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Resource Pricing and Allocation in MEC Enabled
Blockchain Systems: An A3C Deep Reinforcement

Learning Approach
Jianbo Du, Wenjie Cheng, Guangyue Lu*, Haotong Cao, Xiaoli Chu, Zhicai Zhang, and Junxuan Wang*

Abstract—When using blockchain in mobile systems, computa-
tion intensive mining tasks pose great challenges to the processing
capabilities of mobile miner equipment. Mobile edge computing
(MEC) is an effective solution to alleviating the problem via task
offloading. In the mining process, miners compete for rewards
through puzzle solving, where only the miner that first completes
the process will be rewarded. Thus, miners may wish to pay
higher price and use more communication resources in task
offloading and more computation resources in task processing
for latency reduction. However, there are risks for the miners
not profiting from consuming more resources or paying a higher
price, so miners are rational in blockchain systems. In order
to maximize the rational total profit of all miners, we use an
asynchronous advantage actor-critic (A3C) deep reinforcement
learning algorithm to obtain the resource pricing and allocation,
considering the stochastic properties of wireless channels, and the
prospect theory is employed to strike a good balance between
risks and rewards. Numerical results show that our proposed
A3C based joint optimization algorithm converges fast and
outperforms the baseline algorithms in terms of the total reward.

Index Terms—Asynchronous advantage actor-critic (A3C),
blockchain, deep reinforcement learning, mobile edge computing,
pricing, resource allocation.

I. INTRODUCTION

With the fast development of digital transactions, electronic

trading has turned its market from human intermediation

to computer processing, where cryptocurrencies are traded

among users over a peer-to-peer network. In order to support

this financial service migration, a credible and flexible trading

platform is urgently required for efficient transaction manage-

ment [1]. Blockchain, a public distributed ledger, has been
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introduced recent years in order to meet this demand. Differ-

ent from traditional centralized digital ledger, in blockchain

systems, various kinds of transaction data blocks are recorded

and confirmed distributedly, without dependent on any trustful

third parties such as banks, financial regulatory authorities,

etc [2], [3]. As a result, blockchain could reduce the costs in

transaction processing greatly and improve the efficiency in

record keeping effectively.

The operation, reliability and security issues of blockchain

networks relay on a distributed consensus mechanism. In

blockchain system, a group of participants, also called miners,

manage to solve a computation intensive problem, e.g., the

proof-of-work (PoW) puzzle, and the process is referred to as

mining [4], [5]. In this process, each miner first selects and

packages certain number of unconfirmed transaction records

into a new block, and then it solves the PoW puzzle based

on the value of the new block. Immediately the puzzle is

settled, the miner will broadcast the newly generated block

that integrates the transactions and relevant information to

the network. Finally, the rest miners will verify the block for

consensus, and the block will be appended to the blockchain

if it passes the validation of most other miners. The miner that

first completes the process will receive corresponding rewards

as the incentive of mining.

As a public ledger, blockchain has heralded various sorts of

commercial services such as bitcoin, filecoin, etc. However, its

apply in mobile environments is still limited since the mining

process, i.e., settling the PoW puzzle, requires powerful com-

putation capabilities and consumes large quality of energy be-

yond the affordability of mobile miners, making it rather chal-

lenging to deploy blockchain in mobile systems. Recent years,

mobile edge computing (MEC) [6], [7], which appears as a

promising supplement to cloud computing [8], could provide

computation capabilities in proximity to mobile subscribers,

is becoming a powerful enabler for successful deployment of

mobile blockchain systems [9]. In MEC enabled blockchain

systems, computation intensive mining tasks can be offloaded

from mobile miners to MEC servers, and be executed with

stronger processing capabilities, therefore, mobile blockchain

can be enabled, and more energy consumption can be saved

for mobile miner devices [10], [11].

In the mining competition, only the miner that first com-

pletes the mining process could add its transaction records

into blockchain and obtain the mining rewards. In order to

win the competition, a miner could require MEC server for

more wireless resource for task offloading [12], and more
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computation resources for task processing. Also, it could pay

higher price to MEC server so as to get higher chances in

winning the competition of obtaining more resources. Thus,

the joint optimization of pricing and allocation about the

limited computation and communication resource arises as an

important issue. Meanwhile, different miners have different

preferences towards the trade-off between risks and rewards,

which is also an nonnegligible factor. Moreover, due to the

dynamics of mobile networks, resource pricing and allocation

should be updated constantly to adopt to the rapidly changed

environment. The above factors make the problem intractable

when employing traditional optimization methods to solve.

Fortunately, artificial intelligence [13], [14], federal learning

[15] [16], especially deep reinforcement learning (DRL) algo-

rithms [17], [18], have exhibited their efficiency in solving in-

tractable policy-making problems with high dimensional state

and action spaces, especially demonstrated their effectiveness

for the issues with continuous state and action spaces.

