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A B S T R A C T

Water hyacinth (WH), known for its ecotoxicity and economic burden in tropical regions, can play an important 
role as a lignocellulosic biomass source for biogas production. Co-digesting WH with cow dung (CD) enhances 
biogas yield but poses challenges like process instability and excessive carbon dioxide production. To improve 
biogas yield from digestion of WH and CD, this study examined the impact of wood and faecal sludge biochar on 
the anaerobic co-digestion of CD and WH using a temperature of 37 ◦C for 40 days. In the controlled laboratory 
tests, cow dung alone produced the least methane (CH4), but introducing 2 % wood and faecal sludge biochars 
significantly boosted CH4 production by 76.8 % and 94.0 %, respectively. However, a 50 % CD-50 % WH 
mixture, the CH4 increase was milder at 20 % and 37 %, respectively. Wood biochar had no significant effect 
while faecal sludge biochar made a statistically significant impact (P < 0.05). These findings offer a sustainable 
solution, paving the way for cost-effective and eco-friendly biogas production in regions plagued by this invasive 
plant. The use of faecal sludge biochar, in particular, has substantial implications for optimizing anaerobic 
digestion processes and reducing their environmental footprint, thereby promoting a more sustainable approach 
to managing WH and addressing energy needs in tropical, eutrophic regions.

1. Introduction

Global prevalence of water hyacinth (WH) in water bodies has 
negatively impacted water quality and biodiversity as well as impeded 
human activities such as navigation and hydro-electric power genera
tion [1,2]. The current methods for controlling the growth of WH have 
been limited due to: the high costs associated with physical techniques; 
harmful environmental effects emanating from chemicals; and the 
time-consuming nature of biological control means [1,3]. Therefore, it 
could be better to shift the focus from eradication to sustainable resource 
utilization of WH [4]. WH offers several potential uses in phytor
emediation [5], briquette production [6], animal feed, and biogas 

production [2]. The latter is a well-established technique used to 
generate energy and extract nutrients from biomass [7,8]. The biode
gradability and thus energy conversion efficiency of WH is hampered by 
its lignocellulosic structure, which slows down the anaerobic digestion 
(AD) of the biomass, resulting in low biogas output [9]. Another limi
tation is the high accumulation of volatile fatty acids (VFA) during the 
digestion of WH which brings about microbial stress, acidification and 
ultimately inhibition of the digestion process. These limitations in the 
digestion of WH have been addressed through pre-treatment process and 
co-digestion with other highly biodegradable materials like food waste 
and cow dung (CD) [10]. Co-digestion of WH with CD enhances biogas 
production while providing an effective livestock manure management 
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strategy. CD provides a suitable buffering capacity against VFAs as well 
as the obligate anaerobes from animal digestive systems [2], making it a 
good inoculum for the co-digestion of WH [11]. However, the stability of 
the AD process and biogas production are limited due to toxic inhibitory 
ammonia.

Recent studies show increasing interest in the improvement of AD 
using carbon-based materials such as granular activated carbon (GAC) 
[12], carbon nanotubes and biochar [13]. The addition of carbon-based 
additives, including biochar, provides a large surface area and porosity 
to promote microbial immobilization and metabolic interactions [14, 
15]. This improves carbon dioxide sequestration [16], and boosts 
methane yield through direct interspecies electron transfer (DIET) and 
inhibitor alleviation [17]. In addition, biochar has a strong buffering 
ability to resist acidic/alkaline shock, frequently detected in AD systems, 
due to its abundant existence of acidic/alkaline functional groups and 
metal ions [18]. Biochar, in particular, is touted to be effective and 
sustainable in AD due to its low cost, environmental sustainability, ca
pacity to utilize various biomass feedstocks, and ability to improve 
digestate quality [13]. Biochar, a carbonaceous solid substance formed 
by pyrolysis of organic feedstocks in an oxygen-deficient environment 
[19] has varying effects on AD depending on the feedstock and pyrolysis 
conditions [20] and the substrate used [13]. Studies have demonstrated 
the suitability of wood biochar in enhancing AD [13], however, there is 
a gap of research on the utilization of faecal sludge (FS) biochar in 
enhancing biogas production, despite its potential as an effective man
agement strategy for hard to manage sludge. To bridge this knowledge 
gap, this study investigated the potential of co-digesting WH with CD, 
incoporating FS biochar, to enhance biogas production. The objective is 
to mitigate the challenges associated with the lignocellulosic structure of 
water hyacinth, slow anaerobic digestion, and reduced biogas output. 
Additionally, it aims to contribute to the field of AD by exploring the 
effectiveness of FS biochar, an under-researched element in enhancing 
biogas production. This research highlights the potential of harnessing 
the underutilized energy and environmental benefits of WH, presenting 
a more sustainable approach to address this ecological challenge and 
meet energy needs in affected regions.

