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Abstract 13 

An improved predictive numerical index has been developed to predict the tendency of 14 

bed agglomeration in fluidized bed boilers. The index was developed based on the melt fraction 15 

resulting from the thermodynamic equilibrium model of fuel ash compositions together with 16 

SiO2 as the bed material at temperatures ranging from 700 to 900 °C. The partial least square 17 

regression (PLSR) coupled with the cross-validation technique is utilized to establish the 18 

correlation for the bed agglomeration index, Ia. The improved index, Ia has been validated by 19 

experimental observations found in various literature sources. The results obtained using the 20 

improved index, Ia demonstrated a significantly higher success rate in predicting the bed 21 
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agglomeration tendency of biomass fuel ash compared to the other four conventional bed 25 

agglomeration indices. In addition, K2O is the main element that accelerates the formation of 26 

bed agglomeration in the biomass firing while CaO was found to reduce the tendency of bed 27 

agglomeration in the fluidized bed combustion system.  28 

Keywords: Biomass; Bed agglomeration index; Thermodynamic equilibrium model; Silica 29 

sand; Fluidized bed 30 

1 Introduction  31 

 Over the past few years, research has been focused on a comprehensive analysis of the 32 

agglomeration mechanisms occurring during biomass's fluidized bed combustion (FBC). This 33 

is included by looking at the aspects of potential early detection methods and operational 34 

countermeasures for agglomeration mechanisms in the FBC system [1]. First of all, it is 35 

important to understand the fundamental root cause of the agglomeration problems in the FBC 36 

systems. Agglomeration is fundamentally driven by the formation of eutectic alkali silicates 37 

due to the interaction between SiO2 in the bed material or ash and alkali species such as K2O 38 

and Na2O [2-4]. The alkali silicate formation will determine the eutectic melting temperature 39 

as the primary instigator of bed agglomeration. The low melting temperature of eutectic 40 

compounds (<800 °C) [5] will cause bed agglomeration in the FBC due to the formation of 41 

melt at temperatures 800-900 °C [6]. In addition, it has been reported that the emergence of 42 

alkali phosphates also results in bed agglomeration [7, 8]. Bed agglomeration can cause an 43 

unfavourable flop of the fluidized bed, which is described as defluidization. As a result, several 44 

cases have been reported in the literature that the defluidization of the bed will lead to the 45 

shutdown of the fluidized bed combustors.  46 

Visser et al. [9] identified two mechanisms responsible for the agglomeration of bed 47 

particles in the FBC system which are coating-induced and melt-induced agglomeration. 48 

Melting phenomena are crucial in both mechanisms. In the coating-induced mechanism, ash 49 
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deposited on bed particles will form a liquid phase as a result of chemical reactions which 50 

causes multiple particles to stick to each other. Melt-induced agglomeration means the straight 51 

adherence of the bed elements through relatively liquified fuel-derived cinders. Melt-induced 52 

agglomeration relies on larger molten ash particles colliding with the bed particles, with the 53 

molten ash acting as a viscous glue [10-12]. However, coating-induced agglomeration has been 54 

identified as the predominant mechanism in the FBC system [2, 3]. Various researchers 55 

assessed bed particle composition and subsequently used thermodynamic calculations to 56 

identify potential melt phases. This suggests that all chemical reactions within the ash have 57 

achieved thermodynamic equilibrium corresponding to coating-induced agglomeration. 58 

According to F. Scala et al. [1], the method of combination between thermodynamic 59 

equilibrium analysis and compression strength test was unable to predict the sintering tendency 60 

of biomass ash, this is due to the method not taking into consideration the interaction between 61 

ash and quartz as bed material. This also happened the same in the past when the researchers 62 

tested the ash fusion accuracy to predict the bed agglomeration temperatures. Therefore, it was 63 

concluded that the ex-situ method failed to predict the bed agglomeration behaviours [1]. Over 64 

the years, researchers have proposed various empirical indices for bed agglomeration in the 65 

FBC system. The alkali index is generally effective in predicting agglomeration, however, its 66 

accuracy diminishes when considering factors such as alternative bed materials or additives, as 67 

noted by various researchers [13-15]. Fernández Llorente et al. [16] determined that the ratio 68 

of alkaline earth oxides to alkaline oxides is a weak indicator of ash sintering likelihood and 69 

severity. Moreover, the bed agglomeration index (BAI) was introduced to measure the 70 

operational issues in FBC technology. Several publications report that silica-dominated in-bed 71 

agglomerations form in fluidized bed combustors at 760-900 ºC [14, 17]. The BAI index, 72 

however, does not take this element into account when making predictions about deposit 73 

generation. P. Billen et al. [18] proposed a method to predict the agglomeration in FBC by 74 
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predicting melt formation and agglomeration using phase diagrams as a result of 75 