In this paper, we investigate the joint optimization of pricing

and allocation about both communication and computation

resources in an MEC enabled blockchain system, with user

preferences between risks and rewards considered. Based on

DRL, we proposed effective algorithm to solve it. The main

contributions of this paper are summarized as follows.

• We devise a system model for an MEC enabled mobile

blockchain system where the mining task is offloaded to

the MEC server for speedly cooperative local-MEC pro-

cessing. We propose to maximize the long-term averaged

rational total reward of all the miners by jointly optimiz-

ing the allocation of computational resource blocks and

wireless subchannels, and the pricing strategy of each

miner for both the computation and communication re-

sources, which is described as a Markov decision process

(MDP). Moreover, the prospect theory is employed to

strike a balance between risks and the uncertain rewards

according to different preferences of different miners.

• Considering the mixed integer properties and the high dy-

namics of wireless channels, we solve the joint resource

pricing and allocation problem by employing the asyn-

chronous advantage actor-critic (A3C) algorithm, where

each agent is composed of two deep neural networks:

one is used as the function approximator to estimate the

value functions in the critic part, and the other is used as

a parameterized stochastic policy in the actor part. The

multiple agents are trained asynchronously using policy

gradient algorithm.

The remainder of this paper is organized as follows. Section

II presents the related works. Section III elaborates our system

model and problem formulation. Section IV reformulates the

problem as a model-free DRL problem, and solves it using

our proposed A3C based joint resource pricing and allocation

algorithm. Our simulation results are presented in Section V,

and the paper is summarized in Section VI.

II. RELATED WORKS

Recently, the study of MEC empowered blockchain has

become a hot research topic. In the related works of this topic,

offloading the computation intensive mining tasks to cloud or

MEC servers to relieve the pressure of mobile miners is the

main idea [19], and different approaches have been adopted

to solve the problem of offloading decision optimization and

resource allocation for different goals, such as throughput

maximization, profit maximization, etc [20].

Convex optimization has been employed in may works

focusing on the short-term performance improvement. In [21],

the authors proposed to achieve the optimal trade-off between

the performance of the MEC system and that of the blockchain

system, through jointly optimizing user association, resource

allocation, and block producer scheduling, and developing

effective iterative algorithms for problem solving. In [22], the

authors proposed to offload the mining tasks to and cache the

cryptographic hashes of blocks on MEC server, and propose

an alternating direction method of multipliers based algorithm

for the MEC server’s profit maximization.

Game theory is also a common method focusing on short-

term performance optimization in blockchain based MEC

systems. In [23], the authors intended to obtain the optimal

auction based resource allocation, and thus to optimize the

expected revenue of the edge computing service provider in

mobile blockchain networks. In [24], the authors investigated

the pricing based computation resource allocation to support

PoW mining tasks offloading in a mixed cloud/fog system,

where the problem is formulated as a two stage Stackelberg

game and the profit of cloud/fog srever and the utility of

miners are maximized. In [25], the authors formulated the

mining task offloading issue as a Stackelberg game based

on prospect theory, in order to maximize the utilities of both

miners and MEC service providers.

Some other works put their focus on the long-term per-

formance optimization by employing DRL in MEC enabled

blockchain systems. In [26], the authors studied the wireless

spectrum allocation, block size and the number of consecutive

blocks optimization based on deep Q network (DQN) to

improve the throughput of the overlaid blockchain system

along with the quality of services of the users in the underlaid

MEC system. In [27], the authors combined genetic algorithms

into DRL to speed up the exploration process, employing

which the offloading decision of both mining tasks and data

processing tasks are optimized. In [28], miners offload their

mining tasks to cloud servers for performance enhancement,

where access control, computing and networking resources

allocation are jointly optimized in the process of mining task

offloading using a dueling DQN based approach.

The above works have presented some insightful ideas for

task offloading decision making and/or resource allocation in

MEC enabled blockchain systems [21]–[28], and it can also

be known from the above works that pricing strategies also

plays important roles in blockchain systems where economical

profit is usually the major concern. Considering the long-term

performance improvement and the high dynamics, DRL plays

their effect, where A3C is an excellent rising method that

could adopt to both continuous and high-dimensional discrete

action and/or state space, compared with other traditional DRL

algorithms. Motivated by the above considerations, in this

paper, we intend to study the communication and computation
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Fig. 1: System model of MEC enabled mobile blockchain system.

resource allocation issues and the pricing strategies of the two

kinds of resources in an MEC based blockchain system, in

order to maximize the reward of miners, and we propose an

efficient A3C based DRL algorithm for problem solving and

long-term performance optimization.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model, includ-

ing the delay of of mining, the probability of each miner in

wining the mining competition, and the utility gains of mining.

Then, we present our problem formulation.