2. Materials and methods

2.1. Sample collection

The two locations in the Inner Murchison Bay (IMB), Uganda pre
viously identified by coordinates 0◦17′28.1″ N, 32,038′31.8″ E and 
0◦17′27.7″ N, 32,038′32.2″ E served as collection points for WH samples. 
The WH locations on the IMB were selected due to their predominance in 
WH growth. Cow dung samples were collected from different locations 
within the kraal (where cattle are kept) at the College of Veterinary 
Medicine, Animal Resources and Bio-security, Makerere University. 
Subsequently, these samples were mixed to form an homogeneous 
composite sample of the cow dung. Faecal sludge after drying on sand 
drying beds was collected from Lubigi wastewater and faecal sludge 
treatment plant was by the grab sampling method. The dried FS was 
pyrolyzed at 300 ◦C for 12 h followed by cooling period for an additional 
12 h. On the other hand, the wood charcoal samples were procured 
markets in Kampala specifically, Owino, Kalerwe, Kibuye, Nakawa and 
Kasubi markets. The markets were selected based on local availability of 
charcoal and potential collection of charcoal from many regions in the 
country. From each market, samples were collected from five randomly 
selected vendors. In Uganda, wood charcoal is generally manufactured 
in traditional earth kilns which operate at temperatures between 200 ◦C 
- 500 ◦C.

2.2. Storage of collected samples

The substrate samples were stored in moisture-free conditions and at 
4 ◦C to limit chemical, physical and biological changes. The solid 

samples were transported to the Public Health and Environmental En
gineering Laboratory (PH/EE lab), Department of Civil and Environ
mental Engineering, College of Engineering, Design, Art and 
Technology, Makerere University, in properly sealed zipper bags and 
carried in a coolant box, to avoid loss or gain of moisture to and from the 
atmosphere.

2.3. Sample preparation

Prior to preparing the samples, they were brought out of the fridge to 
attain room temperature. Preparation of WH samples before analysis 
involved trimming off roots as only leaves and stems were used in this 
study.The leaves and stems were crushed using a grinding mill and 
blended to make a homogeneous sample. Biochar preparation involved 
crushing to a size <2mm.

2.4. Characterization of WH and cow dung

WH and cow dung were characterized for Total Solids (TS), Total 
Volatile Solids (TVS), Total Suspended Solids (TSS), Total Organic 
Carbon (TOC), Total Nitrogen (TN). TS concentration was determined 
gravimetrically by taking the weight of oven dried sample at 105ºC until 
a constant weight (for 24 h) as a fraction of the wet sample volume [21]. 
TVS was determined by taking the weight difference between 
oven-dried solids and the 2-hour muffle furnace-ignited sample at 550ºC 
and expressed as a percentage of TS. Ash content was determined as the 
residue after ignition in the furnace at 550ºC for 2 h [21]. pH was 
measured for all the samples using a pH meter (HACH, HQ 30d). TN was 
determined by the Kjeldahl Nitrogen method and the TOC was deter
mined by the Loss-on-ignition method [22]. All samples for TS, TVS, TN 
and TOC were analysed in triplicates.

2.5. Characterization of biochar samples

Proximate analysis of the biochar samples was determined using the 
Thermogravimetric analyser TGA/DSC 1. Approximately 10 mg of the 
sample was analysed under a N2 flow (50mL/min) and a heating rate of 
25 ºC/min from 25 to 105 ºC for 10 min, then heated up to 900 ºC, and 
held at 900 ºC for 10 min. The flow was switched from N2 to air for 15 
min to promote complete combustion. The differences in mass loss 
during the heating stages allowed for calculating the percentage of 
moisture, volatile matter (VM), fixed carbon (FC) and ash. The pH and 
electrical conductivity of the biochar samples were measured using the 
pH and electrical conductivity meter (HACH, HQ 30d). TN was deter
mined by the Kjeldahl Nitrogen method and the TOC was determined by 
the Loss-on-ignition method [22]. The percentage of sodium (Na), po
tassium (K) and Calcium (Ca) in the samples was determined by flame 
photometry (Na, K) and atomic absorption spectrophotometry (Ca) 
[22].

