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Stochastic model for the turbulent ocean heat flux under Arctic sea ice
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The physics of planetary climate features a variety of complex systems that are challenging to model as
they feature turbulent flows. A key example is the heat flux from the upper ocean to the underside of sea ice
which provides a key contribution to the evolution of the Arctic sea ice cover. Here, we develop a model of the
turbulent ice-ocean heat flux using coupled ordinary stochastic differential equations to model fluctuations in the
vertical velocity and temperature in the Arctic mixed layer. All the parameters in the model are determined from
observational data. A detailed comparison between the model results and measurements made during the Surface
Heat Budget of the Arctic Ocean (SHEBA) project reveals that the model is able to capture the probability density
functions (PDFs) of velocity, temperature, and heat flux fluctuations. Furthermore, we show that the temperature
in the upper layer of the Arctic Ocean can be treated as a passive scalar during the whole year of SHEBA
measurements. The stochastic model developed here provides a computationally inexpensive way to compute
an observationally consistent PDF of this heat flux and has implications for its parametrization in regional and
global climate models.
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I. INTRODUCTION

Many systems of interest in both natural and engineered
environments possess a very large number of degrees of free-
dom, which makes the use of statistical physics the only
feasible way to study their dynamics [1]. These systems—
either in a state of equilibrium or disequilibrium—display
fluctuations in key physical quantities that describe them, and
a complete description of the systems must include these
fluctuations [2]. A systematic way to study and model these
fluctuations is provided by mathematical tools that fall un-
der the rubric of stochastic methods [2–4], which have been
fruitfully used to study fluctuations in systems such as the
motion of a Brownian particle [2], chemical reactions [5],
turbulent flows [6], and the Earth’s climate [7,8]. Here, we use
stochastic methods to study the fluctuations in the turbulent
ocean heat flux (hereafter referred to as ocean heat flux for
short) under Arctic sea ice, which contributes to the melting
of the ice cover and is an under-constrained element in the
description of the Arctic climate system [9].

Arctic sea ice is one of the most sensitive components
of the Earth’s climate system and plays an important role
in the Earth’s radiation budget due to its high albedo. The
evolution of the ice cover is affected by processes that act
on disparate length and time scales—from the transport of
salt, momentum, and heat in the boundary layers next to the
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ice-ocean interface to the atmospheric drivers of ice motion
including ice export through the Fram Strait. These processes
originate from the nonlinear interactions between sea ice and
the atmosphere and underlying ocean [10]. Accurate modeling
of these interactions is both challenging and indispensable for
reliable predictions of the fate of Arctic sea ice [11].

The principal source of the ocean heat flux is the shortwave
radiation absorbed by the upper layers of the ocean during
summer [12,13]. While some of this heat is turbulently mixed
to melt the neighboring ice, the creation of cold and relatively
fresh water due to ice ablation traps some of this absorbed
heat at depth, creating a near-surface maximum of temper-
ature beneath the mixed layer [14]. The latter heat store is
released to the ice-ocean interface when fluid motions due to
shear and buoyancy ensue in fall and winter [14]. Upward
fluxes of heat from the deeper ocean provide an additional,
but comparatively insignificant, contribution [15].

The role of the ocean heat flux in the growth of sea ice
was systematically studied by Maykut and Untersteiner [9].
In their observationally consistent one-dimensional thermo-
dynamic model, the ocean heat flux was used as an input
parameter due to the scarcity of measurements [9]. Their
results showed that a variation in the heat flux from 0 to
7 Wm−2 changed the mean thickness of sea ice from about
6 m to 0 m, thus highlighting the importance of this heat flux
and the necessity of measuring and accurately modeling it.

Since the pioneering oceanic boundary layer measure-
ments of McPhee and Smith [16] during the Arctic Ice
Joint Dynamics Experiment, there have been several ex-
perimental studies that have either directly [13,17–21] or
indirectly [22,23] measured the ocean heat flux in the Arctic.
The time series analysis by McPhee [18] has revealed the
following interesting features regarding the ocean heat flux:
(i) a large fraction of heat transport occurs in intermittent
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bursts that can be larger than the mean heat flux by an order
of magnitude; (ii) the probability density functions (PDFs)
of the ocean heat flux have large values of skewness and
kurtosis, and hence are not Gaussian; and (iii) the PDFs
obtained from heat flux time series on different days and at
different depths have a self-similar form, which can be fit with
separate stretched exponential functions for the positive and
negative segments. However, significant intersite differences
in the heat flux have been observed and attributed to local
topographical features of the ice-ocean interface [23]. This
is because the interfacial roughness enhances the interaction
between flows inside and outside the boundary layers, leading
to an increased heat flux when compared to that of a flat inter-
face [24–26]. Recent high-resolution simulations of thermal
convection over fractal boundaries [27] with the same spectral
properties as that of ice-ocean interface [28] provide support
for this attribution.