Fig. 1 illustrates our concerned MEC based mobile

blockchain system. There is one blockchain mining task,

which is described in a two-terms tuple as Λ = {C,D}.
Here, C is the required computation amount (in CPU cycles)

to complete the mining task, and D is the size of the input

data (in bits) of this task. There are N mobile devices acting

as miners to compete for completing the task, and also acting

as block producers to record the generated transactions into a

blockchain. The processing capacity of each miner device n
is denoted by f loc

n , n ∈ N = {1, 2, ..., N}, where N is the

set of miner devices. There is one Edge Computing Service

Provider (ECSP) that owns an MEC server, and provides

wireless communication and computation resources to miners

for task offloading and processing, and charge corresponding

fees from the miners. The wireless communication resource

and the computation resource of the MEC server is limited,

so the miners will have to compete for resource utilization.

If a miner obtains some computation resource from the MEC

server, the obtained computation resource will be combined

with the feasible local computation resources to accelerate the

task execution in the mining process, which is called local-

edge collaborative task processing mode in this paper.

A. Delay in Different Steps of Mining

Generally, a successful mining process usually comprises

three steps, i.e., the processing step, the propagation step, and

the validation step [24], [25]. In the processing step, a block

is generated by a miner through solving the PoW puzzle of

the chosen task. Then the miner propagates its newly mined

block to other miners for validation. When all the rest miners

(or the majority of the rest miners) have validated the block

as a consensus, the block will be appended to the blockchain,

and the first miner whose task reaches consensus will obtain

the corresponding reward. In this paper, we assume that all

validators are honest, and a block should be validated by all

the other miners to reach consensus. Correspondingly, the total

mining delay consists of three parts, i.e., the task processing

delay, the propagation delay, and the verification delay. How-

ever, there’s something different in local-edge collaborative

task processing mode.

In our MEC enabled collaborative task processing

blockchain system, the computation resources that each miner

utilizes for task processing come form two parts, i.e., the local

feasible computation resource and the computation resource

allocated by the MEC server. To enable collaborative task

processing, a copy of the input data should be transmitted to

MEC server, this is called task offloading process; then task is

processed with the computation resources of local and MEC

server collaboratively, this is called task processing process.

Consequently, besides the three steps mentioned above, there

first should be a task offloading process, and correspondingly,

there should be an additional task offloading delay, too. Next,

we will discuss the four delays in the following.

1) Delay in Task Offloading Process: Similar to many

previous works, in this paper, time is slotted and we denote the

index of a time slot as t, and correspondingly, we denote the

set and number of time slots as T and T , respectively. Similar-

ly to many previous works [29], [30], we use the quasi-static

assumption that the environment remains unchanged during

each time slot while changes between different time slots. We

assume that the total wireless bandwidth is divided into B
subchannels, and each subchannel is with a bandwidth B0.

In time slot t, denote the average signal-to-noise ratio (SNR)

between miner n and the MEC server as γn(t), and assume

miner n is allocated with bn(t) orthogonal subchannels, then

the wireless data rate of miner n in task offloading can be

given by

rn(t) = bn(t)B0 log2 (1 + γn(t)) , (1)

and the task offloading delay T t
n is given by

T t
n(t) =

D

rn(t)
. (2)

2) Delay in Task Processing Process: Denote the process-

ing capability of MEC server as F (in CPU cycles per second),

and assume that F can be divided into F/F0 computational

resource blocks, where each is with a processing capability

F0. In our local-edge collaborative task processing mode, we

assume that each miner takes half its processing capabilities,

i.e., f loc
n /2, as the feasible local computation resource for

mining task processing, and let fn(t) denote the number of

computational resource blocks allocated to miner n by MEC

server for task processing, the processing delay is given by

T c
n(t) =

C

F0fn(t) + f loc
n /2

. (3)
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3) Delay in Block Propagation Process: In the block prop-

agation process, we denote the wireless transmit rate from

miner n to miner m as rpn,m(t), where n,m ∈ N ,m ̸= n.

Then, the wireless propagation rate of miner n is given by

rpn(t) = min
m∈N ,m ̸=n

{rpn,m(t)} [21]. Denote the size of a block

as χ (in bits), the delay in block propagation can be given by

T p
n(t) =

χ

rpn(t)
. (4)

4) Delay in Block Verification Process: In block verification

process, we only focus on the computational delay of the

cryptographic operations as in [21]. Assume the required

number of CPU cycles in block verification is φ, then the

delay of block validation is given by

T v
n (t) = max

m∈N ,m̸=n

φ

fv
n,m(t)

, (5)

where fv
n,m(t) is the computation resource afforded by valida-

tor m for block verification, and fv
n,m(t) = f loc

n /2N in this

paper. Denote fv
n(t) = min

m∈N ,m ̸=n
{fv

n,m(t)} [21], we have

T v
n (t) =

φ

fv
n(t)

. (6)

Therefore, the total delay of miner n in successfully com-

plete a transaction is given by

T total
n (t) = T t

n(t) + T c
n(t) + T p

n(t) + T v
n (t)

=
D

rn(t)
+

C

F0fn(t) + f loc
n /2

+
χ

rpn(t)
+

φ

fv
n(t)

. (7)

The probability that miner n wins the mining competition

is given by [25]

pn(t) =
α−T total

n (t)

∑N
i=1 α

−T total
n (t)

, (8)

where α is a coefficient, and α > 1.

