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Energy Efficiency Maximization for UAV-Enabled

Hybrid Backscatter-Harvest-then-Transmit

Communications

Haohang Yang, Yinghui Ye, Xiaoli Chu, Senior Member, IEEE, Sumei Sun, Fellow, IEEE

Abstract

Wireless powered communication via backscatter and/or harvest-then-transmit (HTT) has been considered a

promising solution to connecting nodes in the Internet of things (IoT) networks. However, the harvested energy

at an IoT node is heavily limited by the distance between the node and the power beacon (PB) due to the high

propagation loss. In this paper, we propose to employ an unmanned aerial vehicle (UAV) as a mobile PB to provide

energy signals on demand to the IoT nodes, which convey their information to a reader via backscattering or active

transmission using the harvested energy. We maximize the total energy efficiency (EE) of all the IoT nodes powered

by the UAV by jointly optimizing the UAV’s transmit power and trajectory, the IoT nodes’ backscatter reflection

coefficients and their transmit power for active transmission, and the time allocation between backscattering and

active transmission. To solve the formulated non-linear fractional programming problem, we use the generalized

fractional programming theory and a block coordinated decent method to decompose it into two sub-problems: one

optimizes the communication resource allocation under a fixed UAV trajectory, and the other optimizes the UAV

trajectory with given communication resource allocation. We then devise a Dinkelbach-based iterative algorithm

to solve the two sub-problems by employing a Lagrangian dual method and a successive convex programming

technique, respectively and iteratively. Simulation results show that our proposed iterative algorithm converges very

fast, and the optimized UAV-enabled hybrid backscatter-HTT communication achieves a much higher EE of all

the IoT nodes than the benchmark schemes including the UAV-enabled backscatter, UAV-enabled HTT, and hybrid

BackCom-HTT with a fixed PB.
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I. INTRODUCTION

D
UE to the limited battery capacity of low-powered Internet of Things (IoT) nodes, wireless powered

communication networks (WPCNs) have been proposed to support IoT, where the IoT nodes can either

harvest RF energy from an energy source and then use the harvested energy to convey information via active

transmission, i.e., harvest-then-transmit (HTT) [1]–[4], or modulate and backscatter the incident radio frequency

(RF) signal to carry its information to the associated receiver without requiring an active transceiver [5]–[8]. The

circuit power consumption of backscatter communications (BackCom) is very low and can be supported by the

harvested RF energy. However, BackCom cannot realize when the incident signals are not available. Meanwhile,

HTT can solve this problem but its energy consumption is normally high [5]–[8]. To exploit the complementarity

of BackCom and HTT, hybrid BackCom-HTT communications have been proposed. The authors in [8] solved a

max-min throughput problem among multiple sensor nodes for a wireless powered IoT network. In [9], the wireless

powered nodes were allowed to operate in backscatter mode when the harvested energy from the dedicated RF

signals is not sufficient to support HTT, where the time allocated for backscattering was optimized to maximize the

throughput. The authors in [10] proposed hybrid BackCom-HTT for a cognitive WPCN, where the throughput of

the secondary communication system was maximized by optimizing the time allocation between backscattering and

energy harvesting and that between the bistatic backscatter mode and the HTT mode. In [11], the time allocation

between data backscattering and energy harvesting, as well as the time sharing among multiple transmitters were

optimized to maximize the throughput of a RF-powered backscatter cognitive radio network. The authors in [12]

maximized the energy efficiency (EE) of all the devices in a hybrid BackCom-HTT network by optimizing the

transmit power of the power beacon (PB) and hybrid devices, and the time allocation among energy harvesting,

the backscatter mode and the HTT mode.

Although the above works [9]–[12] demonstrated the superior performance of hybrid BackCom-HTT over

BackCom or HTT in terms of throughput and EE, they considered a fixed RF energy source, e.g., a PB, where the

received power at IoT nodes is limited by their distance to the PB due to severe RF propagation loss [13]. Recently,

unmanned aerial vehicles (UAVs) have been employed as mobile PB to provide RF energy to IoT nodes via line-of-

sight (LoS) links. In [14], the UAV’s trajectory was optimized to maximize the total energy harvested by all the IoT

nodes wirelessly powered by it. In [15], a max-min throughput problem was solved in a UAV-enabled WPCN, where

a UAV was dispatched as a mobile access point (AP). In [16], the system throughput of a UAV-aided BackCom

network was maximized by optimizing the time allocation, backscatter reflection coefficient, and UAV trajectory for

two protocols, namely transmit-backscatter and transmit-backscatter-relay, where the direct link from the backscatter

device to the receiver of the latter protocol is not available. In [17], two UAVs were used to wirelessly power two

IoT devices and collect information from them, and the minimum uplink throughput of the two IoT devices was

maximized through jointly optimizing the trajectories of the two UAVs and the downlink/uplink wireless resource

allocation. The above works indicate that the UAV-enabled networks can achieve better performance in terms of
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throughput and energy transmission compared with fixed PB based networks. However, we note that UAV-carried

mobile PB has not been exploited for emerging hybrid BackCom-HTT networks. This motivates us to configure a

new network which fully makes the use of the advantages of UAV and BackCom-HTT.

In this paper, we propose a novel UAV-enabled hybrid BackCom-HTT communication system to connect multiple

IoT nodes to a reader, where a UAV is dispatched as a mobile PB to provide RF energy for all the IoT nodes.

Based on a time-division multiple access (TDMA) protocol, an IoT node first backscatters the incident RF signal

from the UAV to carry its own information to the reader, while harvesting the RF power for supporting its circuit

operation together with the other IoT nodes, and then utilizes the remaining energy to transmit information to the

reader via active transmission. We then maximize the total EE of all the IoT nodes wirelessly powered by the UAV.

Our main contributions are summarized as follows:

• We propose a novel system model, namely the UAV-enabled hybrid BackCom-HTT communication network,

where a UAV works as a mobile energy source to provide RF energy for all the ground IoT nodes. The IoT

nodes utilize the incident RF signal to communicate with a reader via a hybrid BackCom-HTT scheme.

• To exploit the synergy between hybrid BackCom-HTT communications and UAV, we formulate a problem

to maximize the EE of all the IoT nodes in the UAV-enabled hybrid BackCom-HTT system by jointly

optimizing the UAV’s transmit power and trajectory and the allocation of communication resources, including

the backscatter reflection coefficients, the transmit power of IoT nodes during active transmission, and the time

allocation between BackCom and active transmission.

• Since the EE of multiple IoT nodes are jointly maximized, the formulated optimization problem involves many

variables that are coupled in the objective function and/or the constraints. Through theoretical analysis, we re-

veal that letting the UAV transmit with the maximum power maximizes the EE of all the IoT nodes. Leveraging

this finding and the generalized fractional programming theory, we transform the original optimization problem

into a more tractable but still non-convex problem. Then, we use a block coordinated decent (BCD) method

to decompose the transformed problem into two sub-problems: one optimizes the communication resource

allocation with a fixed UAV trajectory and the other optimizes the UAV trajectory with given communication

resource allocation. We employ a Lagrangian dual method to solve the former sub-problem optimally and

apply a successive convex programming (SCP) technique to obtain a locally optimal solution to the latter

sub-problem. The closed-form expressions for the optimal reflection coefficient and active transmit power of

each IoT node are derived. Based on the obtained solutions, we propose a Dinkelbach based iterative algorithm

to maximize the EE of all the IoT nodes in the UAV-enabled hybrid BackCom-HTT system.

• We perform extensive simulations to evaluate the optimized UAV trajectory, time allocation for BackCom and

active transmission, the convergence of our proposed iterative algorithm, and the EE of all the IoT nodes

achieved by our proposed algorithm in comparison with that of several benchmark schemes including the

UAV-enabled backscatter, UAV-enabled HTT, energy consumption minimization, and hybrid BackCom-HTT

with a fixed PB. The simulation results show that the proposed algorithm has a fast convergence speed, and
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can achieve a much higher total EE than the benchmark schemes. In addition, we observe that a higher EE is

achieved for all the IoT nodes when more time is allocated to those IoT nodes with better channel conditions

to the UAV and the reader for BackCom and active transmissions, repectively. Also, the UAV tends to fly

towards to those IoT nodes with better channel condition.

The rest of the paper is organized as follows. The system model of a UAV-enabled hybrid BackCom-HTT

network is built in Section II. In Section III, the total EE maximization problem is formulated and solved. Section

IV analyzes the convergence and computational complexity of our proposed algorithms. In Section V, the numerical

results are presented. Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we present the system model, and the associated throughput analysis and definition of the total

EE.