Although measuring the ocean heat flux at different depths
in the Arctic mixed layer is possible, it is still challenging
to do this over long periods of time across the entire basin.
Laboratory experiments [24,29], idealized high-resolution
simulations [30,31], and turbulence modeling [32], however,
can be used to bridge this gap and construct a more complete
picture of the spatiotemporal variability of the ocean heat flux.
Another, comparatively less explored, approach is to describe
the turbulent flow as a stochastic dynamical system and con-
struct ordinary stochastic differential equations (SDEs) for
velocity and temperature and solve them to obtain a model
for the ocean heat flux. In the past, SDEs have been used to
study the velocity field in spatially homogeneous isotropic
turbulence [6,33] and in parametrizations in climate mod-
els [34], but, to our knowledge, they have not been used to
study stratified turbulent flows relevant to the Arctic mixed
layer. In this study, we present a system of coupled ordinary
SDEs for the velocity and temperature fluctuations and use it
to study the heat flux in the Arctic mixed layer.

The following is a brief outline of the remainder of the
paper. In Sec. II we present the model and discuss how the
parameters can be obtained from observational data. The ve-
locity and temperature data from the Surface Heat Budget of
the Arctic (SHEBA) project is briefly discussed in Sec. III.
Results and detailed comparisons with the SHEBA data are
presented in Sec. IV, and conclusions are provided in Sec. V.

II. THE STOCHASTIC MODEL

A. Governing equations

To obtain our phenomenological model for the fluctuations,
we make use of the Reynolds-averaged description of turbu-
lence [35] and decompose the velocity and temperature into
mean and fluctuations about the mean. We assume there is no
mean flow in the vertical direction and the vertical temperature
profile is locally linear, which implies the mean temperature
gradient is constant. The time evolution of the vertical velocity
fluctuation, ŵ, and temperature fluctuation, θ̂ , are modeled
using the following dynamically motivated stochastic differ-
ential equations:

dŵ

dt̂
= −γ1 ŵ + gα θ̂ + b1 ξ̂1(t̂ ), (1)

and

d θ̂

dt̂
= −γ2 θ̂ − β ŵ + b2 ξ̂2(t̂ ). (2)

Here, t̂ is the time; γ1 and γ2 are the relaxation frequencies
of the velocity and temperature fluctuations, respectively; g
is the acceleration due to gravity; α is the thermal expansion
coefficient of seawater; β is the mean temperature gradient in
the upper layer of the ocean; b1 and b2 are the amplitudes of
the noise terms; and ξ̂1 and ξ̂2 are the Gaussian white noise
terms with the property

〈ξ̂i(t1) ξ̂ j (t2)〉 = δ(t1 − t2) δi j ; i, j = 1, 2, (3)

where δ(t1 − t2) is the Dirac delta function and δi j = 1 if i = j
and 0 otherwise. The angular brackets in Eq. (3) denote an
ensemble average (i.e., over many statistical realizations, or a
time average if the system is assumed to be ergodic, as done
here). The instantaneous oceanic heat flux is given by

Fw(t̂ ) = ρ Cp ŵ(t̂ ) θ̂ (t̂ ), (4)

where ρ = 1025 kg m−3 is the density of seawater and Cp =
3985 J kg−1 K−1 is the specific heat of seawater, and the
conductive heat flux has been assumed negligible outside of
molecular boundary layers.

Equations (1) and (2) are heuristic simplified versions of
the Boussinesq equations [36] for momentum and heat bal-
ance, where the net effect of viscous or thermal diffusion
and chaotic nonlinear fluctuations are represented by a linear
relaxation term [first terms on right-hand sides of Eqs. (1)
and (2)] and a stochastic noise forcing [final terms in Eqs. (1)
and (2)]. The form of the relaxation terms is motivated by
two reasons: first, that the dimensions of D∇2, where D is
either momentum or thermal diffusivity, is the inverse of a
time scale [37]; and second, the viscous term acts to damp
the small-scale features in a turbulent flow. The second term
on the right-hand side of Eq. (1) describes the coupling due
to the thermal contribution to the buoyancy force. We assume
that the buoyancy effects from changes in salinity can be sub-
sumed into the stochastic forcing of velocity in Eq. (1). Hence,
a separate equation for salinity fluctuations is not required in
the model. The second term on the right-hand side of Eq. (2)
describes temperature changes due to advection against the
background temperature gradient.