B. Utility Gain

Let e denote the reward that the winner obtains in the mining

competition. Since all the miners process the same mining

task as mentioned above, when SNR γn(t) is larger, i.e., the

miner n is in good channel condition, it has higher incentive

to use more wireless subchannels for task offloading, since

its transmit delay can be reduced greatly. Meanwhile, it also

has the incentive to pay higher price in order for more chance

to be allocated with more subchannels. Similarly, when local

processing capability f loc
n is not strong enough, the miner n

has stronger motivation to use more edge computing resource

blocks for task processing delay reduction. In order to facilitate

this desire, it is much willing to pay higher price for higher

probabilities to win the mining task processing.

Denote the price miner n pays for using an unit wireless

resource, i.e., an unit wireless transmit rate, as ηn(t) (in

$/bps), and denote the price miner n pays for using an unit

computation resource as vn(t) (in $/(CPU cycles per second)).

In order to express the incentive of the price each miner pays

on the probability of wining the competition, we modify the

price-based total delay of miner n as

T total
n,price(t) = T t

n,price(t) + T c
n,price(t) + T p

n(t) + T v
n (t)

=
D

rn(t)ηn(t)
+

C

F0fn(t)vn(t) + f loc
n /2

+
χ

rpn(t)
+

φ

fv
n(t)

, (9)

noting that in the above equation, in order to keep logic

consistency, both ηn(t) and vn(t) only act as weight values of

rn(t) and fn(t), without considering their unit, and thus the

unit of T t
n,price(t) and T c

n,price(t) is still second. Similarly, the

price-based probability of miner n in wining the competition

is modified as [25]

pn,price(t) =
α−T total

n,price(t)

∑N
i=1 α

−T total
n,price

(t)
. (10)

Based on the above definitions, the expected utility gained

by miner n in the mining competition is given by

gn(t) = pn,price(t)e− F0fn(t)vn(t)− rn(t)ηn(t). (11)

As mentioned above, only the miner who first completes the

mining process will obtain a reward. Consequently, although

there are some chances for miners to obtain high reward

through mining, however, there are still high risks when

nothing can be obtained after the miners have spent some

money on using communication and computation resources

for task offloading and processing. Actually, different miners

have different preferences for the tradeoff between risks and

rewards. Therefore, when a miner assesses the effectiveness of

the price they should pay for communication and computation

resources, and how much resources they should request, each

miner’s economical preference needs to be taken into account,

i.e., each miner is rational in mining decision making. For this

purpose, we resort to prospect theory [25], i.e., a behavioral

economical theory which describes how people make their

decisions in the consideration of risks and the uncertain goals.

We adopt the prospect theory as in [25], where each miner

considers its prospect through the following function, which

transform the obtained gain of each miner to an utility value,

and the output utility value is determined based on a reference

point. We set the reference point as zero gain value, and the

utility of each miner is given by

Un(t) =

{

gn(t)
µn , gn(t) ≥ 0

−λn(−gn(t))ξn , gn(t) < 0
, (12)

where µn, ξn and λn are devices n’s prospect parameters, and

we have 0 < µn, ξn < 1 and λn > 1, respectively.

IV. PROBLEM FORMULATION

In this section, we present our problem formulation. As was

analyzed, in order to reduce the mining delay, and thus to win

the mining competition and obtain the incentive reward e, each

miner focuses on using more communication and computation

resources to reduce the task offloading and processing delay,

and pay higher price to increase the opportunities of being

allocated with more resources. However, this will lead to a

reduction in their obtained utility gains as in (11). In order

to optimize the long-term averaged rational system utility
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of all miners in the system, we formulate the joint opti-

mization problem of computation resource allocation, wireless

subchannel assignment, and the price each user would like

to pay for using each unit computation and communication

resources, respectively. Since our optimization involves both

continuous and integer variables, it is generally NP-hard and

thus intractable to solve [31], [32].

A. DRL

DRL is a learning scheme where an agent interacts with

the environment over a series of discrete episodes. At each

episode, the agent takes an action under the current state

according to a certain policy, then the environment will

transforms to a new state, and will return the agent with an

immediate reward, based on which the network is updated, in

order to maximize the long-term expected cumulative reward

that the agent could get.

Combing deep learning [33] and reinforcement learning,

DRL can enhance the performance of traditional reinforcement

learning algorithms when the environment contains high di-

mension input or large action sets, and it is especially effective

in solving intractable problems containing both continuous and

integer variables.