thermodynamic calculations. Recently, Nik Norizam et al. [19] successfully produced a 76 

numerical model to predict slagging propensity in the fixed bed reactor by using the melt 77 

formation theory. Melt formation is the formation of a liquid phase when the temperature 78 

exceeds the melting point of compounds in the ash. This can cause the ash and bed particles to 79 

stick together and agglomerate leading to melt-induced agglomeration. On the other hand, 80 

coating-induced agglomeration occurs when the ash reacts with the bed material and forms a 81 

coating on the bed particles. The melt phase in this case only forms after the ash interacts with 82 

the bed material. This coating facilitates the agglomeration of the ash and bed material.  83 

To the best of the authors’ knowledge, a number of research have been done in the past 84 

to develop bed agglomeration prediction indices in the FBC system, however, the applicability 85 

of the existing indices across different types of biomass to estimate the bed agglomeration 86 

tendency remains limited. This is because previous researchers have not focused sufficiently 87 

on the chemical reactions of fuel ash compositions in response to temperature changes within 88 

the system. Also, this can be supported by Morris et al. [2], who recommended determining 89 

bed agglomeration behaviour influenced by the fuel ash composition. In this paper, an 90 

improved semi-empirical index based on the thermodynamic equilibrium model (TEM) is 91 

developed for early detection of bed agglomeration combustion in FBC technology. The 92 

research aims to predict bed agglomeration in FBC biomass technology by analyzing chemical 93 

ash compositions, using TEM to assess the melting degree of biomass fuels with SiO2 (quartz) 94 

as the bed material. Then the partial least square regression (PLSR) coupled with cross-95 

validation has been employed to create a numerical model, Ia to estimate the bed agglomeration 96 

index based on the experimental ash composition and the degree of melt from TEM. The results 97 

obtained with the improved numerical model, Ia demonstrate a significantly greater success 98 

rate in forecasting the tendency of bed agglomeration as compared to experimental 99 
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observations from the existing literature. This predictive tool would allow a better selection of 100 

fuels and a priori incorporation of countermeasures in the FBC system for the industrial 101 

operators.  102 

2 Material and methods 103 

In this section, the discussion focuses on the datasets employed to develop an improved 104 

index to predict the bed agglomeration tendency of biomass. A total of 35 datasets containing 105 

biomass ash compositions were gathered from relevant literature sources [7, 20-27], as 106 

illustrated in Table 1, which consists of ash compositions, ash content (%) and experimental 107 

observations of bed agglomeration tendency in the FBC boiler. 9 major ash compositions 108 

(Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, SO3, Fe2O3) and quartz (SiO2) as a bed material 109 

were included in the model, however, TiO2 was excluded due to its low content in the ash. The 110 

initial 20 datasets (1-20) represent experimental ash composition data and have been designated 111 

as training datasets, while the subsequent 15 datasets (21-35) will serve as testing datasets. The 112 

training and testing datasets will be analysed through thermodynamic equilibrium modelling 113 

in Section 2.1 to predict the melting fraction based on the ash compositions. The obtained 114 

results will be utilized in Section 2.2, where PLS regression analysis will be employed to 115 

formulate an expression, denoted as Ia, for predicting the bed agglomeration behaviour without 116 

the necessity for conducting combustion tests in the future. Subsequently, the effectiveness of 117 

Ia will be validated against experimental observations of bed agglomeration in the FBC system. 118 

2.1 Thermodynamic equilibrium model 119 

The application of thermodynamic equilibrium modelling (TEM) has become extensive 120 

in the industry as a tool to predict the ash transformation behaviour and the chemical and 121 

physical characteristics of ash in various ash-related processes, such as the issues of bed 122 

agglomeration in fluidized beds, heat transfer surfaces corrosion, and smelt bed behaviour 123 

patterns in boilers. The modelling was carried out using FactSage and the experimental data 124 
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gathered during the measurements were utilised as model inputs to simulate the formation of 125 

the bed agglomeration in the FBC technology. It offers a reasonably accurate prediction of the 126 

ash conversion process without the need for intricate experiments for each biomass. However, 127 

it is important to note that the process in a real fluidized bed furnace may not entirely reach 128 

equilibrium although particles in a fluidized bed have much longer residence time than those 129 

in a pulverised combustor [28-31]. The FactSage thermochemical software is extensively 130 

employed for the analysis of solid fuel firing. It facilitates the computation of multiphase 131 

multicomponent equilibrium conditions, providing accurate results when configured with the 132 

appropriate fuel composition, atmosphere, and temperature settings [19]. It builds upon the 133 