IoT node
Reader

Energy transmit link

Information transmit link

(Backscatter and HTT transmission)

UAV

Fig. 1: UAV-enabled hybrid BackCom-HTT network.

A. Network Model

As illustrated in Fig. 1, the proposed UAV-enabled hybrid BackCom-HTT network consists of one UAV, M

IoT nodes and one reader, where the IoT nodes harvest energy from the UAV’s RF transmission and transmit

information to the reader through hybrid BackCom and HTT within the time block T . We assume that each IoT

node is equipped with a backscatter circuit, an EH module, and an active RF transmitter such that they can operate

in the BackCom and HTT modes. Each IoT node i ∈ M = {1, · · · ,M} is deployed at a fixed location q
g
i = (xi,

yi) on the ground in a 2-D Cartesian coordinate system. The reader is fixed at the location qr= (xr, yr). The UAV

is assumed to fly at a fixed altitude H > 0 above the ground, and the location of the UAV in the 2D horizontal

plane at altitude H at any time instant t ∈ T is denoted by qut = (xut , yut ). We assume that all the IoT nodes are

inside a region on the ground, while the UAV is dispatched from an initial location quini= (xuini, y
u
ini) outside this

region to provide energy for the IoT nodes and then flies back to quini at the end of the BackCom time period.
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Fig. 2: Time allocation scheme.

The entire time block T is divided into two time periods, i.e., θT (0 < θ ≤ 1) for BackCom and (1 − θ)T for

HTT active transmission by utilizing the energy harvested within θT , as shown in Fig. 2. During the first time

period, a UAV is dispatched to provide energy for the IoT nodes to backscatter their own information to the reader

via BackCom, and the IoT node-to-reader BackComs follow a TDMA protocol. For simplicity, the first time period

of θT is equally divided into N time slots, where the n-th time slot τn, n ∈ N = {1, 2, · · · , N}, has a duration

of δ = θT
N

. We assume that the value of N is sufficiently large so that the UAV can be considered as static at

each time slot [14]–[16], and N >> M . Let qun denote the location of the UAV at time slot n. Thus, the distance

between the UAV and IoT node i at time slot n is given by

dui,n =
√

||qun − q
g
i ||2 +H2, (1)

where || · || denotes the Euclidean norm of a vector.

Following [16], [18], [19], we adopt the following Rician fading channel model for UAV communications:

hui,n = β0(d
u
i,n)

−2||µ(1)
i,n ||

2
=

β0||µ(1)
i,n ||

2

||qun − q
g
i ||2 +H2

, (2)

where β0 denotes the channel power gain at a reference distance of d0 = 1m, and µ
(1)
i,n denotes the small-scale

fading and is modeled as

µ
(1)
i,n =

√

K

K + 1

ˆ
µ
(1)
i,n +

√

1

K + 1

ˆ̂
µ
(1)
i,n , (3)

where
ˆ

µ
(1)
i,n denotes the LoS channel coefficient with || ˆ

µ
(1)
i,n || = 1,

ˆ̂
µ
(1)
i,n represents the non-LoS channel coefficient,

which is a circularly symmetric complex Gasussian random variable with mean zero and variance 1, and K is the

Rician factor. In this paper, it is reasonable to assume that the channel from the UAV to an IoT node is dominated

by the LoS path [20]–[23]. Thus, the Rician factor K is very large, and the channel model in (2) approximately

reduces to hui,n = β0(d
u
i,n)

−2|| ˆ
µ
(1)
i,n ||2, which is equivalent to a free-space path-loss model [16]. Hence, the channel

from the UAV to an IoT node can be estimated based on the locations of the UAV and IoT nodes.
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To ensure that every IoT node has a chance to backscatter its information to the reader in each time slot, a time

slot is further divided into M sub-slots [15], where the ith sub-slot is allocated to IoT node i. Let τi,n denote the

backscattering time for IoT node i at time slot n and
M
∑

i=1
τi,n = θT

N
holds for ∀n ∈ N .

When IoT node i is in the backscatter mode, its received RF signal from the UAV is divided into two parts [7]:

a Zi,n portion of the received power is used for BackCom to the reader, and the rest is harvested for supporting

its circuit consumption, where Zi,n ∈ [0, 1] is the reflection coefficient1. Accordingly, the total amount of energy

harvested by IoT node i during the first time period θT is given by

EHi =

N
∑

n=1

(

P uηhui,n(1− Zi,n)τi,n+P uηhui,n

(

θT

N
− τi,n

))

=

N
∑

n=1

P uηhui,n

(

θT

N
− τi,nZi,n

)

. (4)

where P u represents the UAV transmit power, η is the energy conversion efficiency of the EH circuit, which is

assumed to include the EH circuit power consumption. We ignore the energy harvested from the signals backscattered

by the other IoT nodes and the thermal noise, since their power is much smaller than P u [9], [10], [12].

During the second time period of (1−θ)T , the IoT nodes utilize the remaining harvested energy (after deducting

the circuit energy consumption) to transmit information to the reader via active transmission. Same as in BackCom

period, TDMA is used. We divide (1− θ)T into M time slots, where the ith time slot of duration ti is allocated

to the ith IoT node for active transmission, and we have
M
∑

i=1
ti = (1− θ)T .

B. Throughput of BackCom and HTT

The sum received power at the reader from IoT node i via BackCom and from the UAV at time slot n is given

by [25]

P
r,B
i,n = P uZi,nh

u
i,nh

r
i + P uhu,rn , (5)

where hri = β0(d
r
i )

−α||µ(2)
i ||

2
denotes the channel power gain from IoT node i to the reader and dri = ||qgi − qr||,

where α is the free space path loss exponent and ||µ(2)
i ||

2
represents the Rayleigh fading power gain. The channel

power gain from the UAV to the reader is denoted as h
u,r
n . Since the UAV serves as the dedicated energy source,

its transmitted signal is a priori known to the reader, and the interference P uhu,r can be removed by the reader.

After the UAV interference has been removed, the received power at the reader at time slot n is rewritten as

P
r,B
i,n

′

= P uZi,nh
u
i,nh

r
i [26].

Thus, the BackCom throughput of IoT node i-to-reader link at time slot n can be calculated as

RB
i,n = Wτi,nlog2



1 +
ϕP

r,B
i,n

′

Wσ2



 , (6)

1The backscattered signal is composed of two components: the structural mode scattering component and the antenna mode scattering

component. In this paper, we only consider the antenna mode scattering component, which is characterized by the reflection coefficient,

because the structural mode scattering is determined by the geometrical layout of the reflective device antenna and the electromagnetic

properties of the material, and can be regarded as a constant value [24].
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where W is the system bandwidth. Since BackCom usually transmits modulated signals from a finite constellation,

which is very different from Gaussian signaling widely adopted in conventional active communications, thus the

conventional achievable rate formula cannot perfectly match with that in BackCom. We introduce ϕ to represent

the performance gap between the active transmission and the BackCom [8]–[12], and σ2 denotes the noise power

spectral density.

The received power at the reader from the active transmission of IoT node i is given by

P
r,H
i = Pih

r
i , (7)

where Pi denotes the transmit power of IoT node i.

Then, the active transmission throughput of IoT node i-to-reader link is calculated as

RH
i = Wtilog2

(

1 +
P

r,H
i

Wσ2

)

. (8)

C. Total Energy Efficiency

The total EE of all the IoT nodes is defined as the ratio of the total throughput achieved by the IoT nodes to

the total energy consumption of the IoT nodes [27]2. Letting Rsum denote the total throughput achieved by all the

IoT nodes in T , we have

Rsum =

M
∑

i=1

N
∑

n=1

RB
i,n +

M
∑

i=1

RH
i . (9)

The energy consumption of IoT node i is given by ECi =
N
∑

n=1
PB
cirτi,n + (PH

cir + Pi)ti, where PB
cir and PH

cir

represent the constant circuit power consumption for BackCom and active transmission, respectively, and they are

assumed to be the same for all M IoT nodes.

The total energy consumption of all the IoT nodes is given by

ECsum =

M
∑

i=1

N
∑

n=1

PB
cirτi,n +

M
∑

i=1

(

PH
cir + Pi

)

ti, (10)

Then, the total EE of all the IoT nodes is given by

EEsum =
Rsum

ECsum
. (11)

III. ENERGY EFFICIENCY MAXIMIZATION

In this section, we first formulate the EE maximization problem for the considered UAV-aided hybrid BackCom-

HTT IoT system, then we propose a Dinkelbach-based iterative algorithm to solve the optimization problem.