For this purpose, we resort to DRL and formulate our joint

optimization problem as an MDP [29], [34]. Our state space,

action space, policy, problem formulation and reward function

are defined as follows.

B. State Space

Let S = {s(t), t ∈ T } denote our system space, and s(t)
is the state at the tth time slot, which includes the following

parameters.

• Average SNR between each miner and the MEC server:

γ(t) = {γn(t)};
• The transmit rate of each miner in block propagation:

r
p(t) = {rpn,m(t)};

• Feasible channel number allocation set: Nb(t);
• Feasible computation resource block allocation set:

Nf (t).

Thus, the system state at time slot t is denoted as s(t),
which is given by

s(t) , {γ(t), rp(t),Nb(t),Nf (t)}, (13)

and is known at the beginning of each time slot t.

C. Action Space

Let A = {a(t), t ∈ T } denote the action space. At each

time slot t, the action a(t) ∈ A comprises the following items.

• The computation resource allocation: f(t) = {fn(t)},
where each term fn(t) denotes the number of compu-

tation resource blocks allocated to miner n;

• Wireless subchannel allocation: b(t) = {bn(t)}, where

bn(t) is the number of subchannels assigned to miner n;

• The price of computation resources: v(t) = {vn(t)},
where vn(t) represents the price that miner n would like

to pay for each unit computation resource, and its unit is

$/(CPU cycles per second);

• The price of communication resource: η(t) = {ηn(t)},
where ηn(t) is the price miner n would like to pay for

each unit communication resource, with its unit as $/bps.

Thus, the action at time slot t is given by

a(t) , [f(t),b(t),v(t),η(t)]. (14)

D. Policy

The policy is a mapping operator from state space to action

space, which can be denoted as π(a(t)|s(t)) : S → A.

E. Problem Formulation

In this paper, we intend to maximize the long-term averaged

rational system utility of all miners by performing decision

searching within the action space, under the information of

state space. Our problem is formulated as

(P1) : max
a(t)

1

T

∑

t∈T

∑

n∈N

Un(t)

s.t. (C1) :
∑

n∈N

fn(t)F0 ≤ F, t ∈ T ,

(C2) :
∑

n∈N

bn(t)B0 ≤ B, k ∈ K, t ∈ T ,

(C3) : fn(t) ∈ F ,
(C4) : bn(t) ∈ B,
(C5) : vn(t) ∈ [vmin, vmax], t ∈ T ,
(C6) : ηn(t) ∈ [ηmin, ηmax], t ∈ T , (15)

In problem (P1), (C1) constrains that the allocated compu-

tation resource could not exceed the processing capacity of the

MEC server; (C2) indicates that the allocated radio resource

could not be greater than the total system bandwidth; (C3) and

(C4) indicates the number of computation resource blocks and

subchannels each user can rent can only be allocated from set

F and B, respectively; and (C5) and (C6) give the constraint

on the price each miner pays for using each unit computation

and communication resource, where vmin and ηmin are the

minimum price of MEC server could accept, and vmax and

ηmax are the maximum price miners could afford.

F. Reward Function

In order to utilize DRL algorithms to solve our formulated

problem (P1), we need to transform it into standard module of

DRL framework. In our problem formulation, the optimization

variables and the known quantities have been corresponded to

the action space and the state space, respectively. In (P1), we

intend to maximize the long-term averaged rational system

utility of all miners, which motivates us to consider the

immediate total utility
∑

n∈N Un(t), i.e., the total rational

utility of all the miners in time slot t, as the immediate reward

r(t). Therefore, the formulated problem is transformed into a

standard DRL fremework. When an action a(t) is taken, the
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DRL agent will receive an immediate reward as r(t), which

is defined as follows as was analyzed

r(t) =
∑

n∈N

Un(t). (16)

V. A3C BASED JOINT OPTIMIZATION ALGORITHM

In this section, we first present the newly emerging DRL

algorithm A3C, and then we introduce our A3C based joint

resource allocation and pricing algorithm to solve our formu-

lated problem (P1).

Remark 1: In the following, time indexes are represent-

ed using subscripts rather than using parentheses as above

sections for notational simplicity.

A. A3C Based Joint Resource Pricing and Allocation Frame-

work

Before we introduce the principle of A3C algorithm, we

will first briefly introduce its basis algorithm, named Actor-

Critic (AC) [35]. Similar to other DRL algorithms, there’s an

agent which interacts with the environment by states, actions,

and rewords, in order to maximize the discount return. In AC

framework, the agent comprises an actor and a critic, where in

each episode, the actor performs an action under the current

state using the current the policy, and the environment will

transforms to a new action and will return the critic with a

reward. The critic is updated using TD algorithm, in order for

better judge and grade capabilities, and the actor is updated

using policy gradient method in order for higher return.