Gibbs energy reduction and incorporates extensive databases for oxide, silicate, and salt 134 

composition structures [28-31]. The databases contained both unmixed compounds and 135 

solution stages. The pure compounds consist of stoichiometric element compositions, while 136 

the solution databases feature optimized frameworks for the solution stages. The methods 137 

employed to establish the thermodynamic database have been extensively examined in prior 138 

studies [28-31]. The FactSage 8.1 software was utilized in this study to predict the melting 139 

fraction, Mf of biomass fuels as listed in Table 1. The model extended the configuration set by 140 

Nik Norizam et al. [19] by integrating the bed material into the present model (iii) to simulate 141 

the bed agglomeration model in the FBC boiler, and the setting of the TEM is as follows: 142 

i. The model is configured under the assumption of equilibrium conditions, utilizing the 143 

FACTPS, FTsalt, and FToxid databases. 144 

ii. Table 1 includes 9 ash compositions (MgO, Al2O3, SiO2, K2O, CaO, Fe2O3, Na2O, P2O5, 145 

SO3) derived from experimental data. These compositions were normalised and labelled 146 

as input-stream 1 in the model.147 
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Table 1 Chemical ash compositions for various types of biomass [7, 20-27]. 148 

 

Num. 

 

Biomass 

 

Na2O 

 

MgO 

 

Al2O3 

 

SiO2 

 

P2O5 

 

K2O 

 

CaO 

 

SO3 

 

Fe2O3 

 

Mf 

Ash content  

(%) 

Agglomeration 

tendencies 

(experimental) 

1 Logging residues 0.96 5.16 3.08 31.63 5.37 10.44 36.38 5.22 1.75 0.27 2.4 Low 

2 Bark I 1.50 3.69 5.08 37.16 2.95 7.95 36.12 3.47 2.09 0.28 3.7 Low 

3 Wheat straw 0.85 3.47 0.21 35.86 6.24 31.55 11.73 9.94 0.15 1.00 5.7 High 

4 Sunflower husks 0.10 8.57 14.62 17.94 9.48 21.27 14.72 6.85 6.45 0.60 1.9 High 

5 DDGS-logging residues 0.43 6.68 0.99 12.06 22.15 17.14 12.77 27.08 0.69 0.50 3.2 Low 

6 DDGS-wheat straw 0.48 5.64 0.12 17.25 19.71 24.82 6.27 25.50 0.20 0.79 5.05 High 

7 Logging residues-PA 0.95 4.99 3.03 31.12 7.82 10.27 35.09 5.01 1.72 0.28 2.4 Low 

8 Pepper waste 1.05 4.55 8.40 15.40 11.20 35.36 10.04 10.62 3.38 0.95 7.4 High 

9 Rice straw 0.70 9.24 3.34 33.66 0 10.33 36.62 0 6.11 0.19 n.m. n/a 

10 Corncob 3.27 10.34 5.21 46.27 0 21.94 5.24 0 7.71 0.70 n.m. n/a 

11 DDGS 0.20 6.99 0.03 3.27 28.65 19.35 2.31 38.98 0.22 0.70 4.4 High 

12 DDGS-willow 0.37 6.67 0.38 5.06 25.35 19.69 10.73 31.39 0.36 0.55 3.3 High 

13 Coconut shell 4.62 1.54 8.48 66.76 1.54 8.48 2.41 0.01 6.17 0.96 3.1 High 

14 Rapeseed mean-bark 0.86 7.41 2.15 17.30 19.51 13.59 22.03 15.94 1.22 0.40 4.8 Low 

15 Coffee (mbuni) husks 0.52 5.23 5.10 17.65 4.84 49.80 13.99 n.m. 2.88 1.3 4.1 High 

16 Bark II 1.74 4.28 5.42 31.72 3.69 8.54 43.30 0 1.31 0.18 4.9 Low 

17 Forest residues 1.23 6.18 2.48 18.04 6.44 16.08 42.28 5.26 2.01 0.16 n.m. Low 

18 Cotton stalk 4.52 11.08 4.06 7.80 9.03 40.23 21.34 0 1.93 0.67 1.75 High 

19 Thistle  11.73 5.03 3.50 18.27 2.13 13.86 44.16 0 1.32 0.77 8.9 High 

20 Almond shell  0.86 4.58 0.86 6.17 4.23 54.63 28.19 0 0.48 0.65 0.94 High 
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21 Rapeseed meal 0.20 9.95 0.24 2.16 32.29 17.83 11.31 25.48 0.55 0.40 7.4 Low 

