achieved based on Remark 1.

• Fully local computing scheme: All the IoT nodes can

only compute their tasks locally. For maximizing the total

computation bits of all the IoT nodes, this scheme is

optimized under the same constraints as P3 with tbk = 0,

tak = 0, xk = 0, yk = 0, and tc = 0. This scheme

with the aim of maximizing the system computation EE

is obtained by means of the proposed Dinkelbach-based

iterative algorithm through a few changes, i.e., letting

Pt =
x
te

.

• Pure BackCom assisted MEC networks: This scheme

is optimized for pure BackCom assisted MEC networks,

where each IoT node can offload its partial task bits to

the MEC server for computation and the offloaded task

bits can only be transmitted via BackCom. Likewise,

for maximizing the total computation bits of all the IoT

nodes, this scheme is achieved by solving P3 with tak = 0
and yk = 0. Remark 1 is used to obtain the scheme for

maximizing the system computation EE in pure BackCom

assisted MEC networks.
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Fig. 2. Rtotal versus the minimum required computation bits.

• Wireless powered MEC networks: This scheme is op-

timized for the wireless powered MEC networks, where

each IoT node harvests energy from RF signals first and

then uses the harvested energy to offload its partial task

bits to the MEC server for computation. Accordingly,

this scheme for maximizing the total computation bits

of all the IoT nodes is optimized by solving P3 with

tbk = 0 and xk = 0, while this scheme for maximizing the

system computation EE is achieved by using the proposed

Dinkelbach-based iterative algorithm with Pt =
x
te

.

A. Performance analysis for the proposed computation bits

maximization scheme

Fig. 2 demonstrates the total computation bits of all the IoT

nodes Rtotal versus the minimum required computation bits at

each IoT node. For convenience, we let Lmin,1 = Lmin,2 =
Lmin,3 = Lmin,4 = Lmin and Lmin is ranged from 10 kbits to

40 kbits. In order to illustrate the superiority of the proposed

computation bits maximization scheme in terms of Rtotal, we

compare Rtotal achieved by the proposed scheme with those

obtained by the complete offloading scheme, the fully local

computing scheme, pure BackCom assisted MEC networks

and wireless powered MEC networks. From this figure, we
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Fig. 3. Total computation bits of all the IoT nodes Rtotal versus Pmax.

can observe that Rtotal under all the schemes decreases with

the increase of Lmin. This is because the increase of Lmin

denotes a higher computation bits requirement for each IoT

node and more resources need to be allocated to the IoT

nodes with worse channels, leading to a reduction to the

total computation bits. Besides, we can find that the proposed

computation bits maximization scheme always outperforms

pure BackCom assisted MEC networks and wireless powered

MEC networks in terms of the total computation bits, which

verifies the advantages of the combination of BackCom and

the wireless powered MEC networks. By comparisons, we

can also see that the proposed computation bits maximization

scheme can achieve the highest Rtotal since the other schemes

can be regarded as special cases for the proposed scheme and

have less flexibility to utilize resources for maximizing the

total computation bits.

Fig. 3 shows the total computation bits of all the IoT nodes

versus the maximum allowed transmit power at the PB, Pmax,

under different schemes. Here Pmax varies from 0.5 W to 2.5
W. It can be observed that the total computation bits of all the

IoT nodes under all the schemes increases with the increase

of Pmax. The reasons are as follows. Based on Proposition 1,

the optimal transmit power of the PB is determined by Pmax

and a higher transmit power allows IoT nodes to harvest more

energy for task offloading and computing. Besides, a higher

transmit power also improves the power of the backscattered

signal, increasing the task bits offloaded at each IoT node

via BackCom. Likewise, the advantages of the combination

of BackCom and the wireless powered MEC networks are

also illustrated by comparing the proposed scheme with pure

BackCom assisted MEC networks and wireless powered MEC

networks. Besides, we also observe that the total computation

bits under the proposed scheme are the highest among these

five schemes, which also demonstrates the superiority of the

proposed scheme in terms of total computation bits. The

IoT nodes choose to perform task offloading only when the

harvested energy (or the transmit power of the PB) is large

enough; otherwise, IoT nodes prefer to compute locally for

achieving more computation bits.