2In this paper, we aim to maximize the total EE of all the IoT nodes by jointly optimizing how they harvest and use the RF energy

transmitted by the UAV, which can be regarded as maximizing the efficiency of the IoT nodes in utilizing the RF energy provided by the

UAV [12], [27]. The system EE that includes the UAV’s energy consumption will be studied in our future work.
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A. Problem Formulation

We propose to maximize the EE of all the IoT nodes by jointly optimizing the UAV’s transmit power P u, transmit

time factor θ, and trajectory vector q = [qu1 , q
u
2 , ..., q

u
N ], as well as the IoT nodes’ BackCom reflection coefficient

vectors Zn = [Z1,n, Z2,n, · · · , ZM,n], n ∈ N , BackCom time allocation vectors τn = [τ1,n, τ2,n, · · · , τM,n], n ∈
N , active transmission time allocation vector t = [t1, t2, · · · , tM ], and active transmission power vector P =

[P1, P2, · · · , PM ]. Accordingly, the optimization problem is formulated as

P1 : max
{Pu,θ,Zn,τn,t,P,q}

EEsum

s.t.

C1 : 0 ≤ θ ≤ 1, 0 ≤ Zi,n ≤ 1, τi,n ≥ 0, ti ≥ 0, ∀i, ∀n;
C2 : 0 ≤ P u ≤ PUAV

max , 0 ≤ Pi ≤ P node
max , ∀i;

C3 :
M
∑

i=1
τi,n = θT

N
;

M
∑

i=1
ti = (1− θ)T, ∀n;

C4 :
N
∑

n=1
RB

i,n +RH
i ≥ Rmin, ∀i;

C5 : 0 ≤ Piti ≤ EHi −
N
∑

n=1
PB
cirτi,n − PH

cirti, ∀i;

C6 : EHi − ECi ≥ 0,∀i;
C7 : ||qun − qun−1|| ≤ Vmaxδ, ∀n;
C8 : qu1 = quini, q

u
N = quini;

(12)

In (12), C1 specifies the value ranges of the transmit time factor, the reflection coefficient factors, and the transmit

time allocation factors for both BackCom and active transmission. PUAV
max and P node

max in C2 denote the maximum

transmit power of the UAV and the IoT nodes, respectively. C3 constrains the total transmit time for both BackCom

and active transmission. C4 guarantees the long-term minimum throughput requirement for each IoT node. In C5,

the transmit power consumption of each IoT node cannot exceed the remaining harvested energy after BackCom.

C6 ensures that the power consumption of each IoT node during BackCom and active transmission should not

exceed the energy harvested by the IoT node within θT . C7 constrains the maximum speed of the UAV, Vmax, by

limiting its flight distance during each time slot. In C8, the UAV is dispatched from an initial location and flies

back to the initial location at the end of the first time period.

The formulated problem P1 is a non-convex fractional optimization problem with multiple variables coupling in

both the objective function and the constraints, i.e., P u, Zn, τn, t, P and q. Thus, it would be extremely difficult

to solve P1 directly. In order to make this optimization problem more tractable, we first determine the optimal

transmit power of the UAV, as summarized in Lemma 1.

Lemma 1: In our proposed system model, the optimal transmit power of the UAV for maximizing the total EE

of all the IoT nodes is the maximum UAV transmit power, i.e., P u∗ = P uav
max, where ∗ denotes the optimal solution.

Proof. Please see Appendix A. �
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Remark 1: Lemma 1 indicates that letting the UAV transmit with the maximum allowed power can maximize

the EE of all the ground IoT nodes. For BackCom, since the IoT nodes reflect the incident RF signal from the UAV,

the throughput of BackCom improves with higher UAV transmit power without increasing the IoT node’s power

consumption, thus the EE of IoT nodes increases. For active transmission, the higher UAV transmit power reduces

the time for harvesting energy, and the IoT nodes will have more time to transmit information to the reader, thus

increasing the throughput and the EE.

B. Problem Transformation

Based on Lemma 1, P1 is transformed into

P2 : max
{θ,Zn,τn,t,P,q}

M
∑

i=1

N
∑

n=1

Wτi,nlog2

(

1+
ϕPuav

maxhu
i,n

Zi,nhr
i

Wσ2

)

+
M
∑

i=1

Wtilog2

(

1+
Pih

r
i

Wσ2

)

M
∑

i=1

N
∑

n=1

PB
cirτi,n+

M
∑

i=1

(PH
cir+Pi)ti

s.t.

C1,C3,C4,C6,C7,C8;

C2−1 : 0 ≤ Pi ≤ P node
max , ∀i;

(13)

Next, we employ Dinkelbach’s method to transform the fractional objective function into a subtractive form.

Letting Q∗ denote the maximum EE, based on [28], Q∗ can be achieved if and only if the following equation

holds:

max
{θ,Zn,τn,t,P,q}

M
∑

i=1

N
∑

n=1
RB

i,n +
M
∑

i=1
RH

i −Q∗ECsum =
M
∑

i=1

N
∑

n=1
RB

i,n

∗
+

M
∑

i=1
RH

i

∗ −Q∗EC∗
sum = 0. (14)

Based on (13), P2 is transformed into

P3 : max
{θ,Zn,τn,t,P,q}

M
∑

i=1

N
∑

n=1
RB

i,n +
M
∑

i=1
RH

i −QECsum

s.t. C1,C2−1,C3,C4,C6,C7,C8.

(15)

where Q denotes a small positive value that is used as the initial value of Q*. Although P3 is more tractable

than P2, it is still non-convex due to the coupling between Zn and τn, P and t. We solve this coupling issue

by introducing the following auxiliary vectors: Xn = [X1,n, X2,n, · · · , XM,n], n ∈ N and Y = [Y1, Y2, · · · , YM ],

where Xi,n = Zi,nτi,n and Yi = Piti. Then, P3 is transformed into

P4 : max
{θ,Xn,τn,t,Y,q}

M
∑

i=1

N
∑

n=1
RB

i,n

′

+
M
∑

i=1
RH

i

′

−QECsum
′

s.t.

C3,C7,C8;

C1−1 : 0 ≤ θ ≤ 1, τi,n ≥ 0, t ≥ 0, ∀i, ∀n;
C2−2 : 0 ≤ Xi,n ≤ τi,n, 0 ≤ Yi ≤ tiP

node
max , ∀i, ∀n;

C4−1 :
N
∑

n=1
RB

i,n

′

+RH
i

′

≥ Rmin, ∀i, ∀n;

C6−1 : EHi
′ − ECi

′ ≥ 0, ∀i,

(16)
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where RB
i,n

′

= Wτi,nlog2

(

1 +
ϕPuav

maxXi,nh
u
i,nh

r
i

τi,nWσ2

)

, RH
i

′

= W tilog2

(

1 + Yih
r
i

tiWσ2

)

, ECi
′

=
N
∑

n=1
PCBτi,n + (PCH ti+

Yi), and the total amount of energy harvested by IoT node i during BackCom is rewritten as

EHi
′

=
N
∑

n=1

[

P uav
maxηh

u
i,n(τi,n −Xi,n)+P uav

maxηh
u
i,n

(

θT
N

− τi,n
) ]

=
N
∑

n=1
P uav
maxηh

u
i,n

(

θT
N

−Xi,n

)

.

(17)

C. Problem Solution

We note that P4 is still non-convex and challenging to solve due to the coupling among the UAV trajectory q, Xn

and τn in the objective function, C4-1 and C5-2. To this end, we propose a BCD method to decompose P4 into two

sub-problems, namely, the optimization of communication resource allocation including θ, Xn, Y, τn, and t with

fixed UAV trajectory, and the optimization of the UAV trajectory optimization for a given communication resource

allocation. Then, we solve P4 by solving these two subproblems alternately. This process leads to a Dinkelbach

based iterative algorithm given in Algorithm 1, which is also illustrated as a flow chart in Fig. 3.

1) Communication resource allocation optimization: For a given UAV trajectory q, the communication resource

allocation sub-problem is formulated as

P4.1 : max
{θ,Xn,τn,Y,t}

M
∑

i=1

N
∑

n=1
RB

i,n

′

+
M
∑

i=1
RH

i

′

−QECsum
′

s.t.