To nondimensionalize Eqs. (1) and (2), we choose velocity
and temperature scales w0 and θ0 as the standard deviations of
the respective time series and γ −1

1 as the time scale. Using
these in the above equations and dropping the hats for di-
mensionless variables, we can express the equations in matrix
form as

d

dt

[
w

θ

]
= −

[
1 −	1

	2 


] [
w

θ

]
+

[
B1 0
0 B2

] [
ξ1

ξ2

]
. (5)

The dimensionless parameters in Eq. (5) are

	1 = gα θ0

w0 γ1
; 
 = γ2

γ1
; 	2 = β w0

θ0 γ1
;

B1 = b1

w0
√

γ1
and B2 = b2

θ0
√

γ1
. (6)
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Our goal now is to develop solutions to Eq. (5). Before that,
we determine the unknown dimensionless parameters from
the given time series data.

B. Determining the dimensionless parameters

At polar latitudes the thermal expansion coefficient and
thermal contribution to buoyancy are often comparatively
small [38], and so when estimating the parameters we look
for solutions with 	1 � 1. This implies that we are assuming
the temperature to be a passive scalar. The veracity of this
assumption will be put to the test when we compare our results
with observations.

Setting 	1 = 0, the eigenvalues of the coefficient matrix
multiplying w and θ in Eq. (5) are 1 and 
. To determine

, we calculate γ1 and γ2 from the autocorrelation functions
of ŵ(t̂ ) and θ̂ (t̂ ) from the observational time series (Ap-
pendix A).

The remaining parameters are determined using some
mathematical identities that are derived in Appendix A. With
	1 → 0, the equation for w decouples, and hence we can
sequentially solve (5) for w(t ) and θ (t ). We can then cal-
culate 〈w(t )2〉 = B2

1/2 (Appendix A). Noting that 〈w2〉 = 1
due to the choice of scales for nondimensionalization, we find
B1 = √

2. A similar calculation for θ yields

B2 =
√

2 
 − 2 	2
2

1 + 

. (7)

Lastly, the value of 	2 can be determined by calculating the
covariance of w and θ (Appendix A), giving

	2 = −(1 + 
) 〈w θ〉. (8)

Hence, 	2 is determined from the covariance of the scaled
velocity and temperature time series. Redimensionalizing
Eq. (8) and rearranging leads to

〈Fw〉 = ρ Cp β w2
0

γ1 + γ2
, (9)

which can be physically interpreted as follows. Fluctua-
tions that transport significant heat feature a correlation of
velocity and temperature anomalies, which persist over a
timescale τ ∼ (τ−1

w + τ−1
θ )−1 given by the harmonic mean

of the damping timescales τw = γ −1
1 for velocity and τθ =

γ −1
2 for temperature. The persistence time scale, τ , is thus

dominated by the shorter damping timescale when there is a
separation of damping timescales. The net heat accumulated
by advection against the mean temperature gradient over this
time is ρcpw0βτ which is transported with speed w0 leading
to the given expression for the heat flux. Note that this ex-
pression recovers a classical bulk flux formula with heat flux
proportional to mean velocity U and temperature difference
�T if w0 ∝ U and β w0 τ ∝ �T as might be expected for a
turbulent shear flow with a background temperature gradient.

The above determines all the dimensionless parameters in
terms of the statistical quantities, which can be obtained from
the observed time series of velocity and temperature.

FIG. 1. Relaxation frequencies γ1 and γ2 for the different differ-
ent months starting from October 1997 to September 1998. The error
bars represent the 95% confidence intervals from the fits.

C. Details of the numerical scheme

After the dimensionless parameters are determined, the
system (5) is solved numerically using the Euler-Maruyama
scheme [39]. The time step chosen for integration is �t =
10−3, and the equations are integrated for 105 dimensionless
time units, which is sufficiently long to obtain converged
statistics. Both w and θ are initialized using random numbers
that are normally distributed with zero mean and unit variance.