Fig. 4 depicts the impact of the computation capacity of the
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Fig. 4. Total computation bits v.s. the ratio of fmax to fmax
k

.

MEC server on the total computation bits of all the IoT nodes,

where the ratio of the maximum computation frequency of the

MEC server fmax to that of the k-th IoT node fmax
k varies from

5 to 30 and fmax
k is fixed as 500 MHz. It can be observed that

the total computation bits under all the schemes except for the

fully local computing scheme increase when the MEC server’s

computation capacity improves, while the total computation

bits under the fully local computing scheme basically keeps

unchanged. This is because a higher computation capacity

of the MEC server allows more task bits to be offloaded

and computed, increasing the total computation bits. Whereas

the MEC server’s computation capacity does not influence

the total computation bits under the fully local computing

scheme. It can also be seen that the proposed computation

bits maximization scheme is superior to the other schemes in

terms of total computation bits for all the considered values

of fmax

fmax
k

.

B. Convergence analysis for the proposed iterative algorithms

Fig. 5 demonstrates the convergence analysis of the pro-

posed iterative algorithms, such as, Algorithm 1, Algorithm

2, Algorithm 3 and Algorithm 4. Specifically, Fig. 5(a) shows

the convergence of Algorithm 1 under different settings of

Pt and Lmin, the convergence of Algorithm 2 with different

values of Lmin is illustrated in Fig. 5(b) and in Fig. 5(c), the

convergence analysis and performance comparisons between

Algorithm 3 and Algorithm 4 are plotted. From Fig. 5(a), it

can be observed that less than 4 iterations are required for the

proposed Dinkelbach-based iterative algorithm in Algorithm

1 to converge to the maximum system computation EE,

which illustrates that the proposed Dinkelbach-based iterative

algorithm is computationally efficient. The proposed bisection-

based iterative algorithm in Algorithm 2 is used to obtain the

maximum value of Pt, namely Pmin, and it can be observed

from Fig. 5(b) that it takes about 9 iterations to achieve

the value of Pmin, which verifies the convergence of the

proposed bisection-based iterative algorithm. Besides, we can

also observe that Pmin increases when Lmin increases since

with a larger Lmin, the energy consumption at each IoT node
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Fig. 5. The convergence of the proposed iterative algorithms: (a) the convergence of Algorithm 1; (b) the convergence of Algorithm 2; (c) the convergence
analysis and comparisons between Algorithm 3 and Algorithm 4.

for task offloading and computing may increases, leading to

an improvement for Pt.

From Fig. 5(c), we can observe that both the proposed two-

layer iterative algorithm in Algorithm 3 and the proposed

reduced-complexity iterative algorithm in Algorithm 4 are

convergent. Specifically, the number of iterations required for

the convergence of the proposed reduced-complexity iterative

algorithm is much less than that of the proposed two-layer iter-

ative algorithm, illustrating the low complexity of the proposed

reduced-complexity iterative algorithm. By comparisons, we

can also see that the system computation EE achieved by

the proposed reduced-complexity iterative algorithm is always

close to that of the proposed two-layer iterative algorithm,

which further verifies the suboptimal performance of the

proposed reduced-complexity iterative algorithm in terms of

system computation EE. That is, the low complexity of the

proposed reduced-complexity iterative algorithm is achieved

at the cost of a slight reduction to the system computation

EE. Moreover, we also find that the required iterations for the

proposed two-layer iterative algorithm under the set of Lmin =
40kbits are less than those under the set of Lmin = 10kbits.

This is because the improvement of Lmin increases the value

of Pmin, resulting in a narrow searching range of Pt.

C. Performance analysis for the proposed system computation

EE maximization schemes

Fig. 6 shows the system computation EE under different

schemes versus Lmin. Here we consider two schemes, which

are the proposed two-layer iterative algorithm in Algorithm

3 and the proposed reduced-complexity iterative algorithm

shown in Algorithm 4, to maximize the system computation

EE. Besides, for better comparisons, we also include the per-

formance under the proposed computation bits maximization

scheme. As shown in this figure, it can be observed that

the system computation EE under all the schemes decreases

when Lmin increases. The reasons are as follows. With the

increase of Lmin, the energy consumption at each IoT node

for task offloading and computing may increase. Besides, the

total computation bits offloaded by all the IoT nodes may

also increase, leading to an improvement for the energy con-

sumption of the MEC server. That is, the total system energy
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Fig. 6. System computation EE versus the minimum required computation
bits at each IoT node.

consumption increases with Lmin. Since the energy consump-

tion grows faster than the growth of the computation bits, the

system computation EE decreases with the increase of Lmin.