C1−1,C2−2,C3,C4−1,C6−1.

(18)

It is easy to verify that P4.1 is a standard convex optimization problem. In the following, we will solve this

problem by using the Karush-Kuhn-Tucker (KKT) conditions. First, the Lagrangian function for P4.1 is given by

L(θ,Xn, τn,Y, t,α
(1)
n ,α(2),β(1), β(2),γ,φ)

=
M
∑

i=1

N
∑

n=1
Wτi,nlog2

(

1 +
ϕPuav

maxh
u
i,nXi,nh

r
i

τi,nWσ2

)

+
M
∑

i=1
Wtilog2

(

1 + Yih
r
i

tiWσ2

)

−Q

(

M
∑

i=1

N
∑

n=1
PCBτi,n +

M
∑

i=1

(

PCHti + Yi
)

)

+
M
∑

i=1

N
∑

n=1
α
(1)
i,n(τi,n −Xi,n) +

M
∑

i=1
α
(2)
i (tiP

node
max − Yi) +

N
∑

n=1
β(1)( θT

N
−

M
∑

i=1
τi,n)

+β(2)

(

(1− θ)T −
M
∑

i=1
ti

)

+
M
∑

i=1
γi

(

N
∑

n=1
RB

i,n

′

+RH
i

′

−Rmin

)

+
M
∑

i=1
φi(EHi

′ − ECsum
′

),

(19)

where α
(1)
n = [α

(1)
1,n, α

(1)
2,n, · · · , α

(1)
M,n] � 0, n ∈ N , α(2)=[α

(2)
1 , α

(2)
2 , · · · , α(2)

M ] � 0, β(1)=[β
(1)
1 , β

(1)
2 , · · · , β(1)

N ] � 0,

β(2) ≥ 0, γ=[γ1, γ2, · · · , γM ] � 0 and φ=[φ1, φ2, · · · , φM ] � 0 are the Lagrange multipliers associated with

C2-2, C3, C4-1 and C5-2, respectively. Please note that the non-negativity constraints in C1-1 and C2-2, i.e.,

θ ≥ 0, τi,n ≥ 0, ti ≥ 0 and Xi,n ≥ 0, Yi ≥ 0, are considered in the optimal solution in the following. Accordingly,

the dual function of P4.1 is denoted by G (α
(1)
n ,α(2),β(1), β(2),γ,φ) = max

θ,Xn,τn,Y,t
L (θ,Xn, τn,Y, t), and the

Lagrangian dual optimization problem can be formulated as

min
α

(1)
n ,α(2),β(1),β(2),γ,φ

max
θ,Xn,τn,Y,t

L. (20)
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Since P4.1 is a standard convex optimization problem, it satisfies Slater’s condition so that the duality gap between

P4.1 and (20) is zero. Thus, we can solve P4.1 by maximizing L (θ,Xn, τn,Y, t) for given α
(1)
n ,α(2),β(1), β(2),γ,φ,

and minimizing G (α
(1)
n ,α(2),β(1), β(2),γ,φ) for given θ,Xn, τn,Y, t. The details are provided as follows.

For given Lagrange multipliers, based on the KKT conditions, we take the derivative of L with respect to

Xi,n, Yi, τi,n, ti and θ, respectively, yielding

∂L

∂Xi,n
=

W (1 + γi)log2e
Xi,n

τi,n
+ Wσ2

ϕPuav
maxh

u
i,nh

r
i

− α
(1)
i,n − φiP

uav
maxηh

u
i,n, (21)

∂L

∂Yi
=

W (1 + γi)log2e
Yi

ti
+ Wσ2

hr
i

− α
(2)
i −Q− φi, (22)

∂L

∂τi,n
= W (1 + γi)

(

log2

(

1 +
ϕP uav

maxh
u
i,nh

r
i
Xi,n

τi,n

Wσ2

)

− log2e

1 + Wσ2

ϕPuav
maxh

u
i,nh

r
i

Xi,n

τi,n

)

−QPCB + α
(1)
i,n − β(1)

n − φiPCB,

(23)

∂L

∂ti
= W (1 + γi)



log2

(

1 +
hri

Yi

ti

Wσ2

)

− log2e

1 + Wσ2

hr
i

Yi
ti



−QPCH + α
(2)
i Pnode

max − β(2) − φiPCH , (24)

∂L

∂θ
=

N
∑

n=1

β(1)
n

T

N
− β(2)T +

M
∑

i=1

N
∑

n=1

φiP
uav
maxηh

u
i,n

T

N
. (25)

By letting (21) and (22) equal to 0, we obtain

Z∗
i,n =

Xi,n

τi,n
= min(1,W

[

(1 + γi)log2e

α
(1)
i,n + φiP uav

maxηh
u
i,n

− σ2

ϕP uav
maxh

u
i,nh

r
i

]+

), (26)

P ∗
i =

Yi

ti
= min(Pnode

max ,W

[

(1 + γi)log2e

α
(2)
i +Q+ φi

− σ2

hri

]+

), (27)

where Z∗
i,n and P ∗

i denote the optimal reflection coefficient of IoT node i at time slot n during BackCom and the

optimal transmit power of IoT node i during active transmission, respectively, and [x]+
∆
= max{x, 0}.

Remark 2: From (26), we find that Z∗
i,n increases with higher hri , indicating that an IoT node closer to the reader

uses a higher reflection coefficient to backscatter information. The reason is that the UAV can afford to backscatter

a higher portion of the incident RF signal power for achieving a higher EE, given that its circuit power consumption

for BackCom is constant. From (27), we can see that P ∗
i increases with hri , which is the channel gain from IoT

node i to the reader. That is, an IoT node with a better channel to the reader should transmit with higher power

during active transmission. The resulting higher throughput will overweight the increased power consumption and

lead to a higher EE.

Based on (25) and substituting (26) and (27) into (23) and (24), respectively, we find that the Lagrangian function

L is linear with respect to τi,n, ti and θ. This indicates that the optimal values of τi,n, ti and θ can be found at
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the vertices of the feasible region. By substituting (26), (27) into P4.1 and after some manipulations, we obtain an

equivalent optimization problem as follows,

max
θ,τn,t

M
∑

i=1

N
∑

n=1
Wτi,n

(

log2

(

1 +
ϕPuav

maxh
u
i,nh

r
iZ

∗

i,n

Wσ2

)

−QPCB

)

+
M
∑

i=1
Wti

(

log2

(

1 + hr
iP

∗

i

Wσ2

)

−Q(P ∗
i + PCH)

)

s.t.

C1−1,C3;

C4−2 :
N
∑

n=1
RB

i,n

′′

+RH
i

′′

≥ Rmin, ∀i;

C6−2 : EHi
′′ − ECi

′′ ≥ 0, ∀i,
(28)

where RB
i,n

′′

= Wτi,nlog2

(

1 +
ϕPuav

maxh
u
i,nh

r
iZ

∗

i,n

Wσ2

)

, RH
i

′′

= Wtilog2

(

1 + hr
iP

∗

i

Wσ2

)

, EHi
′′

= P uηhui,n

(

θT
N

− τi,nZ
∗
i,n

)

,

and ECi
′′

=
N
∑

n=1
PCBτi,n + (PCH + Pi

∗)ti.

It is obvious that problem (28) is a linear programming problem with respect to τi,n, ti and θ. Thus, we can

solve problem (28) efficiently by using standard convex optimization tools, e.g., CVX. Then, Xi,n and Yi can be

obtained by substituting τi,n and ti back into (26) and (27), respectively.

Remark 3: In (28), the objective function is the weighted sum of τi,n and ti. Thus, the maximum EE of all

the ground IoT nodes can be achieved by allowing the IoT nodes to use up all the available time, i.e., T , for

BackCom and active transmission. Furthermore, in order to maximize the EE, more time for BackCom and active

transmission should be allocated to the IoT nodes with better channel conditions from themselves to the UAV and

to the reader. For those IoT nodes whose channel conditions are not good enough to allow for EE improvement,

the time allocated to them will guarantee that they can achieve their minimum throughput requirement. The above

remark will be verified in Section V.