22 RM 0.19 9.91 0.23 2.38 32.16 17.74 11.47 25.33 0.60 0.43 6 Low 

23 Logging residues-PA 2 0.89 4.71 2.86 29.36 13.01 9.69 33.11 4.73 1.50 0.39 2.4 Low 

24 Rapeseed cake 7.32 8.41 0.20 1.29 35.69 18.32 13.35 15.07 0.35 0.70 7.5 High 

25 Wheat straw 2  0.49 2.43 1.05 43.12 5.20 32.07 10.95 3.65 1.05 1.11 7.3 High 

26 Brassica  1.25 3.82 2.25 14.05 6.59 27.75 43.37 0 0.92 0.34 7.7 Low 

27 Cotton husks 1.32 7.59 1.32 10.93 4.05 50.20 20.95 1.72 1.92 0.90 3.2 High 

28 Coffee husks 0.84 3.06 10.45 5.29 5.71 61.00 12.81 0.56 0.28 1.19 n.m. High 

29 Soy husks 6.27 8.40 8.76 2.01 5.80 36.09 25.33 4.38 2.96 0.70 5.1 High 

30 Coffee (parchment) husks 0.64 4.76 5.78 21.34 4.37 47.43 12.60 0 3.08 1.1 0.9 High 

31 Wood 0.84 1.26 5.74 17.93 2.94 0.70 63.31 0 7.28 0.1 0.5 Low 

32 Peat 0.50 1.50 10.10 30.67 6.73 0.75 39.53 0 10.22 0.1 4.3 Low 

33 RC-Bark10 7.24 8.26 0.22 2.52 35.13 18.31 14.85 13.09 0.37 0.68 7.2 High 

34 RC-Bark20 6.89 8.01 0.46 3.84 32.91 17.47 16.04 13.79 0.59 0.67 7.0 High 

35 RC-Bark30 6.75 7.80 0.76 5.52 31.98 17.36 17.83 11.36 0.65 0.66 6.7 High 

a) All chemical compositions of ash were measured on dry basis in wt%. 149 
b) Mf : Melt fraction obtained from equilibrium model. 150 
c) n.m.: Not measured 151 
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iii. Quartz (SiO2) was introduced into the system as input-stream 2 with a 1:1 ratio to the 152 

fuel. The temperature range of the equilibrium modelling was set between 700 and 900 153 

°C in oxidizing conditions (excess of 10% O2). This temperature range has been chosen 154 

based on the typical operating conditions of biomass FB boilers [2]. 155 

iv. The simulations utilized the "FToxid-SLAGA" and "FTsalt-SALTF" model, 156 

incorporating two-phase immiscibility as the solution database [32]. 157 

v. Record the weight range of the solid-liq phase formed for each fuel as a result of the 158 

equilibrium modelling. 159 

vi. The solid-liq phase formed during the equilibrium calculation is fractioned by 1g of the 160 

ash to calculate the melt fraction, Mf. 161 

2.2 Partial Least Square Regression Coupled with Cross Validation 162 

The mathematical approach of Partial Least Squares Regression (PLSR) incorporates 163 

and generalizes the multivariate regression along with the analysis of the principal components 164 

[33]. It excels in analysing extensive datasets and multivariate systems with a high correlation, 165 

outperforming the multiple regression method [34]. This method is commonly employed to 166 

determine the stopping criterion and the total number of latent variables during cross-167 

validation, considering only one observation at a time [34-36]. The PLSR is especially well-168 

suited for problems with limited observational data, as encountered in the analysis of bed 169 

agglomeration behaviour of biomass. For additional details on PLSR and the cross-validation 170 

technique, please refer to the following references [33-35, 37-39]. The PLSR coupled with 171 

cross-validation techniques, was utilized for the analysis of the training datasets, as illustrated 172 

in Table 1. This process has led to the formulation of an equation, expressed as a function of 173 

the biomass ash compositions, to predict the improved bed agglomeration index (BAI), denoted 174 

as Ia. 175 
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3 Results & Discussion 176 

3.1 Comparison melt fraction with and without presence of SiO2 (quartz) 177 

predicted by TEM. 178 

 179 

Isaak et al. [40] introduced the concept of melt fraction, suggesting that higher 180 

temperatures lead to an increased presence of liquid in deposits. Experimental findings by Isaak 181 

et al. [40] revealed a correlation between deposit stickiness and temperature, indicating that 182 

elevated temperatures result in stickier deposits due to an increased amount of liquid phase. 183 

Zhou et al. [41] indicated that the melting curve of ash melting fraction increases with an 184 

increase in temperatures. Moreover, the idea of melting fraction gained popularity in predicting 185 

the deposition of biomass ash [41-43]. Recently, Nik Norizam et al. [19] successfully 186 

developed a model to predict the slagging propensity in fixed bed boilers of woody biomass at 187 

high-temperature regions by employing the melting fraction concept obtained from the 188 