By comparisons, we also find that the system computation EE

under the proposed reduced-complexity iterative algorithm is

close to that under the proposed two-layer iterative algorithm

and always outperforms other schemes, namely, the complete

offloading scheme, the fully local computing scheme, pure

BackCom assisted MEC networks, and wireless powered MEC

networks, verifying the suboptimal performance of Algorithm

4 and the superiority of the combination of BackCom and

the wireless powered MEC networks. Moreover, it can be

observed that the proposed computation bits maximization

scheme achieves the worst performance among these schemes

in terms of system computation EE, showing that the proposed

computation bits maximization scheme has compromise on

energy-efficiency performance.

Fig. 7 shows the effect of the system computation EE on

Pmax under different schemes. It can be observed that the

system computation EE under all the schemes increases with

the increase of Pmax when Pmax is small and when Pmax is

large enough, the system computation EE converges. This is
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because when Pmax is small, the optimal transmit power of the

PB is determined by Pmax, while when Pmax is large enough,

the optimal transmit power of the PB is fixed and its value is

independent of Pmax. By comparisons, we can also see that the

proposed reduced-complexity iterative algorithm can achieve

the suboptimal performance in terms of system computation

EE and the proposed system computation EE maximization

scheme always outperforms the other schemes.

VI. CONCLUSIONS

In this paper, we studied the total computation bits and sys-

tem computation EE maximizations for a hybrid BackCom-AT

WPMEC network, subject to the MEC server’s computation

capacity constraint, the energy causality and QoS constraints

of each IoT node. The total computation bits maximization

problem was transformed into a convex one and solved by the

CVX, while the system computation EE maximization prob-

lem was optimally solved by our proposed two-layer iterative

algorithm. Subsequently, we devised a reduced-complexity it-

erative algorithm to obtain a suboptimal solution to the system

computation EE maximization problem. Simulations results

validated the superiority of the proposed total-computation-

bits maximization scheme and system-computation-EE max-

imization algorithms over several baseline schemes. Besides,

we obtained the following two insights. First, when the MEC

server’s computation capacity is finite, the complete offloading

scheme is not the optimal choice for maximizing the total

computation bits or system computation EE. Second, the total

computation bits are always maximized when the MEC server

adopts the maximum allowed computing frequency, which,

however, does not maximize the system computation EE.

APPENDIX A

PROOF OF PROPOSITION 1

Here we prove Proposition 1 by means of contradiction.

A. Proofs for P ∗
t = Pmax and f∗

m = fmax

Assume that
{
P ∗
t , t

∗
e ,
{
tb∗k
}K

k=1
, {ta∗k }

K

k=1 , {ρ
∗
k}

K

k=1 , t
∗
c , f

∗
m,

{p∗k}
K

k=1 , {f
∗
k}

K

k=1 , {τ
∗
k}

K

k=1 , λ
∗
}

is the optimal

solution to P1, where P ∗
t < Pmax and λ∗ =

min
{∑K

k=1

(

tb∗k Blog2

(

1+
ξρ∗

kP
∗
t gkhk

Bσ2

)

+ta∗k Blog2

(

1+
p∗
khk

Bσ2

))

,

t∗cf
∗
m

Ccpu

}
. Accordingly, the maximum number of the

computation bits of the considered system R∗
total is

given by λ∗ +
∑K

k=1
τ∗
k f

∗
k

Ccpu,k
. Then we can construct

another solution satisfying P+
t = Pmax > P ∗

t , t
+
e =

t∗e , t
+
c = t∗c , f

+
m = f∗

m, t
b+
k = tb∗k , ta+k = ta∗k , ρ+k =

ρ∗k, p
+
k = p∗k, f

+
k = f∗

k , τ
+
k = τ∗k and λ+ =

min
{∑K

k=1

(

tb+k Blog2

(

1+
ξρ+

k
P+

t gkhk

Bσ2

)