2.6. Anaerobic digestion tests

To investigate the effect of biochar addition and the ratio of cow 
dung to WH during anaerobic digestion, a full factorial 22 Design of 
Experiments (DOE) was performed. The two independent variables of 
this study were evaluated at two levels, cow dung-WH ratio (CD: WH) 
(50:50 – 0:100) and Biochar (BC) load (0–2 %) with 3 replicates and 3 
centre points as shown in Table 1. The substrate concentrations was 
varied to achieve the desired CD-WH ratios. Two biochemical methane 
potential (BMP) setups were made using the design in Table 1 with one 
setup with wood biochar and the other with faecal sludge biochar.

2.7. Set-up of biochemical methane potential (BMP) reactors

The total solids and volatile solids in g/kg of the WH and cow dung 
were pre-determined and used in the preparation of the samples to be 
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loaded in the 1000 mL bottles (used as the digesters) with an effective 
volume of 800 mL. The total volatile solids content for each of the re
actors was maintained at 20 gVS/L in the setup. The necessary amount 
of WH and CD to achieve the corresponding volatile solids content was 
determined using the CD: WH ratio established in the DoE for each 
reactor. The reactors were topped up with distilled water to reach a 
working volume of 800 mL. The medium was mixed and the bottles 
tightly fixed. Nitrogen (N2) gas was purged through the closed reactor at 
0.5 bar for 1 min to create an anaerobic environment and the setup was 
immersed in the bucket of water to check for leakages. The reactors were 
then placed in a temperature controlled water bath (UNITEMP) at 37 ºC 
(Fig. 1). This setup ensures a controlled anaerobic environment for the 
digestion process.

2.7.1. Biogas monitoring
The setup was monitored daily to observe and record any changes in 

the operation conditions, measure the volume of gas produced, and 
identify when the curve of gas volume production against time levelled 
off. The volume of gas generated from the reactors was determined using 
the water displacement technique. Monitoring continued until the daily 
gas production was below 1 % of the accumulated gas production as 
recommended by German standard VDI 4630 [23]. The quality of the 
gas generated was determined using the digital gas analyzer (BIOGAS 
5000), which provided methane and carbon dioxide accuracy of ±0.5 % 
after calibration. This analysis included monitoring percentages of 
methane, carbon dioxide, oxygen, hydrogen sulphide and other trace 
gases. Connecting the needle valve of the gas collection pipe (Fig. 1) to 
the digital gas analyzer (BIOGAS 5000) ensured an airtight connection, 
preventing contamination from the surrounding environment. The 
percentage compositions of the constituent gases were recorded daily 

from day 1 to day 40. This comprehensive approach to monitoring and 
analysing gas production and quality enhances the reliability and pre
cision of the experimental results.

2.7.2. Sampling of liquid samples for pH, alkalinity and VFA analysis
Liquid samples were extracted after measuring the quantity and 

quality of the gas generated in the BMP reactors on day 0 and day 40. 
This was done by opening the toggle valve connected to the BMP reactor 
and connecting a 5 mL syringe. The withdrawn samples were analysed 
for pH, alkalinity and VFA content. The pH was measured using the pH 
meter (HACH, HQ 30d) and the alkalinity was measured using Palintest 
Alkaphot test. For the viability of the setup, care was taken to ensure that 
not >10 % of the working volume was withdrawn during the entire 
duration of the setup. Concentrations of volatile fatty acids (VFAs), 
including butyric, lactic, and acetic acid, were determined using the 
distillation method [21]. This sampling and analysis procedure ensures 
the reliability of the results by maintaining the integrity of the experi
mental conditions.

2.7.3. Measurements of methane generated in BMP reactor
A displacement bottle of 1-Liter capacity was filled to approximately 

80 % (800 mL) with a 5 % sodium hydroxide solution [24,25]. A gasket 
was placed on the mouth of the bottle and the lid was securely tightened. 
The displacement bottle was subjected to leak test, by connecting the 
needle valve of the BMP reactor to the needle valve of the displacement 
bottle using a 3 mm Outer Diameter (OD) tubing with compression fit
tings of 1/8-inch size nut ferrules (Fig. 1).