Factsage 8.1 equilibrium model. Based on Figure 1, the melt fraction was compared between 189 

the current FBC (with bed material) and the fixed bed model (without bed material). The 190 

motivation is to compare the melt fraction model with and without the presence of the bed 191 

material (quartz). The presence of bed material (rigid lines) has higher melt fractions compared 192 

to without the presence of quartz (dash lines). This proves that the presence of SiO2 (quartz) as 193 

bed material actively reacts with the fuel ash compositions and produces a significant amount 194 

of agglomerates in FBC technology. Figure 1 demonstrates that Wheat straw (red line) exhibits 195 

a higher melting fraction than Bark I (blue line). Experimentally, it was observed that Wheat 196 

straw tends to have a high propensity for bed agglomeration, whereas Bark I exhibits a low 197 

tendency for bed agglomeration. This is because Wheat straw has a high ratio of K2O/CaO 198 

compared to Bark I. The analysis of the chemical compositions of ash will be further explained 199 

in Section 3.2. In addition, Figure 1 clearly illustrates the melting degree increases with an 200 

increase in the temperature. Thus, the melting degree illustrated in TEM simulation is in  201 
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 202 
Figure 1 Comparison of the melt fraction between the FBC model with bed material and 203 

fixed-bed model without bed material. 204 

agreement with the common melting curve demonstrated by Zhou et al. [41] and the melting 205 

fraction of woody biomass in fixed bed boiler by Nik Norizam et al. [19]. This paper 206 

concentrates on determining the melt fraction exclusively in the low-temperature range of 700-207 

900 °C based on typically FBC operating conditions [2]. 208 

3.2 Analysis and application of an improved BAI, Ia 209 

 210 

Predicting the bed agglomeration tendency in FBC can assist power plant operators in 211 

anticipating the fuel quality before biomass firing. The objective of this section is to create an 212 

improved numerical model for a bed agglomeration index, Ia. This numerical model is intended 213 

for predicting the bed agglomeration behaviour of biomass based on the fuel ash composition, 214 

eliminating the need for a thermodynamic equilibrium calculation process. This is particularly 215 

relevant as the FactSage software is not extensively utilized among power plant operators. The 216 

development of bed agglomeration index, Ia is based on the melting fraction, Mf and chemical 217 

ash compositions (training datasets 1-20) as shown in Table 1 by applying the method of PLS 218 

regression (PLSR) analysis, coupled with cross-validation. The root means square error 219 
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(RMSE), R2, and slope for the training data were 0.031, 0.988 and 0.988, respectively which 220 

suggested a good fit of the model [44]. The expression of Ia is acquired as follows: 221 𝐼𝑎 = |[0.34 − 1.2055(𝑀𝑔𝑂 + 𝐶𝑎𝑂) + 1.6228(𝐾2𝑂 + 𝑁𝑎2𝑂) + 7.113 × 10−1 𝑆𝑖𝑂2 +222 1.627 × 10−1(𝑆𝑂3 + 𝑃2𝑂5)]|                 (3.1) 223 

*Condition applying eq 3.1:  224 

The mass fractions of the ash compositions must be applied for the oxide parameters in the Equation 3.1. 225 

 226 

 The negative coefficient in Equation (3.1) for MgO+CaO indicates that an increase in 227 

the values of MgO+CaO will result in a decrease in the predicted value of BAI, Ia. Conversely, 228 

the parameters (SiO2, K2O+Na2O, SO3+P2O5) associated with the bed agglomeration 229 

tendencies of biomass fuel exhibit positive coefficients. This implies an increased value of 230 

these three parameters will result in a higher predicted number of BAI, Ia. Elements exhibiting 231 

positive coefficients are highly prone to the formation of bed agglomeration, with potassium 232 

being the most prevalent component in the agglomerates [2, 7, 20, 21, 24, 45]. Among the 233 

positive coefficients, the highest value is +1.6228, and it corresponds to the regression 234 

coefficient of potassium combined with sodium. This suggests that the presence of the 235 

potassium element significantly influences the bed agglomeration behaviour. Morris et al. [2] 236 

explained that agglomeration caused by melt-induced mechanism occurs when there is a 237 

sufficient content of silica and alkali metal in the fuel ash. Lin et al. [20] found that high 238 

potassium content in straw leads to the development of agglomerates and defluidization. 239 

According to Grimm et al. [7], the wheat straw (potassium rich fuel) showed high tendency of 240 

bed agglomeration upon firing in a 5 kW bubbling fluidized bed reactor. Figure 2 illustrates 241 

the solid-liquid phase for wheat straw obtained by the TEM simulation, it is clearly shown that 242 

most of the compounds containing potassium which consist of K2Ca2Si9O21, K2MgSi5O12, 243 