+ta+k Blog2

(

1+
p+

k
hk

Bσ2

))

,

t+c f+
m

Ccpu

}
. It is quite evident that the constructed solution is

a feasible solution which satisfies all the constraints

of P1. Let R+
total be the achievable computation

bits under the constructed solution. Then we have

R+
total = λ+ +

∑K
k=1

τ+

k
f+

k

Ccpu,k
≥ R∗

total since λ+ ≥ λ∗,

which contradicts the above assumption. Thus, P ∗
t = Pmax

holds when the maximum computation bits of the considered

system are achieved. The same method can also be applied

to prove that f∗
m = fmax is satisfied for maximizing the total

computation bits by making only a few changes and the

detailed process is omitted here for brevity.

B. Proof for τ∗k = T

When Pt, te, t
b, ta,ρ,p, tc, fm, λ and {fi, τi}i={1,2,...,K}\k

are fixed, we jointly optimize fk and τk to maximize the

total achievable computation bits of the system. Assume that

the optimal computation frequency f∗
k and time τ∗k < T

satisfy all the constraints of of P1 with other parameters

fixed. Then the maximum computation bits of the considered

system R∗
total is given by λ +

∑K
i=1,i 6=k

τifi
Ccpu,k

+
τ∗
k f

∗
k

Ccpu,k
.

Another feasible solution can be constructed as {f+
k , τ+k } with

τ+k = T and τ+k f+
k (f+

k )2 = τ∗k f
∗
k (f

∗
k )

2. Accordingly, the

achievable computation bits under the constructed solution

are given by R+
total = λ +

∑K
i=1,i 6=k

τifi
Ccpu,k

+
τ+

k
f+

k

Ccpu,k
. Based

on τ+k f+
k (f+

k )2 = τ∗k f
∗
k (f

∗
k )

2 and τ+k = T > τ∗, we have

f+
k < f∗

k and τ+k f+
k > τ∗k f

∗
k , leading to R+

total > R∗
total,

which contradicts the above assumption that τ∗k < T . Thus,

τ∗k = T holds when the maximum computation bits of the

considered system are achieved.

Based on the above analysis, Proposition 1 is obtained.

APPENDIX B

PROOF OF PROPOSITION 2

After carefully analyzing P3, it is not hard to conclude that

the objective function and all the constraints except C1′′ and

C9′′ are linear. Thus, P3 is convex if and only if constraints

C1′′ and C9′′ are convex. For constraint C1′′, we only need

to prove that for given k, tbkBlog2

(

1 + ξxkPmaxgkhk

tb
k
Bσ2

)

+

takBlog2

(

1 + ykhk

ta
k
Bσ2

)

≥ βkLmin,k is convex. Using the fact

that the perspective function can preserve convexity, we know

that the convexity of the above constraint is the same as that of

Blog2

(

1 + ξxkPmaxgkhk

Bσ2

)

+ Blog2

(

1 + ykhk

Bσ2

)

≥ βkLmin,k,

which is convex. Similarly, we can prove that C9′′ is also

convex. The proof is complete.
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APPENDIX C

PROOF OF PROPOSITION 4

Let α = (α0, α1, · · · , α6), θ = (θ0, θ1, θ2, · · · , θK), ̟ =
(̟0, ̟1, ̟2, · · · , ̟K), ω = (ω0, ω1, ω2, · · · , ωK), and µ =
(µ0, µ1, µ2, · · · , µK) be the non-negative Lagrange multipliers

with respect to all the constraints for P8. Then the Lagrangian

function of P8 is given by (C.1), as shown at the top of the

next page.

By taking the partial derivative of L with respect to ϕ and

φ, we have

∂L

∂ϕ
=

µ0

√

φ3

2
√

ϕ3
− qεm − ω0, (C.2)

∂L

∂φ
=

α0

Ccpu
+ ω0f

2
max −

3µ0

2

√

φ

ϕ
. (C.3)

By letting ∂L
∂ϕ

= ∂L
∂φ

= 0, we can obtain

f+
m=

[
3µ0Ccpu

2 (α0 + ω0f2
maxCcpu)

]+

=

[

3

√
µ0

2 (qεm + ω0)

]+

, (C.4)

where [x]
+
= max {x, 0}.