III. DATA

We use the vertical velocity and temperature data from the
Ocean Turbulence Mast Project conducted during the SHEBA
expedition [40]. The data were collected in the boundary layer
underneath a drifting ice floe in the Arctic from October 1997
to September 1998. The clusters were spaced at a distance of
4 m on the mast, and the uppermost cluster was at either a
depth of 4 m or 2 m below the ice-ocean interface (changed
after the ice camp was moved following the floe breakup in
March 1998). Further details are provided along with the data
by McPhee [41]. All the data used in our study are from the
uppermost cluster.

The SHEBA data is partitioned into 15-minute segments,
with a sampling frequency of either 0.5 or 1 Hz depending on
the month. In order to understand the fluctuations on different
timescales, the longest continuous interval of data was chosen
for every month. The length of data differs from month to
month and ranges from about 7 hours in January, February,
and December to 17.25 hours in September. The time series
for ŵ was taken as is, but to account for slow drift in the
mean, the mean values of the temperature in each individual
15-minute segment were subtracted from the temperature data
before combining them. This results in a negligible trend in
the time series for θ̂ . The heat flux time series was then
constructed using Eq. (4).

In the following, we discuss the model results and their
comparison with the SHEBA data.

IV. RESULTS

A. Relaxation times and mean temperature gradient

In Fig. 1, the monthly values of the relaxation frequencies
γ1 and γ2 are shown. There are two observations that can be
made from Fig. 1. First, the relaxation frequencies are not
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FIG. 2. Mean temperature gradient β for the different months
starting from October 1997 to September 1998. The error bars shown
in the plot were calculated by propagating the systematic and statis-
tical errors in velocity and temperature measurements.

constants but vary from month to month. They do, however,
remain of a comparable order of magnitude throughout the
time series, suggesting some consistency in the processes that
control the dissipation of fluctuations. Second, the tempera-
ture fluctuations relax on slightly longer time scales than the
velocity fluctuations. This implies that γ2 < γ1 and 
 < 1 for
all months. The parameter 1/
 is akin to the turbulent Prandtl
number, which measures the ratio of turbulent diffusion of
momentum and thermal anomalies and is O(1) for all months.
The relaxation frequencies might be related to the properties
of the turbulent flow, such as the mean dissipation rate of
the kinetic energy (see Sec. V), which varies from month to
month, and hence the variation in γ1 and γ2.

We use the values of 
 in Eq. (8) to calculate 	2 and,
in turn, calculate β. This is shown in Fig. 2. Except for the
summer months of June, July, and August, |β| = O(10−5) −
O(10−3) K m−1, indicating very weak temperature gradients
in the mixed layer. The sign of β, except for the month of Oc-
tober, also indicates that the temperature increases with depth.
This is consistent with the temperature of the ice-ocean inter-
face being at the local freezing point, with warmer fluid below
due to sources of heat at the base of the mixed layer [14]. The
values of β for the summer months are negative and larger
than the values for the other months by one to three orders
of magnitude. This might be due to thinner summer ice with
lower concentrations allowing enhanced absorption of solar
radiation in the mixed layer, and increasing the temperature
difference to the ice-ocean interface which lies at the melting
temperature. A further potential factor is the summer release
of fresh meltwater that increases the density stratification,
restricting the depth over which absorbed solar heating can
be mixed, and thus increasing the magnitude of the temper-
ature gradient. The data for October has β > 0 so that the
temperature decreases with depth, which is counterintuitive.
This could potentially be related to convective brine rejection
during rapid initial ice growth in fall, injecting cold and saline
water at the base of the mixed layer [cf. [14]]. It should be
emphasized here that the values of β are calculated implicitly
from single-point measurements and hence may reflect very
localized trends. A more complete picture might be obtained
by analyzing vertical temperature profiles in the mixed layer,
which is not possible with the available data set.

FIG. 3. PDFs for (a) vertical velocity (ŵ), (b) temperature (θ̂ ),
and (c) heat flux (Fw) for the month of January. Circles denote
PDFs from observations and the solid lines denote PDFs from the
stochastic model. The PDFs for the observational and model data are
generated using 200 and 400 bins, respectively.