The transfer of gas from the BMP bottle to the displacement bottle 
occurred gradually by slowly opening both the needle valve of the BMP 
reactor and the needle valve of the displacement bottle. The biogas 
displaced the sodium hydroxide out of the displacement bottle via toggle 
valve. The volume of the 0.05 M sodium hydroxide solution displaced 
was equivalent to the volume of methane generated in the reactor since 
the sodium hydroxide absorbed the carbon-dioxide directly.

2.8. Kinetic model

The experimental BMP results were fitted to the modified Gompertz 
model estimates kinetic parameters as predictor variables (Eq. (1)). This 
model offers the best fitting by accurately simulating the cumulative 
production of methane [26,27]. 

Table 1 
Full factorial 22 experimental design using Minitab.

Reactor 
No.

Orthogonal 
design

Actual value Actual VS added (g)

CD: 
WH

BC 
load

CD: 
WH

BC load 
(%)

CD WH BC 
Load

R1, R5, R9 − 1 − 1 50:50 0 82 143.5 0
R2, R6, R10 − 1 1 50:50 2 82 143.5 3.4
R13, R14, 

R15
0 0 75:25 1 129 71.7 2.0

R3, R7, R11 1 − 1 100 0 172 0 0
R4, R8, R12 1 1 100 2 172 0 3.4

Fig. 1. Experimental Set up of the reactor bottles in a water bath.
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BMP(t) = BMPmax . exp
{

− exp
[

μm . e
BMPmax

(λ − t)+1
]}

(1) 

Where BMP(t) represents the cumulative methane yield at time t 
(day) and BMPmax stands for maximum methane yield, both expressed in 
mL CH4 /gVS. μm states for the methane production rate in mL CH4 /gVS. 
day, λ stands for lag phase in days and e is the expotential of 1.

2.9. Data analysis

Statistical analysis was carried out using Microsoft Excel Professional 
Plus 2019 version 1809 for Windows and Minitab 27 software. 
Descriptive statistics including means and standard deviations were 
used for parameters characterising the water hyacinth, cow dung and 
biochar samples as well as to analyse biogas production from the BMP 
setups. For the DOE factorial design and analysis of response variables 
were performed with the Minitab 27 software. The effect of the inde
pendent variables CD: WH and BC load over the response variables was 
performed by analysis of variance (ANOVA) and linear regression, both 
at a confidence level of p < 0.05. The kinetic analysis was performed 
using the R-statistical software v.4.2.2.

3. Results and discussion

3.1. Characterization of WH and cow dung

The WH and cow dung feedstocks were characterized to determine 
their desirability for AD and to predict their performance once they were 
co-digested. It can be seen that the WH had a higher Moisture content, 
TN, TOC than the cow dung whereas the cow dung exhibited a higher 
TS, VS and pH (Table 2). Despite the WH having a higher TOC and TN 
concentration than the cow dung, it had a slightly lower C/N ratio than 
the cow dung (Table 2).

Regarding the composition of the feedstocks, both WH and cow dung 
had a high VS as a percentage of the TS of 83.8 ± 0.51 % and 84.1 ±
2.44 % respectively, indicating that most components of the substrates 
were organic matter susceptible to degradation by microorganisms. This 
confirmed their suitability as feedstocks for the anaerobic digestion 
process. It should be noted however that not all the VS of the feedstock is 
degradable as VS is divided into two fractions of biodegradable VS and 
refractory VS [28] therefore in as much as VS content is a primary in
dicator of probable methane potential, it is not conclusive until the 
variations in organic matter composition of the substrates are taken into 
account [29]. The C/N ratio of WH was found to be below the optimal 
range of 16–30 recommended for effective metabolic processes [30–33] 
unlike the one for cow dung which lay in the optimal range. The low C/N 
ratio of WH suggests that the mono-digestion of WH could pose a po
tential risk of ammonia inhibition which would likely cause the pH to 
exceed 8.5 and impact the activity of methanogens [34].