A3C [36] is proposed on the basis of AC algorithm [37],

where the difference is that A3C employs multiple actors

to work concurrently, and trains the neural networks of the

multiple actors asynchronously, thus to be able to accelerate

the convergence significantly. In A3C algorithm, there’s a

central server which stores the network parameters. Each agent

obtains its gradients and sends them to the central server when

the maximum action index or the terminal state is reached. The

central controller updates the global parameters and distributes

them to the agents to guarantee they can share the same policy.

In this way, the parameters are less correlated than single agent

does, making there’s no need to keep a replay memory as

traditional DQN [38] does. Moreover, the training duration

can also be reduced greatly.

Remark 2: A3C outperforms other many existing DRL

algorithms due to its policy-based and step-based updating,

and asynchronous training. Due to policy based character,

A3C could search in continuous spaces, and can deal with

problems with huge state or action spaces. Due to step-based

updating, its working efficiency is greatly enhanced. Also,

multiple agents work in parallel could accelerate the training

efficiently, and explore the solution space effectively.

Next, we will give the working process of A3C.

At each time slot t, the environment is in state st, and the

estimated state value is V (st; θv). The agent executes an action

at according to policy π(at|st; θ) under the current state st,
and the environment will transfer to a following state st+1

under certain probabilities, and the agent will receive a reward

rt. The state value function of A3C is given by

V (st; θv) = E [Gt|s = st, π]

= E

[

∞
∑

k=0

γkr(t+ k)
∣

∣

∣
s = st, π

]

, (17)

where Gt =
∑∞

k=0 γ
krt+k is the discounted return, i.e.,

discounted accumulated reward, of state st, and γ ∈ [0, 1] is

the discount factor, indicating how the future rewards influence

the current state value.

A3C utilizes k-step reward for parameter updating, which

is given by

Rt =
k−1
∑

i=0

γirt+i + γkV (st+k; θv), (18)

where k is upper-bounded by tmax, and both the policy and

value function are updated after tmax actions are taken, or

when a final state is reached.

Similar to AC algorithm, A3C also defines the advantage

function At in order to reduce the variance of the estimation,

which is given by

A(st, at; θ, θv) = Rt − V (st; θv), (19)

where θ and θv are the parameters of actor and critic network,

respectively, Rt is the real reward as defined in (18), and

V (st; θv) is the estimated state value. Therefore, advantage

At can be used to enhance the agent’s learning capacity so as

not to overestimate or underestimate the action, and thus to

improve the decision-making abilities.

On the basis of advantage function At, the loss function of

the actor is given by

fπ(θ) = log π(at|st; θ)(Rt − V (st; θv)) + βH(π(st; θ)),

(20)

where H(π(st; θ)) is an entropy item used for encouraging

exploration in training procedure and thus to avoid possible

premature convergence, and β is a parameter used to control

the strength of the entropy regularization and thus to facilitate

the tradeoff between exploration and exploitation.

The loss function for the estimated critic network is defined

as

fv(θ) = (Rt − V (st; θv))
2, (21)

which is used to update the value function V (st; θv). The critic

update is performed on the basis of the following accumulated

gradient

dθv ← dθv +
∂(Rt − V (st; θv))

2

∂θ′v
. (22)

The actor is updated by

dθ ← dθ +∇θ′ log π(at|st; θ′)(Rt − V (st; θv))

+ δ∇θ′H(π(st; θ
′)). (23)

Training is conducted using standard non-centered RM-

SProp algorithm [36], [39], where by minimizing the two loss

functions, parameters of the actor and the critic are updated



7

Global Network

Input state

Policy Value

Worker 1

Local state 

of worker 1

Policy Value

Worker 2

Local state 

of worker 2

Policy Value

Local state 

of worker 3

Policy Value

Local state 

of worker 4

Policy Value

Worker 3 Worker 4

Action 1 Action 2 Action 3 Action 4

New state 1 New state 2 New state 3 New state 4

Shared Environment

Reward

Fig. 2: Framework of A3C algorithm.

based on their accumulated gradients as in (23) and (22). The

estimated gradient under RMSProp can be given by

g = αg + (1− α)△θ2, (24)

where α is the momentum, and △θ is the accumulated

gradients of the policy or value loss function.
Based on the obtained g, update is performed according to

θ ← θ − η
△θ√
g + ϵ

, (25)

where η is the learning rate, and ϵ is a tiny positive number

used to avoid errors when denominator equals to 0 [36], [39].
The global fremework of the A3C algorithm in this paper is

illustrated in Fig. 2, and our proposed A3C based joint radio

and computational resource pricing and allocation algorithm

is detailed in Algorithm 1 [2], [30], [36], [40].
Remark 3: In Algorithm 1, parameters θ′ and θ′v are the

parameters of each worker, and θ and θv are the parameters

of the global actor and critic network, respectively.