K2SO4, and KAlSi3O8. This is in agreement with the study by Lin et al. [20] who suggested 244 

that compounds containing potassium have a tendency to persist in the bed and create 245 

potassium-rich ash with a low melting point during the combustion process. Moreover, 246 
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experimental observation from Table 1 shows that about 95% of high bed agglomeration 247 

tendency was observed when the potassium value is higher than 10 wt%. 248 

 
Figure 2 Solid-liquid phase for Wheat straw (3) obtained by the FactSage equilibrium 249 

modelling. 250 

 
Figure 3 Comparison between melt fraction by TEM, Mf and predictive BAI index, Ia. 251 

Figure 3 demonstrates a comparison between the melt fraction values, Mf and the 252 

predicted agglomeration index, Ia and the estimated error. The melt fraction for the 20 biomass 253 
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fuels (training datasets) were determined using the TEM. The Mf value will serve as a 254 

quantitative measure of bed agglomeration behaviour and will be compared with the qualitative 255 

measurement (low and high) based on experimental observations. As explained in Section 3.1, 256 

the value of the melt fraction, Mf will increase corresponding to experimental observations of 257 

bed agglomeration from low to high tendency. For a comprehensive explanation of the 258 

classifications of the experimental observations, please refer to Table 2 [7, 20-24]. It can be 259 

observed that the predicted index, Ia closely matches the melt fraction, Mf for both the training 260 

and testing datasets. It was found that the average error for prediction bed agglomeration index, 261 

Ia is 11.39%, which indicates that both of the indices Mf and Ia are in agreement with each other 262 

and exhibit the same trend as the calculated agglomeration index. 263 

Table 2 A comprehensive explanation of the classification for the bed agglomeration 264 

tendency by experimental observations. 265 

Authors Technique used to determine the bed agglomeration in FBC 

Grimm et 

al. [7] 

The study evaluates the bed agglomeration tendency based on the formation 

and characteristics of coating layers on bed particles, as well as the temperature 

at which agglomeration leads to defluidization. 

Lin et al. 

[20] 

The paper uses defluidization time as the primary metric to assess the 

agglomeration tendency in FBC, with temperature being a critical factor 

influencing this behavior. The shorter the time before defluidization occurs, the 

higher the agglomeration tendency. 

Yu et al. 

[21] 

The study is to determine the tendency of agglomeration in FBC of biomass by 

measuring the slip resistance between particles. An increase in slip resistance 

between particles will correspond to the defluidization and high tendency to 

bed agglomeration.  

Llorente et 

al. [22] 

The sintering degree of agglomerates of bed material was determined visually 

and the assessment of ash disintegration in the agglomerates and deposits.  

Liu et al. 

[23] 

The bed agglomeration tendency was measured by monitoring the chemical 

composition changes, observing the physical changes in the bed material 

particles, and correlating these with the operational stability of the CFB during 

the experiments. 
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Piotrowska 

et al. [24] 

The bed agglomeration tendency was concluded by analysing the temperature 

and pressure to determine the initial and total defluidization temperature. The 

initial defluidization temperature indicated the growth of agglomerates. The 

bed agglomeration tendency will reduced with an increased in defluidization 

temperature.  

 Figure 4 shows the predicted value of the agglomeration index, Ia compared to the 15 266 

experimental observations datasets (Table 1, numbers 21-35) from the literature [7, 20-27]. The 267 

results indicate that the value of Ia index below 0.5 corresponds to a low bed agglomeration 268 

tendency based on experimental observations. For example, Brassica (26) and Wood (31) were 269 

observed as low tendency of bed agglomeration in the experimental observation [22, 27]. This 270 

is due to the low ratio of K2O/CaO. In contrast, biomass fuels with Ia value above 0.5 tend to 271 

show high bed agglomeration during combustion. Most of the biomass fuels that were observed 272 

to exhibit high bed agglomeration have a high K2O/CaO ratio. For example, Cotton husks (27) 273 

and coffee husks (28) have high amounts of potassium which are 50.20 wt% and 61.00 wt%, 274 

respectively while the amount of calcium for both fuels are lower than the potassium content. 275 

The findings suggest that potassium-rich ash compositions typically led to higher bed 276 

agglomeration risks while biomass fuels with a high amount of calcium content shows lower 277 

bed agglomeration potential in fluidised quartz bed combustors.  278 

However, the K2O/CaO ratio alone is not sufficient to accurately predict bed 279 

agglomeration propensities. For example, Thistle (19) observed high agglomeration tendencies 280 

during the experiments despite having a low K2O/CaO ratio. This discrepancy is because the 281 