3.2. Characterization of wood biochar and faecal sludge biochar

The biochars were characterized to predict their performance once 
added to the substrates during co-digestion (Table 3). It can be seen that 
the FS biochar had a higher ash content, TN, TOC, pH and EC than the 
wood biochar whereas the wood biochar exhibited a higher FC, VM 
(Table 3). The higher FC content in wood biochar indicates a higher 
potential for carbon sequestration and stability during anaerobic 
digestion while the higher TOC content in faecal sludge biochar suggests 
a higher potential for organic carbon utilization and biogas production 
in anaerobic reactors. The FS biochar presented higher ash content 
compared to the wood biochar which can be attributed to the higher 
amount of inorganic matter in their substrate concentrated in the bio
char during pyrolysis [16]. The pH of both biochars was slightly alka
line, however the faecal sludge biochar presented a higher pH as 
compared to the wood biochar.

The faecal sludge biochar presented higher concentrations of the 
alkali and alkali earth metals (AAEMS), such as Na, K, and Ca as 
compared to the wood sludge biochar and these have been reported in 
previous studies to contribute to the buffering capacity of biochars in 
anaerobic digestion [35,36]. This is correlated by the high pH and ash 
content presented by the faecal sludge biochar as compared to the wood 
biochar which could have served to reduce VFA accumulation in the 
biochar amended reactors. Additionally, the presence of the AAEMs has 
been shown to promote in-situ carbon-dioxide sequestration by chemi
cal sorption [20]. Chemical sorption of carbon-dioxide results in for
mation of carbonates which have been reported to enhance methane 
formation through hydrogenotrophic methanogens [37].

3.3. Comparison of methane yield from wood and faecal sludge biochar 
setups

Figs. 2 and 3 show the average BMP curves obtained by each additive 
within the factorial design for the co-digestion of WH and cow dung for 
the wood biochar and faecal sludge biochar setups respectively. In the 
wood biochar setup, all reactors exhibited a lag phase of 4 days which is 
similar to other WH-based co-digestion studies [38,39]. The volumes of 
methane gas were found in a range of 84.04 – 196.80 mLCH4/gVS. 
Initially, 50 % CD:50 %WH with 0 % BC had higher methane yield than 
all the other ratios for the first 15 days, but was superseded by 50 % 
CD:50 %WH + 2 % BC, 100 % CD + 2 % BC and 75 % CD:25 %WH + 1 % 
BC each with methane volumes of 122.29 ± 19.56, 148.58 ± 14.97, and 
196.80 ± 1.86 mLCH4/gVS, respectively (Fig. 2). In comparison, the 
final methane volumes in the faecal sludge biochar setup were found to 
be in a range of 90.43 – 175.25 mLCH4/gVS with 50 % CD:50 %WH + 2 
% BC, 100 % CD + 2 % BC and 75 % CD:25 %WH + 1 % BC each with 
methane volumes of 144.82 ± 20.33, 175.25 ± 5.29, 157.60 ± 59.25 
mLCH4/gVS respectively (Fig. 3).

Overall, the 100 % CD + 0 % BC had the least yield for both setups 

Table 2 
Characteristics of WH and cow dung substrates.

Parameter Unit Water hyacinth 
(WH) Mean±SD

Cow dung (CD) 
Mean±SD

Total solids (TS) % 8.44±0.25 17.3 ± 0.7
Total solids (TS) g/kg 84.0 ± 2.5 173±3.1
Volatile solids (VS) % of TS 83.8 ± 0.5 84.1 ± 2.4
Moisture content (% 

wet sample)
% wet 
sample

91.6 ± 0.25 82.7 ± 0.3

Total Nitrogen (TN) % 3.20±0.04 2.50±0.07
Total organic carbon 

(TOC)
% 48.1 ± 0.2 44.7 ± 0.3

pH ​ 7.76 8.38
C/N ratio ​ 15.0 ± 0.1 17.9 ± 0.4

Table 3 
Characteristics of biochars.