B. Probability density functions

In Fig. 3, the PDFs for ŵ, θ̂ , and Fw—which are denoted
by Pw, Pθ , and PF , respectively—are shown for the month of
January on semilog plots. It is apparent from Fig. 3(a) that
the velocity fluctuations are described well by the Langevin
equation [top row of Eq. (5) with 	1 = 0]. This implies that
the assumption 	1 � 1, or in other words that the temperature
is a passive scalar, is observationally consistent. Qualitatively
similar behavior is observed for the other months as well
(e.g., Figs. 4 and 5), thus indicating that 	1 � 1 is valid
for the whole dataset. Although the PDF for ŵ from obser-
vations is not exactly a Gaussian (its skewness and kurtosis
are ≈ −0.02 and 3.32, respectively, versus 0 and 3 expected
for a Gaussian), it is still described well by the model curve
which is a Gaussian. The near Gaussian behavior of the veloc-
ity fluctuations is often observed in homogeneous turbulent
flows [42,43], and it is interesting that we here have similar
behavior in the under-ice boundary layer which likely experi-
ences shear and buoyancy forces.

In contrast to the velocity fluctuations, there is a marked
departure from Gaussianity in the temperature fluctuations.
The temperature PDF from the model is approximately

FIG. 4. PDFs for (a) vertical velocity (ŵ), (b) temperature (θ̂ ),
and (c) heat flux (Fw) for the month of August. Circles denote
PDFs from observations and the solid lines denote PDFs from the
stochastic model. The PDFs for the observational and model data are
generated using 200 and 400 bins, respectively.
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FIG. 5. PDFs for (a) vertical velocity (ŵ), (b) temperature (θ̂ ),
and (c) heat flux (Fw) for the month of July. Circles denote PDFs from
observations and the solid lines denote PDFs from the stochastic
model. The PDFs for the observational and model data are generated
using 200 and 400 bins, respectively.

Gaussian, but the PDF from the observations is not. This is
seen in Fig. 3(b), where there is a clear difference between the
tails of the PDFs from the model and observation. However,
the model still overall describes the observations satisfactorily
well. Note that the discrete quantization of probability values
seen in the tails of the observed distributions is indicative
of finite sample size effects, with only one, two, three, etc.,
occurrences in each bin for each quantized probability level.
Thus the observed values in the tails carry greater uncertainty
as an estimator of the true probability distribution.

Figure 3(c) shows that the PDF of heat flux is clearly
non-Gaussian and skewed, and approximately consistent with
two patched stretched exponentials, as previously observed by
McPhee [18]. (See Appendix B where we derive an explicit
expression for PF for correlated Gaussian distributions of ŵ

and θ̂ , which predicts PF has asymmetric exponential tails
modified by a power-law prefactor.) The PDF from the model
is able to describe the observations well, except in the tails.
These rare events have large instantaneous heat flux values
associated with them as described by McPhee [18], but the
model in its current form does not capture these. The source
of these large fluctuations is likely the large non-Gaussian
fluctuations in the vertical velocity and temperature, which,
as described earlier, are not captured by the model.

In Fig. 4, we show the PDFs for the month of August. As
can be seen from Figs. 4(a)–4(c), the model PDFs describe the
observations well, with the exception of tails. For the month
of July, too (Fig. 5), we observe large differences in the tails
between the model and observations. It is apparent that the
model is less effective in capturing the tails in the temperature
PDF. As a result of this, there are differences between the tails
of the model and observational PDFs of heat flux as well. This
pattern of behavior is qualitatively similar in the other months.

One possible reason for the difference in the results from
the model and observations is that the nature of the noise in
the temperature equation might not be Gaussian. There might
be physical processes that cause large fluctuations more often
than what would be expected for Gaussian processes, but it is
not apparent what these processes might be and what the time
scales associated with them are. Another reason might be that
the noise terms in the equations of motion are not additive, but

FIG. 6. Comparison between the mean heat flux values from the
model and observations for the different months.

are multiplicative. In this case, it is unclear how to constrain
the functional forms of the noise amplitudes from the limited
data. Constructing a separate stochastic model to test these
hypotheses is beyond the scope of the current work.

However, we recall that choosing model parameter values
according to Eq. (8) results in the model accurately capturing
the mean value of the heat flux for a sufficiently long time
series. In Fig. 6, we compare the mean heat flux values ob-
tained from the model and from observations, with the close
agreement indicating the time series are sufficiently long to
adequately characterize the model properties using the statis-
tically averaged relation (8). The fact that the mean heat flux
(Fig. 6) and near-peak structure of the pdfs (Figs. 3–5) are si-
multaneously well approximated suggests that the deviations
in the tail of the PDFs do not contribute significantly to the
average heat flux. While these events in the tails have a large
magnitude, they are very rare. The mean heat flux is instead
controlled by the correlation of w and θ via advection against
the mean temperature gradient, which induces a skewness
to the central core of the PDF. It should be noted here that
although the mean temperature gradient, β, is weak (Fig. 2)
for most of the year, it still has a controlling effect on the
dynamics of the system as the velocity and temperature fluctu-
ations are coupled through this term. This coupling ultimately
leads to the correct shape of the PDFs for Fw in our model.