K2O/CaO ratio does not account for the elements that are prone to agglomeration such as 282 

sodium. Furthermore, Thistle (19) also showed a high melting fraction (0.77) in TEM analysis 283 

which indicated high tendency of bed agglomeration in fluidized bed reactor. On the other 284 

hand, Rapeseed meal (21) and RM (22) had high K2O/CaO ratios, yet they showed low 285 

agglomeration propensities in the experiments. When their ash compositions were applied to  286 
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 287 
Figure 4 The predicted values in the proposed index, Ia versus experimental observations 288 

of bed agglomeration tendency. 289 

the Ia index, the index accurately predicted their low agglomeration tendencies which aligned 290 

with experimental observations. This accuracy is because the Ia index considers multiple ash 291 

components beyond potassium and calcium, providing a more comprehensive prediction of 292 

agglomeration behaviour. In conclusion, the Ia index provides a more reliable assessment for 293 

predicting bed agglomeration in fluidized bed systems. 294 

Figure 5 shows the performance of the improved model equation for Ia compared with 295 

four different existing index equations [10, 13-15, 46]. These four distinct expressions are 296 

created for predicting bed agglomeration behaviour in FBC technology [2]. Please refer to the 297 

appendix (Table 3) for a complete list of all the equations and their corresponding thresholds 298 

for each index. The Figure 5 illustrates the number of predicted samples, out of the 15 testing 299 

fuels (21-35), that correspond to the experimental observations for each index. It is observed 300 

that the ranking for the accuracy in the prediction performance, arranged from high to low, is 301 

as follows: Ia > I2 = (Na + K + Si) / (Ca + P + Mg) = BAI > I1 = (Na + K) / (2S + Cl) > Alkali  302 
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 303 
Figure 5 Comparison of the number of predicted samples matching with the experimental 304 

observations between Ia and 4 existing indices. 305 

index. The new improved index, Ia, successfully predicted a total of 15 out of 15 samples in 306 

accordance with the experimental observations. On the other hand, the four existing indices 307 

(I2, Alkali index, BAI, I1) could only accurately predict a maximum of 73% of the total 308 

samples. 309 

4 Conclusions 310 

 This study has successfully developed an improved semi-empirical index to predict the 311 

tendency of bed agglomeration in a FBC system. The index, Ia takes into account the chemical 312 

ash compositions when biomass is fired in fluidized bed combustors. The predictive tool 313 

created is capable of assisting industrial users in determining bed agglomeration behaviours 314 

when firing various types of biomass in FBC boilers. The newly improved bed agglomeration 315 

index, Ia was created by analysing the predicted melting fraction through TEM, considering the 316 

quartz as bed material used in the FBC system and chemical compositions of fuel ash, by 317 

employing the numerical PLS regression coupled with a cross-validation. The presented 318 
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method has been verified using experimental observations from existing literature on biomass 319 

in the FBC technology. The results indicate that the BAI propensity index, Ia can be categorized 320 

into two primary groups: low bed agglomeration tendency when Ia ≤ 0.50 and high bed 321 

agglomeration propensity when Ia > 0.50. In addition, the Ia demonstrates a significantly higher 322 

success rate compared to four existing indices in evaluating the tendency of bed agglomeration 323 

in fluidized bed type of boiler.  324 

 It can be confirmed that the primary element contributing to bed agglomeration 325 

formation is K2O, while a high value of CaO will reduce the tendency of bed agglomeration in 326 

FBC. The index should be utilized during the low-temperature (700-900 °C) operation of 327 

fluidized bed boilers. In addition, the Ia index is developed based on fluidized quartz bed 328 

combustion, therefore, caution should be exercised when extending the predicted indices, Ia in 329 

this paper to other types of bed material used in FBC technology. The authors strongly 330 

recommend obtaining more extensive datasets of experimental observations by conducting 331 

tests at an industrial or full scale to improve the accuracy of the predictive indices in forecasting 332 

the tendency of bed agglomeration of FBC.  333 
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Fluidized-bed Combustion of Rapeseed Meal. Energy Fuels, 2009. 23(5): p. 2700-2706. 357 

9. Visser, H.J.M., S.C. van Lith, and J.H.A. Kiel, Biomass Ash-Bed Material Interactions 358 

Leading to Agglomeration in FBC. Journal of energy resources technology, 2008. 359 

130(1): p. 0118011-0118016. 360 

10. Visser, H.J.M., J. Kiel, and H. Veringa, The influence of fuel composition on 361 

agglomeration behaviour in fluidised-bed combustion. 2004: Energy research Centre 362 

of the Netherlands ECN Delft. 363 

11. Scala, F. and R. Chirone, Characterization and Early Detection of Bed Agglomeration 364 

during the Fluidized Bed Combustion of Olive Husk. Energy & Fuels, 2006. 20(1): p. 365 

120-132. 366 

12. Chirone, R., F. Miccio, and F. Scala, Mechanism and prediction of bed agglomeration 367 

during fluidized bed combustion of a biomass fuel: Effect of the reactor scale. Chemical 368 