Since the dual optimization problem in (20) is convex as is P4.1, for given τi,n, ti and θ, we use a gradient based

method to update the Lagrange multipliers α
(1)
n ,α(2),β(1), β(2),γ,φ as follows,

α
(1)
i,n(l + 1) =

[

α
(1)
i,n(l)− s1(τi,n −Xi,n)

]+
, ∀i, ∀n; (29)

α
(2)
i (l + 1) =

[

α
(2)
i (l)− s2(tiP

node
max − Yi)

]+
, ∀i; (30)

β(1)
n (l + 1) =

[

β(1)
n (l)− s3

(

θT

N
−

M
∑

i=1

τi,n

)]+

, ∀n; (31)

β(2)(l + 1) =

[

β(2)(l)− s4

(

(1− θ)T −
M
∑

i=1

ti

)]+

; (32)

γi(l + 1) =

[

γi(l)− s5

(

N
∑

n=1

RB
i,n

′

+RH
i

′ −Rmin

)]+

, ∀i; (33)
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φi(l + 1) =
[

φi(l)− s6(EHi
′ − ECsum

′

)
]+

, ∀i, (34)

where l is the iteration index for updating the Lagrange multipliers, s1, s2, s3, s4, s5 and s6 are the step sizes for

the associated Lagrange multipliers. How to choose the values of the step sizes in a gradient method has been

discussed in [29] and is thus omitted here for brevity. Then, we use the updated Lagrange multipliers to update

τi,n, ti and θ in problem (28).

2) UAV trajectory optimization: For given communication resource allocation in terms of Xi,n, Yi, τi,n, ti and θ,

the UAV trajectory optimization sub-problem is formulated as

P4.2 : max
{q}

M
∑

i=1

N
∑

n=1
RB

i,n

′

+
M
∑

i=1
RH

i

′

−QECsum
′

s.t.

C4−1,C6−1,C7,C8.

(35)

P4.2 is still non-convex due to the non-convex vectors q in the objective function and the constraints. An SCP

based technique is employed to obtain a locally optimal solution by successively maximizing a lower bound of

the objective function in an iterative manner. Specifically, let q0 = [q01, q
0
2, ..., q

0
N ] denote the initial UAV trajectory

and ql
′

= [ql
′

1 , q
l
′

2 , ..., q
l
′

N ] denote the obtained UAV trajectory after the l
′

th iteration. Accordingly, we propose the

following lemma to transform RB
i,n

′

and EHi
′

into convex formulations [15], [16], [30].

Lemma 2: For any given ql
′

, l
′ ≥ 0, we have

RB
i,n

′

(q) ≥ RB
i,n

′

(ql
′

), ∀i, ∀n; (36)

EHi
′

(q) ≥ EHi
′

(ql
′

), ∀i, (37)

where

RB
i,n

′

(ql
′

) = Wτi,nlog2

(

1 +
ϕP uav

maxh
r
iXi,nβ0µ

Wσ2τi,n(H2 + F0)

)

− Wτi,nlog2e
(

1 + Wσ2τi,n(H2+F0)
ϕPuav

maxh
r
iXi,nβ0µ

)

(H2 + F0)
(F − F0), ∀i, ∀n, (38)

EHi
′

(ql
′

) =
P uav
maxηβ0µ

(

θT
N

−Xi,n

)

H2 + F0
− P uav

maxηβ0µ
(

θT
N

−Xi,n

)

(H2 + F0)
2 (F − F0), ∀i, ∀n, (39)

F = ||ql
′

n − q
g
i ||2, F0 = ||q0n − q

g
i ||2, ∀i, ∀n, (40)

the equations in (36) and (37) only hold when q0 = ql
′

.

Proof. Please see Appendix B. �
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Based on Lemma 2, we optimize the UAV trajectory q by replacing RB
i,n

′

and EHi
′

in P4.2 with their respective

lower bounds RB
i,n

′

(ql
′

) and EHi
′

(ql
′

) in (38) and (39) at each iteration l
′

. By substituting (38) and (39) into

problem (35), P4.2 can be equivalently formulated as

q∗ = argmax
{ql

′

}

M
∑

i=1

N
∑

n=1
RB

i,n

′

(ql
′

) +
M
∑

i=1
RH

i

′

−QECsum
′

s.t.

C4−1,C7,C8,

C6−3 : EHi
′

(ql
′

)− ECi
′ ≥ 0, ∀i.

(41)

Since (38) and (39) are convex with respect to ql
′

, problem (41) is a convex optimization problem and can be

efficiently solved by using standard convex optimization methods, e.g., the interior point method, which is omitted

here for brevity.

Remark 4: The factor ‘F − F0’ in (39) indicates that a higher amount of energy can be harvested when the

UAV is closer to the IoT nodes, as the received power will be higher. In order to maximize the objective function

of (41), which is equivalent to maximizing the total EE of all the ground IoT nodes, the UAV needs to be closer

to the IoT nodes that can achieve a higher throughput than the other IoT nodes during BackCom. Meanwhile, the

time allocation for BackCom and active transmission will guarantee the minimum throughput requirements for all

IoT nodes. That is to say, the IoT nodes allocated less time during BackCom will have enough time to transmit

information actively to meet the minimum throughput requirement during active transmission. The above remark

will be verified in Section V.

D. Dinkelbach-Based Iterative Algorithm

We propose a Dinkelbach-based iterative algorithm in Algorithm 1 to summarize the optimization process in

Section III-C.

In Algorithm 1, k is the iteration index for updating Q, i.e., the maximum EE, and ǫ is set to control the

convergence of the objective function in P4. The flow chart of Algorithm 1 is illustrated in Fig. 3.

IV. CONVERGENCE AND COMPUTATIONAL COMPLEXITY ANALYSIS

We first analyze the convergence of Algorithm 1, which includes two layers of iteration, where the two inner

layer iterative loops aim to achieve the convergence of Lagrange multipliers for solving P4.1 and the convergence

of the UAV’s trajectory, respectively, and the outter layer iteration seeks the convergence of the BCD algorithm that

decomposes P4 into P4.1 and P4.2. Since P4.1 is a standard convex optimization problem, the iterative updates of

θ, τ , t and the Lagrange multipliers α
(1)
n ,α(2),β(1), β(2),γ,φ are guaranteed to converge to the optimal solution of

P4.1. To solve P4.2, successive convex programming (SCP) method is used. We denote the maximum EE obtained

by solving P4.2 in the (l + 1)th iteration by EE(l + 1), and denote the maximum EE obtained through solving

(41) in the lth and the (l + 1)th iteration by EElb(l) and EElb(l + 1), respectively. Based on [30], we have

EElb(l) ≤ EElb(l + 1), (42)
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Algorithm 1 Dinkelbach based iterative algorithm

Input: M,N .

Output: Q∗,Z∗
n, τ

∗
n , t∗,P∗,q∗.

Initialize: k = 1, Q(k) = Q(0), ǫ.

1: repeat

2: Initialize q;

3: repeat

4: repeat

5: Initialize α
(1)
n ,α(2),β(1), β(2),γ,φ;

6: Obtain θ,Xn, τn,Y, t by solving P4.1;

7: Update the Lagrange multipliers α
(1)
n ,α(2),β(1), β(2),γ,φ in (28)-(33), respectively;

8: until α
(1)
n ,α(2),β(1), β(2),γ,φ converge;

9: repeat

10: Initialize q0;

11: Obtain q∗ by solving P4.2;

12: Update the obtained UAV trajectory ql
′

;

13: until q∗ converges;

14: until α
(1)
n ,α(2),β(1), β(2),γ,φ and q converge after k = 2;

15: Compute RB
i,n, R

H
i and ECsum in (6), (7) and (9), respectively;

16: k = k + 1;

17: Update Q(k) = Rsum

ECsum
;

18: until | min
i∈M,n∈N

M
∑

i=1

N
∑

n=1
RB

i,n +
M
∑

i=1
RH

i −Q(k)ECsum| ≤ ǫ.

EElb(l + 1) ≤ EE(l + 1), (43)

where l is the iteration number, (42) holds since EElb(l+1) is the optimal solution of (41), and (43) holds since a

convex function is globally lower bounded by its first-order Taylor expansion. The inequalities in (42) and (43) imply

that the achieved maximal EE is non-decreasing after each iteration and is upper bounded, and the approximate

problem (41) of P4.2 is solved optimally locally in each iteration. Therefore, the SCP based method for solving P4.2

is guaranteed to converge to a locally optimal solution. After each iteration of the BCD algorithm that alternately

solves P4.1 and P4.2, the objective function value of P4 is nondecreasing with updated variables. Meanwhile, P4

is also upper bounded by its associated constraints, thus the BCD algorithm is guaranteed to converge to a solution

of P4.