B. Implementation Details of Algorithm 1

We consider the MEC server as the central agent of A3C,

a total of six threads act as six workers which interact with

the MEC enabled blockchain environment concurrently. We

use two deep neural networks with weights θ and θv to

approximate the actor and the critic of each worker. In the

training process, each worker calculates its own successive

gradients during each episode, and the parameters θ and θv
are optimized using gradients defined in eqs. (23) and (22),

respectively. At the end of each episode, each worker updates

the global network and then collects the new state of the global

weights. Training is repeated at each episode until the final

episode, when the algorithm should have converged, and the

averaged reward is maximized.

Algorithm 1 A3C Based Joint Resource Pricing and Alloca-

tion Algorithm

Initialization:
1: Initialize the global actor network and global critic network with

parameters θ and θv .
2: Initialize global shared counter as T = 0 and thread-specific

counter as t = 1.
3: Initialize the thread-specific actor and thread-specific critic net-

work parameters θ′ and θ′v .
4: Initialize Tmax, tmax, and all the parameters as in Table I,

respectively.
Iteration:

5: while T < Tmax do
6: for each woker do
7: Initialize the gradients of global agent: dθ = 0, dθv = 0.
8: Synchronous parameters of each worker with global pa-

rameters θ′ = θ and θ′v = θv .
9: Obtain the system state st.

10: for t ≤ tmax do
11: Perform at under policy π(at|st; θ

′).
12: Obtain reward rt and new state st+1.
13: t = t+ 1.
14: end for
15:

R =

{

0, for terminal state,
V (st, θ

′

v), for non− terminal state.

16: for t = tmax, t ≥ 1 do
17: R = rt + γR.
18: Obtain accumulate gradient wrt θ′ based on (23);
19: Obtain accumulate gradient wrt θ′v based on (22);
20: end for
21: Update θ and θv according to (25).
22: T = T + 1.
23: end for
24: end while
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Fig. 3: Total obtained reward of all the miners under different learning
rate of the actor network.
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Fig. 4: Total obtained reward of all the miners under different learning
rate of the critic network.

TABLE I: Simulation Parameter Settings

Parameter Value

Number of miners, N 10

Miners’ local processing capability, f loc
n (1,4) G CPU cycles/s

Input data size of mining task, D (30,50) Mbit
Computation amount of mining task, C (1,10) G CPU cycles
Processing capability of MEC server, F 100 G CPU cycles/s

Processing capability of each 1 G CPU cycles/s
computation resource block, F0

Total bandwidth for task offloading, B 50 MHz
Bandwidth of each subchannel, B0 1 MHz

Block size, χ 8Kbit
Computation amount for block verify , ϕ 100 Kbit

Block propagation rate, r
p
n,m (0.1, 2) Mbps

Prospect theory parameters, (0.01, 0.99),
µ, ξ, and λ (0.01, 0.99), (1,10)

Minimum, maximum price of 0.001× 10−6, 2× 10−6

computation resource, vmin/vmax $/(CPU cycles/s)

Minimum, maximum price of wireless 0.1× 10−3, 1× 10−3

resource, ηmin/ηmax $/bps
Coefficient α 4

Reward of mining, e 4× 107

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide simulations to verify the per-

formance of our proposed joint A3C based joint optimization

algorithm.

There are N = 10 mobile devices with various prospect

preferences act as block miners, whose local processing ca-

pacities f loc
n are randomly taken from (1, 4) G CPU cycles/s.

In each time slot, the average wireless SNR between miners

and the MEC server take their values form the discrete set of

γ = {1, 3, 7, 15, 31} [41], where γ = 1 means the wireless

channel for task offloading is rather bad, while γ = 31 means

very good. The SNRs between miners and the MEC server

may change based on certain transition probabilities at the

beginning of each time slot. The total wireless bandwidth of

the MEC server is B = 30 MHz, which is partitioned into 30

subchannels and each is with a bandwidth B0 = 1 MHz, and

therefore, the miners’ wireless task offloading rate rn(t) will

take their values from the set of {1, 2, 3, 4, 5} Mbps when it

is allocated with one wireless subchannel [41].

We assume there are 50 subchannels, each user can rent an

integer number of subchannels from the set B = {1, 2, 3, 4, 5},
where each element in the set will be allocated to one miner,

and each miner can only select one element from the set.

The computation capability of the MEC server is F = 100
G CPU cycles/s, which is partitioned into 100 computation

resource blocks, and each is with computation resource of

F0 = 1 G CPU cycles/s. Similarly, each miner can only select

one element form the set F = {1G, 2G, ..., 10G} [41]. The

maximum episode is 1000 and the maximum steps in each

episode is 100. The default learning rate of the actor and the

critic are set as αa = 0.01 and αc = 0.01, respectively. The

default value of other parameters are summarized in Table I.