Engineering Journal, 2006. 123(3): p. 71-80. 369 

13. Vamvuka, D., D. Zografos, and G. Alevizos, Control methods for mitigating biomass 370 

ash-related problems in fluidized beds. Bioresource Technology, 2008. 99(9): p. 3534-371 

3544. 372 

14. Miles, T.R., T.R. Miles, L.L. Baxter, R.W. Bryers, B.M. Jenkins, and L.L. Oden, Boiler 373 

deposits from firing biomass fuels. Biomass & bioenergy, 1996. 10(2): p. 125-138. 374 

15. Dayton, D., B. Jenkins, S. Turn, R. Bakker, R. Williams, D. Belle-Oudry, and L. Hill, 375 

Release of inorganic constituents from leached biomass during thermal conversion. 376 

Energy & Fuels, 1999. 13(4): p. 860-870. 377 

16. Fernández Llorente, M.J. and J.E. Carrasco García, Comparing methods for predicting 378 

the sintering of biomass ash in combustion. Fuel, 2005. 84(14): p. 1893-1900. 379 

17. Teixeira, P., H. Lopes, I. Gulyurtlu, N. Lapa, and P. Abelha, Evaluation of slagging 380 

and fouling tendency during biomass co-firing with coal in a fluidized bed. Biomass 381 

and Bioenergy, 2012. 39: p. 192-203. 382 

18. Billen, P., J. Van Caneghem, and C. Vandecasteele, Predicting Melt Formation and 383 

Agglomeration in Fluidized Bed Combustors by Equilibrium Calculations. Waste and 384 

Biomass Valorization, 2014. 5(5): p. 879-892. 385 

19. Nik Norizam, N.N.A., X. Yang, D. Ingham, J. Szuhánszki, W. Yang, J. Rezende, L. 386 

Ma, and M. Pourkashanian, An improved index to predict the slagging propensity of 387 

woody biomass on high-temperature regions in utility boilers. Journal of the Energy 388 

Institute, 2023. 109: p. 101272. 389 

20. Lin, W., K. Dam-Johansen, and F. Frandsen, Agglomeration in bio-fuel fired fluidized 390 

bed combustors. Chemical engineering journal (Lausanne, Switzerland : 1996), 2003. 391 

96(1): p. 171-185. 392 

21. Yu, C., Z. Tang, L. Zeng, C. Chen, and B. Gong, Experimental determination of 393 

agglomeration tendency in fluidized bed combustion of biomass by measuring slip 394 

resistance. Fuel, 2014. 128: p. 14-20. 395 

22. Llorente, M.F., R.E. Cuadrado, J.M. Laplaza, and J.C. García, Combustion in bubbling 396 

fluidised bed with bed material of limestone to reduce the biomass ash agglomeration 397 

and sintering. Fuel, 2006. 85(14-15): p. 2081-2092. 398 



20 

 

23. Liu, R., B. Jin, Z. Zhong, and J. Zhao, Reduction of bed agglomeration in CFB 399 

combustion biomass with aluminium-contain bed material. Process Safety and 400 

Environmental Protection, 2007. 85(5): p. 441-445. 401 

24. Piotrowska, P., A. Grimm, N. Skoglund, C. Boman, M. Öhman, M. Zevenhoven, D. 402 
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Appendix 466 

Table 3 list of all the equations and their corresponding thresholds for each index [10, 13-15, 46]. 467 

Index Equation Threshold for each index 

Ia 𝐼𝑎 = |[0.34 − 1.2055(𝑀𝑔𝑂 + 𝐶𝑎𝑂) + 1.6228(𝐾2𝑂 + 𝑁𝑎2𝑂)+ 7.113 × 10−1 𝑆𝑖𝑂2 + 1.627 × 10−1(𝑆𝑂3 + 𝑃2𝑂5)]| Bed agglomeration tendency, Ia:  

low ≤ 0.50 < high 

Alkali index AI = (K2O + Na2O) kg/GJ 0.17 < AI < 0.34 agglomeration possible  

AI > 0.34 agglomeration near certain 

Bed agglomeration index 𝐵𝐴𝐼 = 𝐹𝑒2𝑂3𝐾2𝑂 + 𝑁𝑎2𝑂 
Agglomeration when BAI < 0.15 

Agglomeration index, I1 𝐼1 = 𝑁𝑎 + 𝐾2𝑆 + 𝐶𝑙 
High agglomeration potential when I1 > 1 

Agglomeration index, I2 𝐼2 = 𝑁𝑎 + 𝐾 + 𝑆𝑖𝐶𝑎 + 𝑃 + 𝑀𝑔 
High agglomeration potential when I2 > 1 

 