Next, we evaluate the computational complexity of Algorithm 1. The computational complexity of the Lagrange

dual method in (19) for solving P4.1 is O(∆1MN) [31], where ∆1 is the number of iterations for updating the
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Fig. 3: Flow chart of Algorithm 1.

Lagrange multipliers. The interior point method used to solve problem (41) has a computational complexity of

O(
√
C 1

ζ
) for each iteration, where C denotes the number of variables, i.e., C = N in (41), and ζ represents the

iterative accuracy [29], [32]. The iterations needed for the convergence of the BCD algorithm and Q∗ are denoted

by ∆2 and ∆3, respectively. Thus, the total computational complexity of Algorithm 1 is O[(∆1MN+
√
C 1

ζ
)∆2∆3].

According to our simulations, the values of ∆1 , ∆2 and ∆3 are in the ranges of 2-5, 2-4 and 3-5, respectively.
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V. SIMULATION RESULTS

In this section, we present simulation results to evaluate the time allocation, the UAV trajectory, the convergence

of Algorithm 1, and the EE performance versus different parameters based on our proposed Algorithm 1, in

comparison with the benchmark schemes, i.e., the UAV-enabled BackCom scheme, the UAV-enabled HTT scheme,

the energy consumption minimization scheme, and the fixed PB based hybrid BackCom-HTT scheme. The details

of the benchmark schemes are provided in Appendix C. We consider a network, where all the IoT nodes are located

within a 2-D region of 10× 10 m2 [33], the UAV’s original position and the location of the reader are respectively

10 m and 30 m away from the center of this region, which is set as the origin of the 2D ground plane. The values

of the other fixed system parameters are listed in Table 1 [14], [15], [25], [34].

Table 1 Simulation Parameters

Simulation parameter Value

Number of IoT nodes M 5

Number of time slots N 50

Altitude of UAV H 10m

Maximum speed of UAV Vmax 10m/s

Coordinate of UAV’s original location (−10,0)

Coordinate of reader location (30,0)

Channel bandwidth W 10 kHz

Noise power spectral density σ2
−130 dBm/Hz

Channel power gain at reference distance β0 −30 dB

Rician factor 7 dB

Pathloss exponent of UAV-node channel 2

Pathloss exponent of node-reader channel 3

Maximum UAV transmit power Puav

max 40 dBm

Maximum IoT node transmit power Pnode

max 23 dBm

Energy conversion efficiency η 0.5

Backscatter circuit power consumption PB

cir 200 µw

HTT circuit power consumption PH

cir 1 mw

A. Time Allocation Versus Backscatter Performance Gap

Fig. 4 illustrates the impact of backscatter performance gap ϕ on the time allocation for BackCom, i.e., θ. It is

easy to verify that θ is always 1 for the UAV-enabled backscatter scheme since it only includes BackCom. For the

UAV-enabled HTT scheme, θ keeps the same value as 0.28 with different ϕ, this is also easy to verify that during

BackCom in the UAV-enabled HTT scheme, the IoT nodes only harvest energy and then transmit information to the

reader during active transmission. For our proposed Algorithm 1, when ϕ is smaller than −50 dB, θ is the same as

that in the UAV-enabled HTT scheme, since the EE provided by BackCom is too low and the minimum throughput

requirement Rmin cannot be met in this case. Same as in the UAV-enabled HTT, the IoT nodes only harvest energy
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Fig. 4: Portion of time allocated for BackCom versus BackCom performance gap (Rmin = 5× 104 bit/s).

during BackCom and transmit information to the reader during active transmission. θ slightly increases with the

improvement of ϕ from −50dB to −40dB, then it dramatically increases when ϕ is greater than −40dB. This is

because that BackCom of some IoT nodes at some time slots can gain more EE with higher ϕ so that more time

is allocated to BackCom. It also indicates that θ is sensitive to ϕ, where θ improves dramatically after exceeding

−40 dB. When ϕ is bigger than −25 dB, θ is always one, which indicates that BackCom dominates the over all

time period, and the active transmission of any IoT node at any time slot cannot provide higher EE than that in

BackCom.

Comparing the energy consumption minimization scheme with our proposed Algorithm 1, θ in energy consump-

tion minimization scheme is no smaller than that in our proposed Algorithm 1. This is because BackCom consumes

much less energy than active transmission due to the low backscatter circuit consumption without transmit power

consumption. Specifically, when ϕ is smaller than −50 dB, the throughput requirement cannot be met by BackCom.

Thus, the IoT nodes only harvest energy during BackCom, and transmit information during active transmission.

However, in order to minimize the energy consumption, more time is allocated to BackCom for energy harvesting

but without energy consumption, since the throughput of all the IoT nodes only need to equal to Rmin. θ significantly

increases from 0.48 to 0.8 with ϕ increasing from −50 dB −30 dB, which indicates that more time is allocated to

BackCom for saving energy while satisfying Rmin with active transmission. Also, the gap between our proposed

Algorithm 1 and the energy consumption minimization scheme becomes smaller since higher ϕ can both improve

the EE and minimize the energy consumption. After ϕ exceeds −25 dB, the BackCom dominate the over all time

period as in our proposed Algorithm 1. We can also see that the EE of each scheme stays constant when ϕ is less

than −50dB or more than −25dB.
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Fig. 5(a): UAV trajectory for a UAV-enabled backscatter

network (θ = 1, Rmin = 5× 104 bit/s).
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Fig. 5(b): UAV trajectory for a UAV-enabled HTT

network (θ = 0.27, Rmin = 5× 104 bit/s).
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Fig. 5(c): UAV trajectory for a UAV-enabled hybrid network (θ = 0.52, Rmin = 5× 104 bit/s).

B. UAV Trajectory

In Fig. 5 (a), the UAV trajectory is illustrated for θ = 1, which means that BackCom dominates the whole time

block. The UAV is dispatched from the left-most point of the trajectory to provide energy for the IoT nodes, and

then flies back to the initial location at the end of the BackCom time period. As we can see, the UAV flies to

and hovers above each IoT node to make sure that all the IoT nodes meet Rmin. Meanwhile, our simulation result

shows that the UAV spends the longest time hovering above the right-most IoT node, which helps this IoT node

achieve the highest throughput, i.e., 2.79× 105 bit/s, because it is closest to the reader and can contribute most to

the sum EE of all the IoT nodes.
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In Fig. 5 (b), the UAV trajectory is illustrated for θ = 0.27, which means that HTT dominates the whole time

block. The UAV in this case only flies to and hovers above three IoT nodes and spends the most time hovering

above the IoT node at the middle position of all the IoT nodes. This is because the throughput of each IoT node is

achieved only via active transmission, which requires sufficient energy harvested during BackCom. Thus, the UAV

needs to hover over a position that each IoT node can harvest enough energy for active transmission to meet the

throughput requirements. Our simulation result shows that more time for active transmission is allocated to the two

IoT nodes that are closer to the reader for achieving higher throughput and sum EE, while the other IoT nodes

maintaining the minimum required throughput.

Fig. 5 (c) shows the UAV trajectory for θ = 0.52, which represents a hybrid BackCom-HTT network. We can

see that the UAV trajectory is similar to that in Fig. 5 (a), but in the case of Fig. 5(c), the UAV spends less time

hovering above the IoT node that is closest to the reader and the other IoT nodes achieve higher throughput with a

longer BackCom transmission time. This is because the maximum EE of all the IoT nodes is achieved when the IoT

node closest to the reader is allocated the most time for active transmission while the other IoT nodes maintaining

the minimum required throughput during the whole time block. Thus, more time for BackCom is allocated to the

other IoT nodes for meeting the throughput requirements.

Based on the above results and Remark 4, we summarize the insights into the UAV trajectory as follows. First,

the UAV tends to fly to the IoT nodes that are closer to the reader, and such IoT nodes can achieve higher throughput

and contribute more toward a higher EE of all the IoT nodes. Second, if BackCom dominates the network, the UAV

will fly above each IoT node to ensure that all the IoT nodes satisfy the throughput requirement, and the IoT node

that is closest to the reader is allocated the most time of BackCom for maximizing the EE of all the IoT nodes.

Third, if HTT dominates the network, the UAV spends the most time hovering above the IoT node that is around

the middle position of all the IoT nodes, but more time for active transmission is allocated to the IoT nodes closer

to the reader for a higher total EE. Fourth, in the case of hybrid backscatter-HTT, the UAV trajectory is similar to

that in case of pure BackCom, but the UAV spends less time hovering above the IoT node closest to the reader

so that the other IoT nodes may have a longer BackCom time to meet their throughput requirements. Fifth, if the

reader’s location is changed, the UAV will fly to the IoT nodes that are closer to the updated location of the reader.