Based on (C.4), it can be observed that when there

are tasks to be computed at the MEC server, namely

f+
m > 0, µ0 > 0 must be satisfied. Then according

to the Karush-Kuhn-Tucker (KKT) conditions, the equation

µ0

(

T − t+e −
∑K

k=1

(
tb+k + ta+k

)
−
√

(φ+)3

ϕ+

)

= 0 should

always hold. Substituting µ0 > 0 into the above equation,

we have T − t+e −
∑K

k=1

(
tb+k + ta+k

)
−
√

(φ+)3

ϕ+ = T − t+e −
∑K

k=1

(
tb+k + ta+k

)
− t+c = 0. That is, if f+

m > 0, the MEC

server always uses the maximum allowed time to compute

tasks. Note that in the case of f+
m = 0, the MEC server

can not provide computation service for the IoT nodes. Then

the value of t+c does not influence the system computation

EE of the investigated network and we can also let t+c =
T − t+e −

∑K
k=1

(
tb+k + ta+k

)
for convenience.

APPENDIX D

PROOF OF PROPOSITION 5

Let f (Pt) denote the objective function of P12, given by

f (Pt) =
∑K

k=1
tbkBlog2(1+CkPt)+

∑K
k=1

Ra
k+D0

PtA0+B0
. Taking the first-

order derivative of f (Pt) with respect to Pt, we have

∂f (Pt)

∂Pt
=

K∑

k=1

tbkBfk (Pt)−A0

(
K∑

k=1

Ra
k +D0

)

(PtA0 +B0)
2 , (D.1)

where fk (Pt) =
Ck(PtA0+B0)
(1+CkPt) ln 2 −A0log2 (1 + CkPt). In order

to tell the monotonicity of
∂f(Pt)
∂Pt

, we first calculate the first-

order derivative of fk (Pt) as

∂fk (Pt)

∂Pt
=

−C2
k (B0 +A0Pt)

(1 + CkPt)
2
ln 2

< 0. (D.2)

Then the function
∑K

k=1 t
b
kBfk (Pt) decreases with the in-

crease of Pt. That is, there is only one solution mak-

ing
∂f(Pt)
∂Pt

= 0 hold. Let P0 be the solution to

∑K
k=1 t

b
kBfk (Pt)−A0

(
∑K

k=1 R
a
k +D0

)

= 0 and the val-

ue of P0 can be obtained by means of the bisection

method since the function
∑K

k=1 t
b
kBfk (Pt) is a mono-

tonic decrease function. Then we find that when 0 <

Pt < P0,
∑K

k=1 t
b
kBfk (Pt)−A0

(
∑K

k=1 R
a
k +D0

)

> 0

and f (Pt) increases with Pt. Likewise, when Pt > P0,
∑K

k=1 t
b
kBfk (Pt)−A0

(
∑K

k=1 R
a
k +D0

)

< 0 and f (Pt)

shows a downward trend.

Combining the range of Pt with max (0, PL) ≤ Pt ≤
min (PL2, Pmax), the optimal solution to P12, denoted by P ⋆

t ,

is determined by max (0, PL), P0, or min (PL2, Pmax). Specif-

ically, if
∑K

k=1 t
b
kBfk (max (0, PL)) ≤ A0

(
∑K

k=1 R
a
k +D0

)

is satisfied, then f (Pt) monotonically decreases with

Pt ∈ [max (0, PL) ,min (PL2, Pmax)] and P ⋆
t is given

by max (0, PL). If
∑K

k=1 t
b
kBfk (min (PL2, Pmax)) ≥

A0

(
∑K

k=1 R
a
k +D0

)

holds, f (Pt) monotonically increases

at the condition of Pt ∈ [max (0, PL) ,min (PL2, Pmax)]
and P ⋆

t is determined by min (PL2, Pmax). If
∑K

k=1 t
b
kBfk (min (PL2, Pmax)) < A0

(
∑K

k=1 R
a
k +D0

)

<
∑K

k=1 t
b
kBfk (max (0, PL)) is obtained, then we have

max (0, PL) ≤ P0 ≤ min (PL2, Pmax) and P ⋆
t = P0.