Parameters Unit Wood biochar 
Mean ± SD

Faecal sludge biochar 
Mean ± SD

Volatile Matter % 21.7 ± 1.0 12.8 ± 1.4
Moisture content % 8.07±0.23 36.5 ± 1.1
Ash content (%) % 29.4 ± 3.8 40.5 ± 6.9
Fixed carbon (FC) % 40.9 ± 2.7 10.2 ± 8.2
Total organic carbon 

(TOC)
% 15.9 ± 0.3 28.1 ± 1.3

Total Nitrogen (TN) % 0.89±0.05 1.57±0.09
Potassium (K) % 0.72±0.01 0.61±0.09
Calcium (Ca) % 0.25±0.02 4.87±0.19
Sodium (Na) % 0.04±0.00 0.42±0.00
pH ​ 7.69 8.66
EC dS/ 

m
1.646 3840
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(84.04 ± 46.5 and 90.43 ± 47.09 mLCH4/gVS) and this was found to be 
lower than the methane yield range observed in a WH and cow dung co- 
digestion study by [40] (85.9 – 224 mLCH4/gVS). It was also observed 
that 50 % CD + 50 % WH + 0 % BC produced a higher methane yield in 
both setups (102.2 ± 68.8 and 105.47 ± 9.09 mLCH4/gVS) as compared 
to 100 % CD + 0 % BC. This suggests that co-digestion of cow dung and 
WH resulted in increased methane production as compared to 
mono-digestion of cow dung. This could be attributed to the addition of 
the WH substrate which was pre-treated to very fine particles thus 
providing enhanced solubilization of the substrate due to increased 
surface area [10,41]. The performance of 50 % CD + 50 % WH + 0 % BC 
in this study was similar to that established in a recent study where 
CD/WH ratio of 50 %:50 % yielded 93.2 mL CH4/gVS [40].

From Figs. 2 and 3, the 2 % wood and faecal sludge BC load addition 
to 50 %CD:50 %WH and 100 % CD resulted in an increase in the 
methane yield. However, addition of the wood biochar resulted in 20 % 
and 77 % higher methane yield while the faecal sludge biochar resulted 
in 37 % and 94 % higher methane yield from the 50 %CD:50 %WH and 
100 % CD mixtures respectively. These findings indicate that, while both 

forms of biochars improved AD, their effect is not the same and depends 
on the feedstocks used in AD as well as those used in BC production and 
this is similar to other studies [13]. While the wood BC presented a 
higher FC content as compared to the faecal sludge BC, the faecal sludge 
BC presented higher N, K and Ca content which could have provided 
nutrients for the microorganisms thereby facilitating a higher methane 
production. The high pH of the faecal sludge BC could have served to 
increase the pH in the amended reactors as compared to the wood BC 
setup (Fig. 6) thus providing more optimum conditions for the action of 
methanogenic bacteria.

The increase in methane yield could be attributed to adsorption of 
inhibitors such as VFAs which would result in a more stable system for 
the growth of microorganisms (Fig. 7). [16] investigated the influence of 
BC samples from wood pellets, sewage sludge and rice husks on methane 
production from anaerobic digestion of waste activated sludge. In this 
study, it was observed that the rice husk BC amended reactors had the 
greatest increase in methane content (67 %) compared to the control 
reactors, followed by the sewage sludge BC (37 %) and the wood pellet 
BC (23 %). The increase in methane content was attributed to capture of 

Fig. 2. Cumulative biogas production vs retention time for Wood BC setup.

Fig. 3. Cumulative biogas production vs retention time for faecal sludge BC setup.
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carbon-dioxide from biogas by physical adsorption through electrostatic 
forces and chemical sorption by AAEMs. Accordingly, in a study to 
investigate the effect of biochar made from wood pellets, wheat straw, 
and sheep manure on high-solids anaerobic digestion of poultry litter, 
the addition of wood pellet biochar increased methane yield by 32 %. 
However, addition of biochar made from wheat straw or sheep manure 
had a negative impact on digester performance, which was attributed to 
the high ash content of the substrates, inhibiting the methane generation 
[41].

3.4. Comparison of biogas quality from wood and faecal sludge biochar 
setups

Biogas consists primarily of methane (CH4) and carbon dioxide 
(CO2), but its quality is mostly dependent on CH4 composition [42]. The 
average percentage composition of methane, carbon dioxide and oxygen 
in the biogas produced by day 40 are shown in Figs. 4 and 5 for the wood 
and faecal sludge biochar setups respectively. In both setups, it was 
observed that the 75 %CD:25 %WH + 1 %BC, had the highest methane 
percentage composition of the mix ratios considered. The 50 %CD:50 % 
WH + 0 % BC showed the lowest methane percentage composition 
(Figs. 4 and 5).