V. CONCLUSIONS

The following are the main conclusions from our study.
(1) We have developed an observationally consistent

stochastic model to describe fluctuations in the vertical veloc-
ity, temperature, and heat flux in the Arctic mixed layer. The
dimensionless parameters in the model are determined using
correlation and cross-correlation functions of the temperature
and velocity time series from observations.

(2) We showed that by assuming the thermal contribution
to the buoyancy term in the equation for vertical velocity
to be small, we were able to recover the observed PDF for
w, which is approximately Gaussian. This indicates that to
leading order, the temperature in the Arctic mixed layer can
be treated as a passive scalar.

(3) The temperature and heat flux PDFs from our model
are in good overall agreement with the ones from observa-
tions.
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(4) The theory, in its current form, requires certain av-
eraged quantities from the observations as input parameters.
However, these quantities are obtained from different aspects
of the observations; the resulting agreement between the the-
ory and observations (Figs. 3–6) show that the model has
the appropriate mathematical and physical structure to pro-
duce observationally consistent statistics. We should empha-
size here that we only use first- and second–order moments of
the temperature and velocity time series to determine the di-
mensionless parameters in the model, but nevertheless obtain
good agreement for the entire PDFs.

(5) A shortcoming of the model is that it does not capture
the rare events (tails of the PDFs) in temperature and heat flux.
However, this has a negligible effect on the mean values of the
heat flux (Fig. 6).

We showed that our stochastic model can be used to
obtain reliable statistics of the heat flux, provided that the
key parameters are obtained from the observational time
series. However, some of these parameters appear to vary
seasonally with the ocean conditions. For use as a prognostic
parametrization in regional sea ice simulations, it is necessary
to relate the parameters to coarse-grained variables that could
be described or inferred in the regional simulations. Hence,
these parameters would have to be estimated from other bulk
quantities.

One might try to relate the relaxation frequencies γ1 and
γ2 to molecular diffusivities as γ1 = C1 ν k2 and γ2 = C2 κ k2,
where ν and κ are the kinematic viscosity and thermal dif-
fusivity, respectively, k = 2π/L is the dominant wavenumber
for the characteristic length scale L, and C1 and C2 are the
dimensionless constants of O(1). These expressions pose both
conceptual and practical difficulties. The key question to be
addressed to make any progress is: what is the characteristic
length scale L? Two potential choices for this length scale
are the Taylor microscale (λT ) and the Kolmogorov scale (η)
defined as λT = √

15ν/ε vrms and η = (ν3/ε)1/4, where ρ ε

is the mean dissipation rate of the fluid kinetic energy and
vrms is the root-mean-square of the velocity fluctuations. We
estimate ε in terms of the work done by shear stresses per unit
volume per unit time in the mixed layer, using a bulk formula
for the shear stress. This gives ρ ε ≈ τ U/H = ρ Cd U 3/H ,
where τ is the shear stress, Cd is the drag coefficient, U is the
mean relative ice-ocean velocity along the horizontal, and H is
the depth of the mixed layer. We estimate vrms ≈ 0.01 m s−1

by order of magnitude based on the observational data. As
an order of magnitude estimate we use U ≈ 0.1 m s−1, Cd =
5 × 10−3, ν = 2 × 10−6 m2 s−1 and H ≈ 10m to estimate
η ≈ 0.002 m and λT ≈ 0.08 m. Setting L ∼ η based off the
Kolmogorov scale yields γ1 ≈ 20 s−1, which is much larger
than the observed frequencies in Fig. 1. However, using the
Taylor microscale L ∼ λT results in γ1 ≈ 0.013 s−1 which is
intriguingly of a similar order of magnitude to the observed
velocity and thermal dissipation frequency scales in Fig. 1.

Future work might consider a detailed analysis of observa-
tional or numerical simulation data to evaluate this hypothesis
more carefully and understand why the thermal dissipation
frequency scale does not exactly vary in proportion to the
velocity dissipation frequency scale. We should also note
here that both U and H vary with seasons, which potentially
contributes to the seasonal variations in γ1 and γ2 at the

leading order. Hence, a systematic inclusion of these temporal
variations in the future work is also necessary. Alterna-
tively, data from year-round, high-resolution measurements
of velocity and temperature profiles would permit accurate
calculations of the gradients, which in turn will lead to more
accurate estimates of kinetic and thermal dissipation rates and
hence γ1 and γ2. Furthermore, the high-resolution data would
also permit the calculation of more accurate values of β.