Therefore, the optimal solution to P12 is summarized as

Proposition 5.

APPENDIX E

PROOF OF LEMMA 2

Here we prove Lemma 2 by means of contradiction.

In particular, when P6 is optimally solved,
∑K

k=1

(

tb+k Blog2

(

1 +
ξρ+

k
Ptgkhk

Bσ2

)

+ ta+k Blog2

(

1 +
p+

k
hk

Bσ2

))

6=
t+c f+

m

Ccpu
is assumed to be satisfied. That means that either

K∑

k=1

(

tb+k Blog2

(

1+
ξρ+

k
Ptgkhk

Bσ2

)

+ta+k Blog2

(

1 +
p+

k
hk

Bσ2

))

>
t+c f+

m

Ccpu

or
K∑

k=1

(

tb+k Blog2

(

1+
ξρ+

k
PtgkhkBσ2

)

+ta+k Blog2

(

1+
p+

k
hk

Bσ2

))

<

t+c f+
m

Ccpu
holds. If

∑K
k=1

(

tb+k Blog2

(

1 +
ξρ+

k
Ptgkhk

Bσ2

)

+

ta+k Blog2

(

1 +
p+

k
hk

Bσ2

))

<
t+c f+

m

Ccpu
holds, then we can

construct another solution which satisfies pok = p+k , fo
k = f+

k ,

ρok = ρ+k , tbok = tb+k , taok = ta+k , toe = t+e , toc = t+c and
∑K

k=1

(

tbok Blog2

(

1 +
ξρo

kPtgkhk

Bσ2

)

+ taok Blog2

(

1 +
po
khk

Bσ2

))

=
tocf

o
m

Ccpu
<

t+c f+
m

Ccpu
. It can be observed that the constructed

solution satisfies all the constraints of P6 and the

constructed solution can achieve the same computation

bits as the optimal one while consuming less energy due

to fo
m < f+

m . This means that the system computation

EE under the constructed solution is higher than that

under the optimal solution, which contradicts the fact that

{t+e ,
{
tb+k
}K

k=1
,
{
ta+k
}K

k=1
,
{
ρ+k
}K

k=1
,
{
p+k
}K

k=1
,
{
f+
k

}K

k=1
, t+c ,

f+
m} is the optimal solution to P6. The same way

can also be applied to the case with the case
∑K

k=1

(

tb+k Blog2

(

1+
ξρ+

k
Ptgkhk

Bσ2

)

+ ta+k Blog2

(

1 +
p+

k
hk

Bσ2

))

>
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L = λ+

K∑

k=1

fkT

Ccpu,k
− q

((

te +

K∑

k=1

tbk

)(

Pt + Psc − ηPt

K∑

k=1

gk

)

+ ηPt

K∑

k=1

xkgk + εmϕ+

K∑

k=1

(
Pct

b
k + yk + pct

a
k + εkf

3
kT
)

)

−

K∑

k=1

αk

(

tbkBlog2

(

1 +
ξxkPtgkhk

tbkBσ2

)

+ takBlog2

(

1 +
ykhk

takBσ2

)

− βkLmin,k

)

+ α0

(

φ

Ccpu
−

K∑

k=1

βkLmin,k

)

+ ω0

(
φf2

max − ϕ
)

+

K∑

k=1

θk

(
fkT

Ccpu,k
− (1− βk)Lmin,k

)

+

K∑

k=1

̟k

(

ηPtgk

(

te +

K∑

i=1

tbi

)

− ηxkPtgk − Pct
b
k − yk − pct

a
k − εkf

3
kT

)

+
K∑

k=1

ωk (f
max
k − fk) + µ0

(

T − te −
K∑

k=1

(
tbk + tak

)
−

√

φ3

ϕ

)

+

K∑

k=1

µk

(
tbk − xk

)
+̟0

(
φ

Ccpu
− λ

)

+ θ0

(
K∑

k=1

(

tbkBlog2

(

1 +
ξxkPtgkhk

tbkBσ2

)

+ takBlog2

(

1 +
ykhk

takBσ2

))

− λ

)

. (C.1)

t+c f+
m

Ccpu
and the detailed process is omitted here for brevity. On

this basis, Lemma 2 is obtained.
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