Last but not least, if the time block is long enough, the UAV trajectory in the above three cases will be a straight

line from the initial location to the IoT node closest to the reader for maximizing the total EE, since the throughput

requirements of all the other IoT nodes can be satisfied through BackCom or HTT for a sufficiently long time.

C. Convergence of Algorithm 1

Fig. 6 illustrates the convergence of our proposed Algorithm 1 versus different maximum UAV transmit power.

It can be observed that our proposed algorithm always converges to the optimal EE after 4th step under any given

UAV transmit power. This proves that our proposed Algorithm 1 is computationally efficient. Also, based on Lemma
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Fig. 6: Convergence of Algorithm 1 (Rmin = 5× 104 bit/s, ϕ = −30 dB)

1, where maximum UAV transmit power is proved to be the optimal value for maximum EE. We can see that higher

maximum UAV transmit power achieve higher EE than other cases with lower UAV transmit power in Fig. 6.

D. Total EE Performance
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Fig. 7: Total EE versus BackCom performance gap ϕ (Rmin = 5× 104 bit/s).
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1) Total EE versus ϕ: Fig. 7 illustrates the total EE of all the IoT nodes versus ϕ. We can see that the total EE of

our proposed Algorithm 1 outperforms all other schemes. Next, we describe and explain each curve of each scheme

as follows. Firstly, the total EE of UAV-enabled HTT scheme is constant, i.e., 7.2× 107 bits/s, since the IoT nodes

during the first time period in the UAV-enabled HTT scheme only harvest energy, and then transmit information

to the reader during active transmission. Thus, the backscatter performance gap of BackCom has no impact on the

UAV-enabled HTT scheme. Secondly, the EE of our proposed algorithm is constant when ϕ is smaller than −40

dB since the IoT nodes under this condition are the same as the IoT nodes in the UAV-enabled HTT scheme in

order to meet Rmin. Then the total EE of our proposed algorithm increases sharply when ϕ improves from −40

to −20 dB, which indicates that BackCom provide much more EE than active transmission with low ϕ.

In addition, the total EE of the energy consumption minimization scheme is still constant when ϕ is smaller than

−40 dB due to the same reason explained above, then it gradually increase with the improvement of ϕ. Also, the

total EE of the energy consumption minimization scheme exceeds that of the UAV-enabled HTT scheme after ϕ

is greater than −35 dB due to the longer time allocated to BackCom for saving energy. This also indicates that

BackCom can provide more EE with higher ϕ. The EE of the UAV-enabled backscatter scheme is 0 when ϕ is

smaller than −40 dB, this is because that the IoT nodes cannot meet Rmin, which fails to contribute EE. When ϕ

increases beyond −20 dB, the total EE of the UAV-enabled backscatter scheme becomes the same as that of our

proposed algorithm. This is because BackCom occupies the entire time block in our proposed algorithm when ϕ is

greater than −20 dB. Furthermore, the EE of each scheme will increase with the minimum throughput requirement

below the value of 3 ∗ 104.
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Fig. 8: Total EE versus minimum throughput requirement Rmin (ϕ = −30 dB).
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2) Total EE versus Rmin: Fig. 8 plots the total EE of all the IoT nodes versus Rmin. The total EE of our

proposed Algorithm 1 still out performs than that of other schemes. Similarly, the total EE of all schemes decreases

with higher Rmin, since a higher Rmin makes some IoT nodes at some time slots fail to preform BackCom which

greatly decreases the EE. Also, the EE improvement due to a higher throughput cannot compensate for the loss of

EE caused by the high energy consumption for meeting a higher throughput requirement. As we can see the total

EE of our proposed algorithm significantly decreases but the decreasing rate becomes smaller with the improvement

of Rmin, this is because that more IoT nodes or more time slots are allocated for active transmission, and the EE

loss during active transmission is only caused by a higher energy consumption which is smaller than the EE loss

due to the low time allocation to BackCom. For the UAV-enabled backscatter scheme, the total EE drops sharply

with higher Rmin, since some IoT nodes cannot meet Rmin and fail to join the network. Thus, the total EE drops

to 0 when Rmin is too high, e.g., 9 ×104 bits/s. The total EE of our proposed Algorithm 1 and that of the UAV-

enabled backscatter scheme are the same when Rmin is smaller than 3×104 bits/s, because BackCom occupies the

whole time block for such low Rmin. When Rmin is larger than 3× 104 bits/s, the proposed Algorithm 1 achieves

the highest EE among the four considered schemes. As Rmin further increases, the EE achieved by Algorithm 1

gradually reduces to be the same as that of the UAV-enabled HTT scheme. This is because for very high values of

Rmin, active transmission occupies the whole time block.

The total EE of the UAV-enabled HTT scheme reduces steadily with increasing Rmin, since the EE loss is only

caused by the high energy consumption for meeting a higher throughput requirement. However, the total EE did

improve due to higher throughput, thus, the total EE of the UAV-enabled HTT scheme decreases steadily. For

the energy consumption minimization scheme, the total EE is around 8.7 × 108 bits/Joule from 3 × 104 bits/s to

6× 104 bits/s, and then suddenly drops to 2.8× 107 bits/Joule at Rmin = 9× 104 bits/s. Since the time allocated

to BackCom is more than that allocated to active transmission, the EE obtained by this scheme decreases slowly.

After Rmin exceed 6 × 104 bits/s, active transmission takes a longer time, and the sudden decreasing of the total

EE is due to a much higher energy consumption during active transmission.

3) Total EE versus Vmax: Fig. 9 shows the total EE of all the IoT nodes versus the maximum UAV flying speed

Vmax. It is obvious that the total EE of all the schemes shows the same trend, where our proposed Algorithm 1

achieves the highest EE. Specifically, the total EE of all the schemes gradually increases with higher Vmax and

converges to a certain value after Vmax exceeds 40 m/s. The reason for that is a higher Vmax allows the UAV

quickly fly to and stay at some positions which can lead to higher EE while satisfying the constraints, e.g., Rmin,

the amount of energy harvested requirement. Thus, the total EE improves with better UAV trajectory. However,

the EE improvement is not large as compared to fig. 7 and fig. 8, this is because Vmax can only change the

optimal trajectory, where the network size is small. Since the UAV can easily travel around a small network, it

will not contribute too much EE improvement. Also, the optimal UAV trajectory is constant after Vmax exceed 40

m/s, which indicates that the UAV has enough speed to make an optimal trajectory. Thus, the total EE of all the

schemes converges after the optimal UAV trajectory is fixed.
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Fig. 9: Total EE versus maximum UAV speed Vmax (Rmin = 5× 104 bit/s, ϕ = −30 dB).

Same reasons can be explained for the total EE of energy consumption minimization scheme despite this scheme

aims to minimize the energy consumption. In addition, the total EE of the UAV-enabled backscatter scheme does

not drop like in fig. 7 and fig. 8, this is easy to be verified, the serious drop of the EE for the UAV-enabled

backscatter scheme is that the IoT nodes cannot meet Rmin. However, the IoT node can easily meet Rmin with

high UAV speed.
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4) Total EE versus fixed PB or UAV initial location: Fig. 10 shows the total EE versus the fixed PB location

or the UAV initial location under two schemes, i.e., our proposed Algorithm 1 and the fixed PB based BackCom-

HTT scheme. The total EE of both schemes increases with shorter distance from the UAV initial location or the

PB location to the IoT nodes. It is easy to be verified that the harvested energy utilization and the throughput

increases with short communication distance, which improves the EE. Specifically, the total EE of the fixed PB

based BackCom-HTT scheme is very low when the distance from the PB to the IoT nodes is small, i.e., (-12,

0), (-11, 0) and (-10, 0). This is because that the minimum throughput requirement of some users cannot be met,

and none of the users could meet this requirement after the PB location is farther than (-12, 0). Then the total

EE significantly increases with shorter distance from the PB to the IoT nodes with less increasing rate. Also, the

increasing trend of the total EE of our proposed algorithm is very stable, which is due to the high mobility of the

UAV. Since the UAV works as a mobile power station, it can quickly fly to the region, where all the IoT nodes are

located. Thus, the impact of the small distance difference of initial UAV locations on the EE is not obvious.