In the absence of such data, one of the following two ap-
proaches could be taken to determine 	2. The first one might
determine a relationship between the mean temperature gradi-
ent β and other coarse-grained variables using observational
data. Because of the large spacing between the clusters (4 m),
a reliable temperature gradient cannot be calculated from
the SHEBA data. However, high-resolution vertical profiles
of temperature are now available from Ice Tethered Profiler
(ITP) measurements in the different regions of the Arctic [44].
The second method is that one could use the bulk relations
typically used to predict mean heat fluxes to estimate the
covariance 〈wθ〉 [32], which can then be used to calculate
	2 using Eq. (8). One also needs to estimate the standard
deviations of velocity and temperature fluctuations, with pos-
sible candidate scalings proportional to the mean horizontal
velocity within the mixed layer and temperature difference
between ice-ocean interface and mixed layer (in line with the
dimensional underpinnings of typical bulk flux formulas).

The value of our method is that it provides a way to obtain
the observationally consistent probability density functions of
the ocean heat flux by knowing only certain bulk quantities.
This may be helpful in calculating growth rates of sea ice
in both regional and global climate models with a sea-ice
component in them, provided that the key model parameters
are known.
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APPENDIX A: DIMENSIONLESS PARAMETERS

To obtain the relaxation frequencies, γ1 and γ2, we first
calculate the autocorrelation functions Cw and Cθ , which are
defined by

Cw(t̂ ) = 〈ŵ(t̂0) ŵ(t̂0 + t )〉 and Cθ (t̂ ) = 〈θ̂ (t̂0) θ̂ (t̂0 + t )〉,
(A1)

where the averages are computed via integration over time.
The relaxation frequencies are then obtained by fitting expo-
nential curves to the correlation functions.

To determine B1, we solve the top row of Eq. (5) using
	1 = 0 and an integrating factor. The solution is

w(t ) = w0 e−t + B1 e−t
∫ t

0
et1 ξ1(t1) dt1, (A2)

where w0 is the initial condition, which can be set to zero
without the loss of generality because we are interested in the
long time average (t → ∞). The autocorrelation function for
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w is

〈w(t ) w(s)〉 = B2
1 e−(t+s)

∫ t

0

∫ s

0
e(t1+t2 ) 〈ξ1(t1) ξ1(t2)〉dt2 dt1.

(A3)

The integral can be evaluated using the property of white noise
[Eq. (3)], and in the limits t → ∞ and s → ∞ with |t − s|
finite gives

〈w(t ) w(s)〉 = B2
1

2
e−|t−s|. (A4)

Setting t = s and noting that 〈w2〉 = 1, we get B1 = √
2.

Next, in order to determine 	2 and B2, we solve the bottom
row of Eq. (5) using an integrating factor to give

θ (t ) = θ0 e−
 t − 	2 e−
 t
∫ t

0
e
 t1 w(t1) dt1

+ B2 e−
 t
∫ t

0
e
 t1 ξ2(t1) dt1. (A5)

The initial condition θ0 can again be set to 0 without any
loss of generality. Multiplying Eq. (A5) by w(t ), taking the
ensemble average and noting that 〈w(t ) ξ2(t1)〉 = 0, gives

〈w θ〉 = −	2e−
 t
∫ t

0
e
 t1 〈w(t ) w(t1)〉 dt1. (A6)

Using the result in Eq. (A4), this can be solved to give

	2 = −(1 + 
) 〈w θ〉, (A7)

in the limit t → ∞.
Lastly, to calculate B2, we calculate the variance of θ ,

which is given by the expression

〈θ2〉 = 	2
2 e−2 
 t

∫ t

0

∫ t

0
e
 (t1+t2 ) 〈w(t1) w(t2)〉 dt2 dt1

+ B2
2 e−2 
 t

∫ t

0

∫ t

0
e
 (t1+t2 ) 〈ξ2(t1) ξ2(t2)〉 dt2 dt1.