A. Convergence of Algorithm 1

We first illustrate the convergence of our proposed algorithm

under different learning rates. Fig. 3 shows the convergence

under different actor’s learning rate, with the critic’s learning

rate set as the default value lc = 10−2, and Fig. 4 shows

the convergence under different critic’s learning rate, while

the actor’s learning rate takes the default value la = 10−2.

As can be seen from the two figures, the system reward first

increase sharply, and converges at nearly the 300th episode

under different learning rate combinations, demonstrating our

proposed algorithm converges fast.

B. Performance Evaluation of Algorithm 1

Next, we evaluate the performance of our proposed algo-

rithm, which is termed as “Proposed A3C based algorithm” in

the following, by comparing it with the following algorithms:

(i) “Fixed pricing algorithm”: Where the price each miner

pays for both radio and computational resources are fixed as

5 × 10−4 $/bps and 5× 10−6 $/(CPU cycles/s), respectively.

(ii) “Uniform resource allocation algorithm”: In this method,

both radio and computation resources are allocated to each

miner uniformly, i.e., each miner is allocated with 3 wireless

subchannels and 5 computation resource blocks fixedly under

the default parameter settings. (iii) “AC based algorithm”:

The only difference between this method and our proposed
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algorithm is that this method is based on AC algorithm, while

our proposed algorithm is based on A3C framework.

In Fig. 5, we plot how the total reward changes under differ-

ent price of wireless communication resources. As is shown,

when the price is very low, i.e., the communication resource is

very cheap, the proposed, the Uniform resource allocation, and

the AC-based algorithms could obtain high rewards. Since in

Fixed-pricing algorithm, the price of communication resource

is set as 5 × 10−4 $/bps fixedly, which is much higher,

so the obtained reward of this method is much lower than

that of other three algorithms. Since the reward of mining

keeps unchanged, with the price increase, the total rewards

obtained by miners first drop sharply, and then slow down

gradually, for all the algorithms. It also can be seen that the

performance of the proposed algorithm always performs better

than Uniform resource allocation algorithm, and followed by

AC based algorithm. We can also find that when the price of

communication resource is greater than 5×10−4 $/bps, Fixed

pricing algorithm performs better than other algorithms, even

than our proposed joint optimization algorithm, this is because

the default price of communication resource is taken from 1-

10×10−4 $/bps, and that of Fixed pricing algorithm is 5×10−4

$/bps.

Fig. 6 depicts the relationship between the total reward

and the number of wireless subchannels, i.e., the system

bandwidth for task offloading. As can be seen, with the

number of subchannels increase, the total obtained reward

of all the miners first increase, and then decrease. This can

be explained like this, first when the number of subchannels

is small, each miner could not be allocated with enough

subcarriers for task offloading. When subchannels gets more,

the subchannels allocated to each miners gets gradually plenty

enough for task offloading, so the obtained reward increases.

When subchannels becomes extra, since in the four algorithms,

all the subchannels should be allocated to miners, so miners

have to pay extra fees for the extra subcarriers, leading to

decrease in total obtained reward. It can also be observed that

our proposed algorithm always performs the optimal, followed
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by Fixed pricing, Uniform resource allocation, and AC based

algorithms by sequence.

Fig. 7 shows how mining reward e affects the total reward

of all the miners. First when the mining reward is very small,

the obtained total reward of all the miners is minus for all

the algorithms, i.e., miners will loss money in mining. When

the mining reward increases, the total reward of all the miners

grows nearly linearly, and it can be observed that our proposed

A3C based joint algorithm always performs the best.

Fig. 8 presents how the total reward of all the miners

changes with different processing capability F0 of each com-

putation resource block of the MEC server. When F0 is small,

using the computation resource of MEC server for mining task

processing is of no much use, so the obtained reward is small.

When F0 grows, the obtained reward increases rapidly and

reaches the maximum when F0 grows to 0.25 G CPU cycles/s.

Afterwards, the obtained total reward of miners decreases with

F0 increases, and this can be interpreted like this. When

F0 = 0.25 G, miners could obtain the maximal reward,

this means F0 = 0.25 G is strong enough to process the

mining task together with the local processing resources, and

much stronger F0 is not necessary. Since all the computation

resources will be allocated to miners, miners have to pay for

the extra processing resources when F0 > 0.25 G, leading to a

reduction in the total obtained rewards. Also, it can be known

that our proposed A3C based algorithm always performs the

optimum among all the schemes.

VII. CONCLUSIONS

In this paper, we have investigated the maximization of

miners’ long-term averaged utility in a mobile edge computing

enabled blockchain system, by jointly optimizing the com-

munication and computation resource pricing and allocation

optimization, in conjunction with a prospect perspective to

strike a balance between risks and uncertain rewards. Based

on A3C deep reinforcement learning algorithm, we developed

a low-complexity algorithm to solve the joint optimization

problem. Simulation results have verified the convergence

of our algorithm, and have demonstrated that our algorithm

performs better than the existing algorithms in terms of the

miners’ total reward.
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