However, our proposed algorithm gain much more total EE than the fixed PB based BackCom-HTT scheme

does. This is due to the high propagation loss of the long distance from the fixed PB to the IoT nodes, and the

energy harvested by the IoT nodes is much decreased due to the same reason. Such high propagation loss seriously

degrades the total EE performance as illustrated in Fig. 10. In addition, the EE gap between the two schemes

becomes small, since the propagation loss difference between the fixed PB and the UAV is becoming small, which

leads to this small EE gap.

E. Throughput Versus Rmin
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Fig. 11 illustrates the throughput of individual node versus Rmin. It can found that the throughput of IoT node

2, node 3, node 4, node 5 is identical to the corresponding Rmin, i.e., 3, 4, 5, 6, 7, 8 and 9×104 bits/s, respectively.

However, the throughput of IoT node 2 is much higher than Rmin. This is because that we aim to maximize the

total EE of all the IoT nodes, most time is allocated to IoT node 2 since it can provide more EE than other IoT

nodes do due to better channel condition from itself to the UAV and to the reader. This allows IoT node 2 to gain

much more throughput. Meanwhile, the minimum throughput requirement of other IoT nodes needs to be met,

thus, other IoT node’s throughput only needs to equal to Rmin for achieving maximum EE of all the IoT nodes.

In addition, the throughput of IoT node 2 gradually decreases with higher Rmin. Since more time is allocated to

other IoT nodes for meeting their minimum throughput requirement when increasing Rmin, the throughput of IoT

node 2 drops with less given transmit time.

VI. CONCLUSIONS

In this paper, we have investigated the total EE maximization of all the IoT nodes in a UAV-enabled hybrid

BackCom-HTT network. Since the optimization problem is non-convex, we have proposed a Dinkelbach based

iterative algorithm to first transform the problem into a more tractable subtractive form, then use a BCD method

to decompose the transformed problem into two sub-problems, where the communication resource allocation

subproblem is solved by employing the Lagrangian dual method and the UAV trajectory optimization subproblem is

solved by applying the SCP technique. Simulation results demonstrate that the total EE performance of our proposed

algorithm is much better than the benchmark schemes, i.e., the UAV-enabled backscatter scheme, the UAV-enabled

HTT scheme, the energy consumption minimization scheme, and the fixed PB based hybrid BackCom-HTT scheme.

Moreover, our results show the total EE of all the ground IoT nodes increases for a lower throughput requirement,

higher backscatter performance gap and higher UAV maximum speed under all the considered schemes. In addition,

our proposed algorithm allocates more time for BackCom and/or active transmission to the IoT nodes with better

channel conditions for improving the total EE of all the IoT nodes, while guaranteeing the other IoT nodes meeting

their minimum throughput requirement.

In our future work, we will extend this work to the case with multiple UAVs serving a large number of IoT nodes

distributed over a large area, where the interference mitigation during BackCom and the trajectory optimization

for multiple UAVs will be the main challenges to tackle. It will also be interesting to extend the proposed system

model to the case of fixed wing UAVs or for online operation.

APPENDIX A

PROOF OF LEMMA 1

When P u, Z, τ , t, P and q are given, the objective function in P1 monotonically increases with P u since P u

only exists in the numerator of the objective function. Thus, the optimal UAV transmit power is obtained by its

upper bound. Due to C4-C7 in P1, they are used to obtain the lower bound of P u, the upper bound of P u is given

by P uav
max and we have P u∗ = P uav

max. The proof is completed.
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APPENDIX B

PROOF OF LEMMA 2

Let us define two functions given by f1 = Alog2

(

1 + B
C(H2+F )

)

and f2 = D
H2+F

, where A,B,C,D > 0 are

constants, f1 and f2 are both convex with respect to F . Since the first-order Taylor expansion of a convex function

is a global under-estimator of the function values, for any F0 ≥ 0 we can obtain

f1 ≥ Alog2

(

1 +
B

C(H2 + F0)

)

− A log2 e
(

1 + C(H2+F0)
B

)

(H2 + F0)
(F − F0), (44)

f2 ≥
D

H2 + F0
− D

(H2 + F0)
2 (F − F0). (45)

By substituting A = Wτi,n, B = ϕP uav
maxh

r
iXi,nβ0µ, C = Wσ2τi,n and D = P uav

maxηβ0µ(
θT
N

−Xi,n) into (44) and

(45), then (36) and (37) are obtained. Also, the equalities in (44) and (45) hold when F = F0, thus, the equalities

in (36) and (37) hold when q0 = ql
′

. The proof is completed.

APPENDIX C

BENCHMARK SCHEMES

1) UAV-enabled backscatter scheme: In this scheme, we aim to maximize the EE of all the IoT nodes, where

the overall time period T is allocated to the IoT nodes for wireless energy transfer and BackCom. Accordingly,

the optimization problem of this scheme is formulated as

P5 : max
{Zn,τn,q}

M
∑

i=1

N
∑

n=1

Wτi,nlog2

(

1+
ϕPuav

maxhu
i,n

Zi,nhr
i

Wσ2

)

PCB
M
∑

i=1

N
∑

n=1

τi,n

s.t.

C7,C8;

C1
′

: 0 ≤ Zi,n ≤ 1, τi,n ≥ 0, ∀i, ∀n;

C2
′

:
M
∑

i=1
τi,n = T

N
, ∀n;

C3
′

:
N
∑

n=1
RB

i,n ≥ Rmin, ∀i;

C4
′

: EHi −
N
∑

n=1
PCBτi,n ≥ 0, ∀i;

(46)

2) UAV-enabled HTT scheme: In this scheme, we aim to maximize the EE of all the IoT nodes, where the IoT

nodes only harvest energy from the UAV during the first time period and use the harvested energy to transmit
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information during the second time period. Accordingly, the optimization problem of this scheme is formulated as

P6 : max
{θ,t,P,q}

M
∑

i=1

Wtilog2

(

1+
Pih

r
i

Wσ2

)

M
∑

i=1

ti(Pi+PCH)

s.t.

C7,C8;

C1
′′

: 0 ≤ θ ≤ 1, 0 ≤ Pi ≤ Pnode
max , ∀i;

C2
′′

:
M
∑

i=1
τi,n = θT

N
,

M
∑

i=1
ti = (1− θ)T ; , ∀n

C3
′′

:
M
∑

i=1
RH

i ≥ Rmin,

C4
′′

: EHi −
M
∑

i=1
ti(Pi + PCH) ≥ 0,∀i.

(47)

3) Energy consumption minimization scheme: In this scheme, we aim to minimize the total energy consumption,

where other constraints in P1 keep the same. Accordingly, the optimization problem of this scheme is formulated

as

P7 : min
{θ,Zn,τn,t,P,q}

PCB
M
∑

i=1

N
∑

n=1
τi,n +

M
∑

i=1
ti(Pi + PCH)

s.t.

C1− C8.

(48)

4) Fixed PB based backscattering with HTT scheme: In this scheme, we aim to maximize the EE of all the

IoT nodes, where a fixed PB instead of the UAV is located outside the IoT node region. In particular, the first

time period allocated to the BackCom is divided into M time slots with ith time slot allocated to ith IoT node by

employing TDMA, which is the same as that in active transmission. Accordingly, the optimization problem of this

scheme is formulated as

P8 : max
{θ,Zn,τn,t,P}

M
∑

i=1

(RB
i +RH

i )

ECPB
sum

s.t.

C1;

C2
′′′

: 0 ≤ PB ≤ PB
max, 0 ≤ Pi ≤ Pnode

max , ∀i;

C3
′′′

:
M
∑

i=1
τi = θT,

M
∑

i=1
ti = (1− θ)T ;

C4
′′′

: RB
i +RH

i ≥ Rmin, ∀i;
C5

′′′

: EHi
PB − ECPB

sum ≥ 0, ∀i,

(49)

where RB
i = Wτilog2

(

1 + ϕPB
maxh

B
i Zih

r
i

Wσ2

)

, EHPB
i =

N
∑

n=1
P uηhui (θT − τiZi) and ECPB

sum =
M
∑

i=1

(

PCBτi+ ti(PCH+

Pi), P
B
max and hBi denote the maximum PB transmit power and the channel power gain from the PB to the IoT
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nodes, respectively. PB
max is set the same as P uav

max for comparison. Based on the algorithms proposed to solve P1,

we employ the same methods to solve P5,P6, P7 and P8, respectively. The optimization process for these four

schemes is omitted for saving space.
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