The enhanced methane yield could be a result of conversion of car
bon dioxide to methane by aceticlastic methanogens through direct 
interspecies electron transfer (DIET) [17,43]. It has been reported that 
biochar offers surfaces for immobilization and colonization of micro
organisms which promotes the electron transfer between syntrophic 
microorganisms [44]. Additionally, the conductive nature of the bio
chars, demonstrated by the high conductivity (Table 3), could also 
promote DIET during AD however the capacity of stimulating DIET has 
been reported to be related to the redox characteristics of the biochars 
[16] and no clear positive impact of high EC on methane production has 
been observed in other studies [45]. However, it has been suggested that 
the EC of biochar amended reactors can strengthen the electron transfer 
and interspecies electron transfer mechanism from electron donors to 
acceptors [44]. Electron transfer between these syntrophic microor
ganisms enables them to overcome the energy barriers involved in the 
reactions for converting acetate and volatile fatty acids to methane [46].

3.5. Kinetic parameters

Tables 4 and 5 show the values of BMPmax, µm and λ obtained by 
fitting experimental BMP for the co-digestion of cow dung and water 
hyacinth with wood and faecal sludge biochar into the modified Gom
pertz model respectively. The BMPmax was generally increased with the 
addition of biochar in both experiments. The addition of 2 % wood 
biochar to 50 %CD:50WH and 100 %CD increased BMPmax by 13.6 % 
and 45.2 %, respectively. However, the addition of 2 % faecal sludge 
biochar to the same CD:WH ratio increased BMPmax by 18.4 % and 87.5 
%, respectively. The addition of biochar also shortened the methano
genic lag phase and raised the maximum methane production rates in 
both setups and this has been attributed to positive role of biochar as 
electron transfer mediator in DIET interactions [47]. Accordingly, In a 
study to assess the application of eco-compatible biochar in anaerobic 
digestion to relieve acid stress, it was observed that the addition of 0.5–1 
mm biochar to 4, 6 and 8 g/L glucose shortened the methanogenic lag 
phase by 11.4 %, 30.3 % and 21.6 % and raised the maximum methane 
production rate by 86.6 %, 21.4 % and 5.2 %, respectively [48]. Similar 
findings were made in a study of anaerobic digestion of olive mill 
wastewater in the presence of biochar where the addition of biochar 
reduced the lag phase for methanogenesis and increased the maximum 
rate of biogas generation [49].

3.6. Statistical analysis of models for wood and faecal sludge biochar 
setups

For analysing the factorial design, the cumulative BMP was desig
nated as the response variable for both wood and faecal sludge biochar 
setups. The independent variables were the CD:WH ratio and BC 
loading. In the wood biochar setup, it was observed that the CD:WH 
ratio was statistically significant (p < 0.05) for the response, indicating 
that CD:WH ratio has an effect on the methane yield. However, BC load 
had no significant effect on the response. Furthermore, the interaction of 
CD:WH ratio and BC load was statistically significant implying a com
bined effect of the CD:WH ratio and BC load on the cumulative methane 
yield. This is similar to a study where the influence of wood biochar on 
anaerobic digestion of WH was investigated, where both inoculum to 
substrate ratio (ISR) and interaction were significant but the BC load had 
no significant effect on the response [13]. However, in the FS biochar 

Fig. 4. Biogas composition by percentage for wood BC setup.
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setup, both the CD:WH ratio and biochar loadings had a significant ef
fect (p < 0.05) on the cumulative methane yield (Table 6). However, 
their interaction was insignificant (P = 0.0791) indicating that the effect 
of the CD:WH ratio on the cumulative methane yield did not depend on 
the levels of the biochar loadings. The difference in the performance of 
the CD:WH ratio and BC in the two setups could be attributed to the 
difference in the physical and chemical properties of the wood and FS 
biochar.

3.7. Liquid sample monitoring for wood and faecal sludge biochar setups

The pH and alkalinity were measured at the beginning and the end of 
the digestion period without pH adjustment (Fig. 6) in order to assess the 
impact of addition of BC on the pH and alkalinity. The accumulated 
VFAs at the end of digestion are shown in Fig. 7.