(A8)

The integrals can be evaluated to give

B2 =
√

2 
 〈θ2〉 − 2 	2
2

1 + 

, (A9)

in the limit t → ∞. Noting that 〈θ2〉 = 1, we finally get

B2 =
√

2 
 − 2 	2
2

1 + 

. (A10)

APPENDIX B: ANALYTICAL MODEL FOR THE
NON-GAUSSIAN DISTRIBUTION

Here, we present an analysis that shows that the product of
two Gaussian variables, which are not independent, produces
a non-Gaussian variable. Using the result that the solution to a
linear multivariate Fokker-Planck equation is a Gaussian [5],
we write the stationary joint distribution for w and θ as

Pw,θ (w, θ ) = N exp(−Aw2 − Bw θ − C θ2), (B1)

where N , A, B, and C are determined by second-order mo-
ments of P(w, θ ). The standard form of the two-dimensional
Gaussian distribution is

Pw,θ (w, θ ) = 1

2 π
√|�| exp

(
−1

2
X T · �−1 · X

)
, (B2)

where

X =
[
w

θ

]
, (B3)

X T is the transpose of X , � is the covariance matrix and
�−1 and |�| are its inverse and determinant, respectively.
The entries of the covariance matrix are given by �i j =
〈Xi Xj〉, where i, j = 1, 2. Comparing Eqs. (B1) and (B2), it
is straightforward to find that

�−1 =
[

2A B
B 2 C

]
, (B4)

and hence

� = 1

4AC − B2

[
2 C −B
−B 2A

]
. (B5)

Evaluating �i j = 〈Xi Xj〉 using Eqs. (B3) and (B5) yields
three simultaneous equations for A, B, and C with solutions

A = 〈θ2〉
2(〈θ2〉 〈w2〉 − 〈w θ〉2)

, (B6)

B = −〈w θ〉
(〈θ2〉 〈w2〉 − 〈w θ〉2)

, (B7)

and

C = 〈w2〉
2(〈θ2〉 〈w2〉 − 〈w θ〉2)

. (B8)

The normalization factor is then given by

N =
√

(4AC − B2)

2 π
. (B9)

To find the PDF for the instantaneous heat flux, we first note
that a multivariate PDF, Pw,θ (w, θ ), for random variables w

and θ transforms as

Pw,θ (w, θ ) dw dθ = Pw,θ [w(x, y), θ (x, y)]

∣∣∣∣∂ (w, θ )

∂ (x, y)

∣∣∣∣ dx dy,

(B10)

which implies

Px,y(x, y) = Pw,θ (w, θ )

∣∣∣∣∂ (w, θ )

∂ (x, y)

∣∣∣∣. (B11)

If we choose x = w and y = F = w θ , where F is the dimen-
sionless heat flux, we get

Pw,F (w, F ) = N 1

|w| exp

(
−Aw2 − B F − C F 2

w2

)
. (B12)

The marginal PDF for the heat flux can now be found using

PF = N
∫ ∞

−∞

1

|w| exp

(
−Aw2 − B F − C F 2

w2

)
dw, (B13)
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or

PF = 2N
∫ ∞

0

1

|w| exp

(
−Aw2 − B F − C F 2

w2

)
dw, (B14)

because the integrand is an even function of w. This integral
is evaluated assuming A, C > 0 and substituting

w =
(

F 2 C
A

)1/4

exp(z/2), (B15)

which gives

PF = N exp(−B F )
∫ ∞

−∞
exp[−2 |F |

√
AC cosh(z)] dz.

(B16)

This can alternatively be expressed as

PF = 2N exp(−B F ) K0(−2 |F |
√
AC), (B17)

using the integral definition of K0(X ), the zeroth order modi-
fied Bessel function of the second kind [45]. For |F | � 1 we
get the asymptotic behavior of PF as (see [45] for asymptotic
behavior of K0(X ))

PF ∼ N√|F | exp(−B F − 2 |F |
√
AC). (B18)

FIG. 7. Plot of PF [Eq. (B17)] for A = 1, B = 0.2, and C = 1.
The singularity at F = 0 is masked due to finite resolution.

There are two key features of this analytical solution (see
Fig. 7). First, PF has an integrable singularity at F = 0; and
second, the PDF consists of two exponential tails, modified
by power-law prefactor, with different decay scales for F < 0
and F > 0, which implies PF is asymmetric. This asymme-
try is in clear qualitative agreement with the observations
shown in Figs. 3–5. However, the two branches of the PDFs
from the observations are not exponentials but stretched ex-
ponentials [18]. This discrepancy is because in obtaining the
analytical solution we have assumed the PDFs of w and θ are
Gaussian, but the observations show that this is only approxi-
mately true.
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