The pH of the 100 % CD ratio was maintained in the optimum range 
of 6.5 to 7.5 and this could be because cow dung has been reported to 
have a high buffering capacity which is supported by its high pH value in 
Figs. 6A and 6B [50]. Addition of the wood biochar resulted in a drop in 
both pH and alkalinity for both the 50 %WH:50 %CD + 0 %BC and 100 
%CD:0 %WH + 0 % BC (Figs. 6A and 6C), while the faecal sludge bio
char resulted in an increase in the pH and alkalinity for the same mix
tures (Figs. 6B and 6D). This could attest to the greater buffering 
capacity offered by the faecal sludge biochar which is correlated to its 
high pH, ash content and concentration of AAEMs in Table 3. The 
alkaline property of biochar has been considered to raise CH4 content by 

Fig. 5. Biogas composition by percentage for faecal sludge BC setup.

Table 4 
Kinetic parameters for the AD of cow dung, water hyacinth and wood biochar.

CD:WH (%) BC (%) BMPExp (mL CH4 /gVS) BMPmax (mL CH4 /gVS) μm (mL CH4 /gVS) λ (days) R2

50:50 0 60.1 64.0 1.86 5.81 0.972
50:50 2 71.9 72.7 2.76 4.58 0.986
100:0 0 49.3 62.9 1.87 8.29 0.995
100:0 2 87.4 91.3 4.29 7.46 0.997
75:25 1 115.8 138.0 3.75 4.94 0.988

Table 5 
Kinetic parameters for the AD of cow dung, water hyacinth and feacal sludge biochar.

CD:WH (%) BC (%) BMPExp (mL CH4 /gVS) BMPmax (mL CH4 /gVS) μm (mL CH4 /gVS) λ (days) R2

50:50 0 105.5 139.2 4.16 8.96 0.983
50:50 2 144.8 164.8 5.48 6.04 0.995
100:0 0 90.4 94.1 4.38 4.94 0.995
100:0 2 175.3 176.4 9.78 4.75 0.998
75:25 1 157.6 167.1 6.37 3.54 0.986

CD:WH - Cow dung to Water hyacinth ratio, BC - biochar; BMPExp - experimental methane yield; BMPmax - maximum methane yield; μm - methane production rate; λ - 
lag phase; R2 - coeffecient of determination.

Table 6 
Analysis of variance for the factorial regression model for the setups.

Term Wood biochar setup Faecal sludge biochar setup

F-value p-value F-value p- value

CD: WH 6.002 0.00294 4.448 0.0129
BC 2.264 0.13400 28.490 0.0000
CD: WH *BC 6.198 0.01361 3.115 0.0791
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reacting hydrogen sulphide and CO2 with alkaline substances in ash 
thereby regulating the pH in the AD system [51,52].

It was also observed that the addition of both forms of BC greatly 
reduced the concentration of the VFAs accumulated at the end of 
digestion (Fig. 7). However, the faecal sludge BC amended reactors 
displayed lower VFA concentrations as compared to the wood biochar 
amended reactors thereby further attesting to its greater buffering ca
pacity. The buffering capacity of biochar has been attributed in previous 
studies to the surface functional groups, such as amine which adsorb H+, 
and the inorganic materials such as Ca, K, Na, Fe and Si. The alkalinity of 
biochar has been generally represented by Eq. (2) (Ca and CXHXCOOH 
are selected as representative of AAEMs and VFAs respectively) [35]. 

CaCO3 + 2 CxHxCOOH→[CxHxCOOH]2Ca + H2O + CO2 (2) 

4. Conclusions

This study concludes that water hyacinth and cow dung are excellent 
substrates for anaerobic digestion due to their high organic matter 
content, favourable C/N ratios, and high moisture levels. Additionally, 
wood and faecal sludge biochar can effectively enhance anaerobic 
digestion processes, with wood biochar contributing to system stability 
and faecal sludge biochar aiding in nutrient supplementation and carbon 
dioxide sequestration.

The addition of 2 % biochar, whether from wood or faecal sludge, 
significantly boosts methane yield, but the extent of the increase de
pends on the specific feedstock used. Faecal sludge biochar is found to be 
more effective in increasing methane yield, primarily due to its higher 
pH, ash content, and percentage of alkali and alkali earth metals 

Fig. 6. pH (A and B) and alkalinity (C and D) at beginning and end of the experiments.
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(AAEMs).
The study emphasises the necessity for further investigation, 

particularly into the influence of pyrolysis temperature on biochar 
properties, microbiological interactions between different biochar types 
and the substrates, and the field performance of biochar in methane 
yield. While laboratory tests indicate significant potential for optimizing 
anaerobic digestion using biochar, further research is required to 
explore these findings in practical applications.
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